Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = dominant mode zoning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8385 KiB  
Article
Hydraulic Fracture Propagation Behavior in Tight Conglomerates and Field Applications
by Zhenyu Wang, Wei Xiao, Shiming Wei, Zheng Fang and Xianping Cao
Processes 2025, 13(8), 2494; https://doi.org/10.3390/pr13082494 (registering DOI) - 7 Aug 2025
Abstract
The tight conglomerate oil reservoir in Xinjiang’s Mahu area is situated on the northwestern margin of the Junggar Basin. The reservoir comprises five stacked fan bodies, with the Triassic Baikouquan Formation serving as the primary pay zone. To delineate the study scope and [...] Read more.
The tight conglomerate oil reservoir in Xinjiang’s Mahu area is situated on the northwestern margin of the Junggar Basin. The reservoir comprises five stacked fan bodies, with the Triassic Baikouquan Formation serving as the primary pay zone. To delineate the study scope and conduct a field validation, the Ma-X well block was selected for investigation. Through triaxial compression tests and large-scale true triaxial hydraulic fracturing simulations, we analyzed the failure mechanisms of tight conglomerates and identified key factors governing hydraulic fracture propagation. The experimental results reveal several important points. (1) Gravel characteristics control failure modes: Larger gravel size and higher content increase inter-gravel stress concentration, promoting gravel crushing under confining pressure. At low-to-medium confining pressures, shear failure primarily occurs within the matrix, forming bypassing fractures around gravel particles. (2) Horizontal stress differential dominates fracture geometry: Fractures preferentially propagate as transverse fractures perpendicular to the wellbore, with stress anisotropy being the primary control factor. (3) Injection rate dictates fracture complexity: Weakly cemented interfaces in conglomerates lead to distinct fracture morphologies—low rates favor interface activation, while high rates enhance penetration through gravels. (4) Stimulation strategy impacts SRV: Multi-cluster perforations show limited effectiveness in enhancing fracture network complexity. In contrast, variable-rate fracturing significantly increases stimulated reservoir volume (SRV) compared to constant-rate methods, as evidenced by microseismic data demonstrating improved interface connectivity and broader fracture coverage. Full article
(This article belongs to the Special Issue Structure Optimization and Transport Characteristics of Porous Media)
Show Figures

Figure 1

13 pages, 2344 KiB  
Article
Study on the Risk of Reservoir Wellbore Collapse Throughout the Full Life Cycle of the Qianmiqiao Bridge Carbonate Rock Gas Storage Reservoir
by Yan Yu, Fuchun Tian, Feixiang Qin, Biao Zhang, Shuzhao Guo, Qingqin Cai, Zhao Chi and Chengyun Ma
Processes 2025, 13(8), 2480; https://doi.org/10.3390/pr13082480 - 6 Aug 2025
Abstract
Underground gas storage (UGS) in heterogeneous carbonate reservoirs is crucial for energy security but frequently faces wellbore instability challenges, which traditional static methods struggle to address due to dynamic full life cycle changes. This study systematically analyzes the dynamic evolution of wellbore stress [...] Read more.
Underground gas storage (UGS) in heterogeneous carbonate reservoirs is crucial for energy security but frequently faces wellbore instability challenges, which traditional static methods struggle to address due to dynamic full life cycle changes. This study systematically analyzes the dynamic evolution of wellbore stress in the Bs8 well (Qianmiqiao carbonate UGS) during drilling, acidizing, and injection-production operations, establishing a quantitative risk assessment model based on the Mohr–Coulomb criterion. Results indicate a significantly higher wellbore instability risk during drilling and initial gas injection stages, primarily manifested as shear failure, with greater severity observed in deeper well sections (e.g., 4277 m) due to higher in situ stresses. During acidizing, while the wellbore acid column pressure can reduce principal stress differences, the process also significantly weakens rock strength (e.g., by approximately 30%), inherently increasing the risk of wellbore instability, though the primary collapse mode remains shallow shear breakout. In the injection-production phase, increasing formation pressure is identified as the dominant factor, shifting the collapse mode from initial shallow shear failure to predominant wide shear collapse, notably at 90°/270° from the maximum horizontal stress direction, thereby significantly expanding the unstable zone. This dynamic assessment method provides crucial theoretical support for full life cycle integrity management and optimizing safe operation strategies for carbonate gas storage wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 6304 KiB  
Article
Influence of Dominant Structural Faces on Anti-Sliding Stability of Gravity Dams in Granite Intrusion Regions
by Menglong Dong, Xiaokai Li, Yuezu Huang, Huaqing Zhang and Xiaolong Zhang
Appl. Sci. 2025, 15(15), 8657; https://doi.org/10.3390/app15158657 - 5 Aug 2025
Abstract
Granite formations provide suitable geological conditions for building gravity dams. However, the presence of intruding granite creates a fractured zone. The interaction of this fractured zone with structural planes and faults can create geological conditions that are unfavorable for the anti-sliding stability of [...] Read more.
Granite formations provide suitable geological conditions for building gravity dams. However, the presence of intruding granite creates a fractured zone. The interaction of this fractured zone with structural planes and faults can create geological conditions that are unfavorable for the anti-sliding stability of gravity dams. This paper identifies the dominant structural planes that affect the anti-sliding stability of dams by studying the three-dimensional intersection relationships between groups of structural planes, faults, and fracture zones. The three-dimensional distribution and occurrence of the dominant structural planes directly impact the anti-sliding stability and sliding failure mode of gravity dams. Through comprehensive field investigations and systematic analysis of engineering geological data, the spatial distribution characteristics of structural planes and fracture zones were quantitatively characterized. Subsequently, the potential for deep-seated sliding failure of the gravity dam was rigorously evaluated and conclusively dismissed through application of the rigid body limit equilibrium method. It was established that the sliding mode of the foundation of the dam under this combination of structural planes is primarily shallow sliding. Additionally, based on the engineering geological data of the area around the dam, a three-dimensional finite element numerical model was developed to analyze stress–strain calculations under seepage stress coupling conditions and compared with calculations made without considering seepage stress coupling. The importance of seepage in the anti-sliding stability of the foundation of the dam was determined. The research findings provide engineering insights into enhancing the anti-sliding stability of gravity dams in granite distribution areas by (1) identifying critical structural planes and fracture zones that control sliding behavior, (2) demonstrating the necessity of seepage-stress coupling analysis in stability assessments, and (3) guiding targeted reinforcement measures to mitigate shallow sliding risks. Full article
(This article belongs to the Special Issue Paleoseismology and Disaster Prevention)
Show Figures

Figure 1

18 pages, 849 KiB  
Article
Antimicrobial Activity of Greek Native Essential Oils Against Escherichia coli O157:H7 and Antibiotic Resistance Strains Harboring pNorm Plasmid, mecA, mcr-1 and blaOXA Genes
by Rafail Fokas, Zoi Anastopoulou and Apostolos Vantarakis
Antibiotics 2025, 14(8), 741; https://doi.org/10.3390/antibiotics14080741 - 24 Jul 2025
Viewed by 929
Abstract
Background/Objectives: The rapid emergence of antibiotic-resistant Escherichia coli in food and clinical environments necessitates new, clean-label antimicrobials. This study assessed eight Greek native essential oils—oregano, thyme, dittany, rosemary, peppermint, lavender, cistus and helichrysum—for activity against six genetically and phenotypically diverse E. coli strains [...] Read more.
Background/Objectives: The rapid emergence of antibiotic-resistant Escherichia coli in food and clinical environments necessitates new, clean-label antimicrobials. This study assessed eight Greek native essential oils—oregano, thyme, dittany, rosemary, peppermint, lavender, cistus and helichrysum—for activity against six genetically and phenotypically diverse E. coli strains (reference, pNorm, mecA, mcr-1, blaOXA and O157:H7). We aimed to identify oils with broad-spectrum efficacy and clarify the chemical constituents responsible. Methods: Disk-diffusion assays measured inhibition zones at dilutions from 50% to 1.56% (v/v). MIC and MBC values were determined by broth microdilution. GC–MS profiling identified dominant components, and Spearman rank-order correlations (ρ) linked composition to activity. Shapiro–Wilk tests (W = 0.706–0.913, p ≤ 0.002) indicated non-normal data, so strain comparisons used Kruskal–Wallis one-way ANOVA with Dunn’s post hoc and Bonferroni correction. Results: Oregano, thyme and dittany oils—rich in carvacrol and thymol—exhibited the strongest activity, with MIC/MBC ≤ 0.0625% (v/v) against all strains and inhibition zones > 25 mm at 50%. No strain-specific differences were detected (H = 0.30–3.85; p = 0.998–0.571; padj = 1.000). Spearman correlations confirmed that carvacrol and thymol content strongly predicted efficacy (ρ = 0.527–0.881, p < 0.001). Oils dominated by non-phenolic terpenes (rosemary, peppermint, lavender, cistus, helichrysum) showed minimal or no activity. Conclusions: Phenolic-rich EOs maintain potent, strain-independent antimicrobial effects—including against multidrug-resistant and O157:H7 strains—via a multi-target mode that overcomes classical resistance. Their low-dose efficacy and GRAS status support their use as clean-label food preservatives or adjuncts to antibiotics or bacteriophages to combat antimicrobial resistance. Full article
Show Figures

Figure 1

14 pages, 8098 KiB  
Article
A Comparative Study on the Flexural Behavior of UHPC Beams Reinforced with NPR and Conventional Steel Rebars
by Jin-Ben Gu, Yu-Han Chen, Yi Tao, Jun-Yan Wang and Shao-Xiong Zhang
Buildings 2025, 15(13), 2358; https://doi.org/10.3390/buildings15132358 - 5 Jul 2025
Viewed by 278
Abstract
This study investigates how different longitudinal steel rebars influence the flexural performance and cracking mechanisms of reinforced ultra-high-performance concrete (UHPC) beams, combining axial tensile tests using acoustic emission monitoring with standard four-point bending tests. A series of experimental assessments on the flexural behavior [...] Read more.
This study investigates how different longitudinal steel rebars influence the flexural performance and cracking mechanisms of reinforced ultra-high-performance concrete (UHPC) beams, combining axial tensile tests using acoustic emission monitoring with standard four-point bending tests. A series of experimental assessments on the flexural behavior of UHPC beams reinforced with various types of longitudinal reinforcement was conducted. The types of longitudinal reinforcement mainly encompassed HRB 400, HRB 600, and NPR steel rebars. The test results revealed that the UHPC beams reinforced with the three types of longitudinal steel rebar exhibited distinctly different failure modes. Compared to the single dominant crack failure typical of UHPC beams reinforced with HRB 400 steel rebars, the beams using HRB 600 rebars exhibited a tendency under balanced failure conditions to develop fewer main cracks (typically two or three). Conversely, the UHPC beams incorporating NPR steel rebars exhibited significantly more cracking within the pure bending zone, characterized by six to eight uniformly distributed main cracks. Meanwhile, the HRB 600 and NPR steel rebars effectively upgraded the flexural load-bearing capacity and deformation ability compared to the HRB 400 steel rebars. By integrating the findings from the direct tensile tests on reinforced UHPC, aided by acoustic emission source location, this research specifically highlights the damage mechanisms associated with each rebar type. Full article
(This article belongs to the Special Issue Key Technologies and Innovative Applications of 3D Concrete Printing)
Show Figures

Figure 1

34 pages, 41240 KiB  
Article
Mechanisms of Geometric Parameter Influence on Fast Transient Response Process of the Flow Path Under Inertial Forces
by Kang Zuo, Shuiting Ding, Peng Liu, Tian Qiu, Jiajun Wang, Zijun Li and Chuankai Liu
Appl. Sci. 2025, 15(13), 7320; https://doi.org/10.3390/app15137320 - 29 Jun 2025
Viewed by 199
Abstract
This study investigates the evolution of axial loads in the secondary air system following shaft failure in aeroengines. It addresses a significant gap in the existing literature regarding the effects of inertial forces within the cavity, as well as the unclear mechanisms by [...] Read more.
This study investigates the evolution of axial loads in the secondary air system following shaft failure in aeroengines. It addresses a significant gap in the existing literature regarding the effects of inertial forces within the cavity, as well as the unclear mechanisms by which the geometric parameters of the flow path influence these forces. A combined approach of three-dimensional simulation and experimental validation is utilized to propose a method for analyzing the evolution of axial loads during the fast transient response process, based on changes in the Cavity Inertial Force Dominant Zone (CIDZ). The research examines both single cavities and cavity–tube combination flow paths to explore the impact of inertial forces on the axial load response process and, subsequently, the influence of flow path geometric parameters on this response. The results demonstrate that inertial forces within the cavity and the geometric parameters of the flow path significantly affect the axial load response process by influencing the intensity, phase, and minor oscillation amplitude of the axial load response at various end faces within the cavity. The variation in a single geometric parameter in this study resulted in a maximum impact exceeding 500% on the differences in axial loads at different end faces within the cavity. The study offers theoretical support for the load response analysis of the secondary air system in the context of shaft failure, serving as a foundation for safety design related to this failure mode. Full article
(This article belongs to the Special Issue Advances in Fluid Mechanics Analysis)
Show Figures

Figure 1

26 pages, 21454 KiB  
Article
Numerical Study of Surrounding Rock Damage in Deep-Buried Tunnels for Building-Integrated Underground Structures
by Penglin Zhang, Chong Zhang, Weitao Chen, Chunhui He, Yang Liu and Zhaofei Chu
Buildings 2025, 15(13), 2168; https://doi.org/10.3390/buildings15132168 - 21 Jun 2025
Viewed by 347
Abstract
When deep-buried tunnels are excavated using the drill-and-blast method, the surrounding rock is subjected to combined cyclic blasting loads and excavation-induced stress unloading. Understanding the distribution characteristics of rock damage zones under these conditions is crucial for the design and safety of building-integrated [...] Read more.
When deep-buried tunnels are excavated using the drill-and-blast method, the surrounding rock is subjected to combined cyclic blasting loads and excavation-induced stress unloading. Understanding the distribution characteristics of rock damage zones under these conditions is crucial for the design and safety of building-integrated underground structures. This study investigates the relationship between surrounding rock damage and in situ stress conditions through numerical simulation methods. A constitutive model suitable for simulating rock mass damage was developed and implemented in the LS-DYNA (version R12) code via a user-defined material model, with parameters determined using the Hoek–Brown failure criterion. A finite element model was established to analyze surrounding rock damage under cyclic blasting loads, and the model was validated using field data. Simulations were then carried out to explore the evolution of the damage zone under various stress conditions. The results show that with increasing hydrostatic pressure, the extent of the damage zone first decreases and then increases, with blasting-induced damage dominating under lower pressure and unloading-induced shear failure prevailing at higher pressure. When the hydrostatic pressure is less than 20 MPa, the surrounding rock stabilizes at a distance greater than 12.6 m from the tunnel face, whereas at hydrostatic pressures of 30 MPa and 40 MPa, this distance increases to 29.4 m. When the lateral pressure coefficient is low, tensile failure occurs mainly at the vault and floor, while shear failure dominates at the arch waist. As the lateral pressure coefficient increases, the failure mode at the vault shifts from tensile to shear. Additionally, when the horizontal stress perpendicular to the tunnel axis (σH) is less than the vertical stress (σv), variations in the axial horizontal stress (σh) have a significant effect on shear failure. Conversely, when σH exceeds σv, changes in σh have little impact on the extent of rock damage. Full article
Show Figures

Figure 1

21 pages, 4282 KiB  
Article
Stability Assessment of Hazardous Rock Masses and Rockfall Trajectory Prediction Using LiDAR Point Clouds
by Rao Zhu, Yonghua Xia, Shucai Zhang and Yingke Wang
Appl. Sci. 2025, 15(12), 6709; https://doi.org/10.3390/app15126709 - 15 Jun 2025
Viewed by 446
Abstract
This study aims to mitigate slope-collapse hazards that threaten life and property at the Lujiawan resettlement site in Wanbi Town, Dayao County, Yunnan Province, within the Guanyinyan hydropower reservoir. It integrates centimeter-level point-cloud data collected by a DJI Matrice 350 RTK equipped with [...] Read more.
This study aims to mitigate slope-collapse hazards that threaten life and property at the Lujiawan resettlement site in Wanbi Town, Dayao County, Yunnan Province, within the Guanyinyan hydropower reservoir. It integrates centimeter-level point-cloud data collected by a DJI Matrice 350 RTK equipped with a Zenmuse L2 airborne LiDAR (Light Detection And Ranging) sensor with detailed structural-joint survey data. First, qualitative structural interpretation is conducted with stereographic projection. Next, safety factors are quantified using the limit-equilibrium method, establishing a dual qualitative–quantitative diagnostic framework. This framework delineates six hazardous rock zones (WY1–WY6), dominated by toppling and free-fall failure modes, and evaluates their stability under combined rainfall infiltration, seismic loading, and ambient conditions. Subsequently, six-degree-of-freedom Monte Carlo simulations incorporating realistic three-dimensional terrain and block geometry are performed in RAMMS::ROCKFALL (Rapid Mass Movements Simulation—Rockfall). The resulting spatial patterns of rockfall velocity, kinetic energy, and rebound height elucidate their evolution coupled with slope height, surface morphology, and block shape. Results show peak velocities ranging from 20 to 42 m s−1 and maximum kinetic energies between 0.16 and 1.4 MJ. Most rockfall trajectories terminate within 0–80 m of the cliff base. All six identified hazardous rock masses pose varying levels of threat to residential structures at the slope foot, highlighting substantial spatial variability in hazard distribution. Drawing on the preceding diagnostic results and dynamic simulations, we recommend a three-tier “zonal defense with in situ energy dissipation” scheme: (i) install 500–2000 kJ flexible barriers along the crest and upper slope to rapidly attenuate rockfall energy; (ii) place guiding or deflection structures at mid-slope to steer blocks and dissipate momentum; and (iii) deploy high-capacity flexible nets combined with a catchment basin at the slope foot to intercept residual blocks. This staged arrangement maximizes energy attenuation and overall risk reduction. This study shows that integrating high-resolution 3D point clouds with rigid-body contact dynamics overcomes the spatial discontinuities of conventional surveys. The approach substantially improves the accuracy and efficiency of hazardous rock stability assessments and rockfall trajectory predictions, offering a quantifiable, reproducible mitigation framework for long slopes, large rock volumes, and densely fractured cliff faces. Full article
(This article belongs to the Special Issue Emerging Trends in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

13 pages, 3068 KiB  
Article
Microstructure Evolution and Fracture Mode of Laser Welding–Brazing DP780 Steel-5754 Aluminum Alloy Joints with Various Laser Spot Positions
by Bolong Li, Jiayi Zhou, Rongxun Hu, Hua Pan, Tianhai Wu and Yulai Gao
Materials 2025, 18(12), 2676; https://doi.org/10.3390/ma18122676 - 6 Jun 2025
Viewed by 562
Abstract
Joining steel and Al alloys can fully utilize their advantages for both base metals (BMs) and optimize automobile structures. In this study, the laser welding–brazing technique was utilized to join DP780 steel and aluminum alloy 5754 (AA5754). The mechanical properties, microstructure, and fracture [...] Read more.
Joining steel and Al alloys can fully utilize their advantages for both base metals (BMs) and optimize automobile structures. In this study, the laser welding–brazing technique was utilized to join DP780 steel and aluminum alloy 5754 (AA5754). The mechanical properties, microstructure, and fracture locations of steel–Al joints prepared using different laser spot positions were comparatively investigated. As the proportion of the laser spot on the steel BM increased from 50% to 90%, the tensile–shear strength of the steel–Al welded joint rose from 169 MPa to 241 MPa. Meanwhile, the fracture location of the joint shifted from the interface to the BM of the aluminum alloy. The change in the laser spot position could dramatically affect the interfacial microstructure and fracture mode of the steel–Al joint. When the proportion of the laser spot on the steel BM was relatively small (50%), the growth of intermetallic compounds (IMCs) was inhibited. The metallurgical bonding effect at the steel–Al interface was poor. In this case, the interfacial zone became the primary path for the crack propagation. Thus, interface failure became the dominant failure mode of the steel–Al joint. On the contrary, metallurgical bonding at the interface was remarkably improved as the proportion of the laser spot on the BM of the steel increased (to 90%). It was determined that the IMCs could effectively hinder the propagation of cracks along the interface. Eventually, the joint fractured in the Al alloy’s BM, resulting in a qualified steel–Al joint. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

29 pages, 19185 KiB  
Article
An AIS-Based Study to Estimate Ship Exhaust Emissions Using Spatio-Temporal Approach
by Akhahenda Whitney Khayenzeli, Woo-Ju Son, Dong-June Jo and Ik-Soon Cho
J. Mar. Sci. Eng. 2025, 13(5), 922; https://doi.org/10.3390/jmse13050922 - 7 May 2025
Cited by 2 | Viewed by 840
Abstract
The global shipping industry facilitates the movement of approximately 80% of goods across the world but accounts for nearly 3% of total greenhouse gas (GHG) emissions every year, and other pollutants. One challenge in reducing shipping emissions is understanding and quantifying emission characteristics. [...] Read more.
The global shipping industry facilitates the movement of approximately 80% of goods across the world but accounts for nearly 3% of total greenhouse gas (GHG) emissions every year, and other pollutants. One challenge in reducing shipping emissions is understanding and quantifying emission characteristics. A detailed method for calculating shipping emissions should be applied when preparing exhaust gas inventory. This research focused on quantifying CO2, NOx, and SOx emissions from tankers, containers, bulk carriers, and general cargo in the Republic of Korea using spatio-temporal analysis and maritime big data. Using the bottom-up approach, this study calculates vessel emissions from the ship engines while considering the fuel type and operation mode. It leveraged the Geographic Information System (GIS) to generate spatial distribution maps of vessel exhausts. The research revealed variability in emissions according to ship types, sizes, and operational modes. CO2 emissions were dominant, totaling 10.5 million tons, NOx 179,355.2 tons, and SOx 32,505.1 tons. Tankers accounted for about 43.3%, containers 33.1%, bulk carriers 17.3%, and general cargo 6.3%. Further, emissions in hoteling and cruising were more significant than during maneuvering and reduced speed zones (RSZs). This study contributes to emission databases, providing a basis for the establishment of targeted emission control policies. Full article
Show Figures

Figure 1

21 pages, 9105 KiB  
Article
Condensation Risk Under Different Window-Opening Behaviours in a Residential Building in Changsha During Plum Rains Season
by Yecong He, Miaomiao Liu, Zhigang Zhao, Sihui Li, Xiaofeng Zhang and Jifei Zhou
Buildings 2025, 15(9), 1536; https://doi.org/10.3390/buildings15091536 - 2 May 2025
Cited by 2 | Viewed by 426
Abstract
Condensation assessment of a residential building in Changsha, China-located in the hot summer and cold winter climate zone-was conducted during the Plum Rain Season (PRS) using Energy Plus simulations and field measurements. Window-opening behaviour significantly influences indoor air quality and thermal comfort. This [...] Read more.
Condensation assessment of a residential building in Changsha, China-located in the hot summer and cold winter climate zone-was conducted during the Plum Rain Season (PRS) using Energy Plus simulations and field measurements. Window-opening behaviour significantly influences indoor air quality and thermal comfort. This study specifically examines how window-opening patterns, including opening duration and opening degree, affect interior surface condensation risk in a rural residential building during PRS. Results indicate that window operational status (open/closed) exerts a dominant influence on condensation risk, while varying window opening degrees during identical opening duration showed negligible differential impacts. Critical temporal patterns emerged: morning window openings during PRS should be avoided, whereas afternoon (15:00–18:00) and nighttime (18:00–06:00) ventilation proves advantageous. Optimisation analysis revealed that implementing combined afternoon and nighttime ventilation windows (15:00–18:00 + 18:00–06:00) achieved the lowest condensation risk of 0.112 among evaluated scenarios. Furthermore, monthly-adjusted window operation strategies yielded eight recommended ventilation modes, maintaining condensation risks below 0.11 and providing occupant-tailored solutions for Changsha’s PRS conditions. These findings establish evidence-based guidelines for moisture control through optimised window operation in climate-responsive building management. Full article
(This article belongs to the Special Issue Research on Ventilation and Airflow Distribution of Building Systems)
Show Figures

Figure 1

18 pages, 11277 KiB  
Article
Mechanical Characteristics and Mechanisms of Destruction of Trapezoidal Sandstone Samples Under Uneven Loading
by Bao Pan, Weijian Yu, Ke Li, Zilu Liu, Tao Huang and Jie Yang
Processes 2025, 13(4), 1169; https://doi.org/10.3390/pr13041169 - 12 Apr 2025
Viewed by 430
Abstract
Predicting rock failure under excavation-induced non-uniform stress remains challenging due to the inability of conventional homogeneous specimens to replicate field-scale stress gradients. A novel trapezoidal sandstone specimen with adjustable top-surface inclinations (S75/S85) is proposed, uniquely simulating asymmetric stress gradients to mimic excavation unloading. [...] Read more.
Predicting rock failure under excavation-induced non-uniform stress remains challenging due to the inability of conventional homogeneous specimens to replicate field-scale stress gradients. A novel trapezoidal sandstone specimen with adjustable top-surface inclinations (S75/S85) is proposed, uniquely simulating asymmetric stress gradients to mimic excavation unloading. Geometric asymmetry combined with multi-scale characterization (CT, SEM, PFC) decouples stress gradient effects from material heterogeneity. The key findings include the following points. (1) Inclination angles > 15° reduce peak strength by 24.2%, transitioning failure from brittle (transgranular cracks > 60) to mixed brittle-ductile modes (2) Stress gradients govern fracture pathways: transgranular cracks dominate high-stress zones, while intergranular cracks propagate along weak cementation interfaces. (3) PFC simulations reveal a 147% stress disparity between specimen sides and validate shear localization angles θ = 52° ± 3°), aligning with field data. This experimental–numerical framework resolves limitations of traditional methods, providing mechanistic insights into non-uniform load-driven failure. The methodology enables targeted support strategies for deep asymmetric roadways, including shear band mitigation and plastic zone reinforcement. By bridging lab-scale tests and engineering stress states, the study advances safety and sustainability in deep roadway excavation. Full article
Show Figures

Figure 1

25 pages, 11740 KiB  
Article
Effects of Stress States and Joint Configurations on Dynamic Mechanical Properties of Rock Masses
by Tingting Liu, Zi Wang, Xuyi Wang, Shenghao Yang, Wenxu Huang and Luyang Ding
Materials 2025, 18(8), 1699; https://doi.org/10.3390/ma18081699 - 9 Apr 2025
Viewed by 515
Abstract
In complex geological environments, the discontinuous dynamic response behavior of jointed rock masses under the coupled effects of in situ stress and transient dynamic disturbances significantly exacerbates the risk of surrounding rock instability. This study establishes three-dimensional numerical models of various jointed rocks [...] Read more.
In complex geological environments, the discontinuous dynamic response behavior of jointed rock masses under the coupled effects of in situ stress and transient dynamic disturbances significantly exacerbates the risk of surrounding rock instability. This study establishes three-dimensional numerical models of various jointed rocks under uniaxial–biaxial–triaxial split Hopkinson pressure bar (SHPB) experimental systems through the coupling of the finite difference method (FDM) and discrete element method (DEM). The models adhere to the one-dimensional stress wave propagation assumption and satisfy the dynamic stress equilibrium requirements, demonstrating dynamic mechanical responses consistent with physical experiments. The results reveal that the synergistic–competitive effects between joint configuration and initial pre-compression jointly dominate the dynamic mechanical response of rocks. Multiaxial pre-compression promotes the development of secondary force chain networks, enhances rock impact resistance through multi-path stress transfer mechanisms, significantly improves strain energy storage density during peak stages, and drives failure modes to evolve from macroscopic through-going fractures to localized crushing zones. The spatial heterogeneity of joint configurations induces anisotropic characteristics in principal stress fabric. Single joint systems maintain structural integrity due to restricted weak plane propagation, while cross/parallel joints exhibit geometrically induced synergistic propagation effects, forming differentiated crack propagation paths that intensify frictional and kinetic energy dissipation. Through cross-scale numerical model comparisons, the evolution of force chain fabric, particle displacement distribution, microcrack propagation, and energy dissipation mechanisms were analyzed, unveiling the synergistic regulatory effects of the stress state and joint configuration on the rock dynamic response. This provides a theoretical basis for impact-resistant structure optimization and dynamic instability early warning in deep engineering projects involving jointed surrounding rock. Full article
Show Figures

Figure 1

28 pages, 7673 KiB  
Article
Modal Phase Study on Lift Enhancement of a Locally Flexible Membrane Airfoil Using Dynamic Mode Decomposition
by Wei Kang, Shilin Hu, Bingzhou Chen and Weigang Yao
Aerospace 2025, 12(4), 313; https://doi.org/10.3390/aerospace12040313 - 6 Apr 2025
Viewed by 338
Abstract
The dynamic mode decomposition serves as a useful tool for the coherent structure extraction of the complex flow fields with characteristic frequency identification, but the phase information of the flow modes is paid less attention to. In this study, phase information around the [...] Read more.
The dynamic mode decomposition serves as a useful tool for the coherent structure extraction of the complex flow fields with characteristic frequency identification, but the phase information of the flow modes is paid less attention to. In this study, phase information around the locally flexible membrane airfoil is quantitatively studied using dynamic mode decomposition (DMD) to unveil the physical mechanism of the lift improvement of the membrane airfoil. The flow over the airfoil at a low Reynolds number (Re = 5500) is computed parametrically across a range of angles of attack (AOA = 4°–14°) and membrane lengths (LM = 0.55c–0.70c) using a verified fluid–structure coupling framework. The lift enhancement is analyzed by the dynamic coherent patterns of the membrane airfoil flow fields, which are quantified by the DMD modal phase propagation. A downstream propagation pressure speed (DPP) on the upper surface is defined to quantify the propagation speed of the lagged maximal pressure in the flow separation zone. It is found that a faster DPP speed can induce more vortices. The correlation coefficient between the DPP speed and lift enhancement is above 0.85 at most cases, indicating the significant contribution of vortex evolution to aerodynamic performance. The DPP speed greatly impacts the retention time of dominant vortices on the upper surface, resulting in the lift enhancement. Full article
Show Figures

Figure 1

27 pages, 15440 KiB  
Article
Dynamic Performance of a Steel Road Sign with Multi-Material Electronic Signboard Under Mining-Induced Tremors from Different Mining Areas: Experimental and Numerical Research
by Paweł Boroń and Joanna Maria Dulińska
Materials 2025, 18(7), 1451; https://doi.org/10.3390/ma18071451 - 25 Mar 2025
Viewed by 415
Abstract
This study investigates the dynamic performance of a road sign equipped with a multi-material electronic signboard subjected to mining-induced seismic tremors. The key innovative aspect lies in providing new insights into the dynamic performance of multi-material electronic signboards under high-energy mining tremors, enhancing [...] Read more.
This study investigates the dynamic performance of a road sign equipped with a multi-material electronic signboard subjected to mining-induced seismic tremors. The key innovative aspect lies in providing new insights into the dynamic performance of multi-material electronic signboards under high-energy mining tremors, enhancing their safety assessment in mining areas. Experimental modal analysis and finite element analysis were conducted, and the numerical model of the sign was calibrated by adjusting ground stiffness to align experimental and computational data. The fundamental natural frequencies and their corresponding mode shapes were identified as 2.75 Hz, 3.09 Hz, 8.46 Hz, and 13.50 Hz. Numerical results were validated using MAC methods, demonstrating strong agreement with experimental values and confirming the accuracy of the numerical predictions. Damping ratios of 3.79% and 3.71% for the first and second modes, respectively, were measured via hammer tests. To evaluate the sign’s dynamic performance under high-energy mining-induced tremors, two events were applied as kinematic excitation of the structure. These tremors, recorded in different mining regions, exhibited significant variations in peak ground acceleration (PGA) and dominant frequency range. A key finding was that frequency matching between the dominant frequencies of the tremor and the natural frequencies of the sign had a greater impact on the sign’s dynamic response than PGA. The Szombierki tremor, with dominant frequencies of 1.6–4.8 Hz, induced significantly higher stress and displacement compared to the Moskorzyn tremor (5–10 Hz) despite the latter having twice the PGA. These results highlight that a road sign structure can exhibit widely varying dynamic behaviors depending on the seismic characteristics of the mining zone. Therefore, a comprehensive assessment of mining-induced tremors in relation to the seismicity of specific areas is crucial for understanding their potential impact on such structures. The dynamic performance assessment also revealed that the electronic multi-material signboard did not undergo plastic deformation, confirming it as a safe material solution for use in mining areas. Full article
Show Figures

Figure 1

Back to TopTop