Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (352)

Search Parameters:
Keywords = diversity of expertise

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
5 pages, 405 KiB  
Review
Major Vascular Injuries in Laparoscopic Urological Surgeries
by Roberto Villalba Bachur and Gustavo Villoldo
Complications 2025, 2(3), 18; https://doi.org/10.3390/complications2030018 - 31 Jul 2025
Abstract
Laparoscopic urological surgery has become a cornerstone in the management of diverse urological pathologies, offering substantial advantages over traditional open approaches. These benefits include minimized incisions, reduced tissue trauma, decreased intraoperative blood loss, lower postoperative pain, shorter hospital stays, superior cosmesis, and accelerated [...] Read more.
Laparoscopic urological surgery has become a cornerstone in the management of diverse urological pathologies, offering substantial advantages over traditional open approaches. These benefits include minimized incisions, reduced tissue trauma, decreased intraoperative blood loss, lower postoperative pain, shorter hospital stays, superior cosmesis, and accelerated recovery. Despite these advantages, laparoscopic surgery carries inherent risks, with major vascular injury (MVI) representing one of the most severe and potentially life-threatening complications. This review examines the incidence, etiologies, and management strategies for MVI in laparoscopic urological surgery, emphasizing the critical role of early recognition, standardized protocols, and surgical expertise in optimizing patient outcomes. Full article
Show Figures

Figure 1

20 pages, 11920 KiB  
Article
Enhancing Tip Detection by Pre-Training with Synthetic Data for Ultrasound-Guided Intervention
by Ruixin Wang, Jinghang Wang, Wei Zhao, Xiaohui Liu, Guoping Tan, Jun Liu and Zhiyuan Wang
Diagnostics 2025, 15(15), 1926; https://doi.org/10.3390/diagnostics15151926 - 31 Jul 2025
Abstract
Objectives: Automatic tip localization is critical in ultrasound (US)-guided interventions. Although deep learning (DL) has been widely used for precise tip detection, existing methods are limited by the availability of real puncture data and expert annotations. Methods: To address these challenges, [...] Read more.
Objectives: Automatic tip localization is critical in ultrasound (US)-guided interventions. Although deep learning (DL) has been widely used for precise tip detection, existing methods are limited by the availability of real puncture data and expert annotations. Methods: To address these challenges, we propose a novel method that uses synthetic US puncture data to pre-train DL-based tip detectors, improving their generalization. Synthetic data are generated by fusing clinical US images of healthy controls with tips created using generative DL models. To ensure clinical diversity, we constructed a dataset from scans of 20 volunteers, covering 20 organs or anatomical regions, obtained with six different US machines and performed by three physicians with varying expertise levels. Tip diversity is introduced by generating a wide range of synthetic tips using a denoising probabilistic diffusion model (DDPM). This method synthesizes a large volume of diverse US puncture data, which are used to pre-train tip detectors, followed by subsequently training with real puncture data. Results: Our method outperforms MSCOCO pre-training on a clinical puncture dataset, achieving a 1.27–7.19% improvement in AP0.1:0.5 with varying numbers of real samples. State-of-the-art detectors also show performance gains of 1.14–1.76% when applying the proposed method. Conclusions: The experimental results demonstrate that our method enhances the generalization of tip detectors without relying on expert annotations or large amounts of real data, offering significant potential for more accurate visual guidance during US-guided interventions and broader clinical applications. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

26 pages, 4572 KiB  
Article
Transfer Learning-Based Ensemble of CNNs and Vision Transformers for Accurate Melanoma Diagnosis and Image Retrieval
by Murat Sarıateş and Erdal Özbay
Diagnostics 2025, 15(15), 1928; https://doi.org/10.3390/diagnostics15151928 - 31 Jul 2025
Viewed by 39
Abstract
Background/Objectives: Melanoma is an aggressive type of skin cancer that poses serious health risks if not detected in its early stages. Although early diagnosis enables effective treatment, delays can result in life-threatening consequences. Traditional diagnostic processes predominantly rely on the subjective expertise [...] Read more.
Background/Objectives: Melanoma is an aggressive type of skin cancer that poses serious health risks if not detected in its early stages. Although early diagnosis enables effective treatment, delays can result in life-threatening consequences. Traditional diagnostic processes predominantly rely on the subjective expertise of dermatologists, which can lead to variability and time inefficiencies. Consequently, there is an increasing demand for automated systems that can accurately classify melanoma lesions and retrieve visually similar cases to support clinical decision-making. Methods: This study proposes a transfer learning (TL)-based deep learning (DL) framework for the classification of melanoma images and the enhancement of content-based image retrieval (CBIR) systems. Pre-trained models including DenseNet121, InceptionV3, Vision Transformer (ViT), and Xception were employed to extract deep feature representations. These features were integrated using a weighted fusion strategy and classified through an Ensemble learning approach designed to capitalize on the complementary strengths of the individual models. The performance of the proposed system was evaluated using classification accuracy and mean Average Precision (mAP) metrics. Results: Experimental evaluations demonstrated that the proposed Ensemble model significantly outperformed each standalone model in both classification and retrieval tasks. The Ensemble approach achieved a classification accuracy of 95.25%. In the CBIR task, the system attained a mean Average Precision (mAP) score of 0.9538, indicating high retrieval effectiveness. The performance gains were attributed to the synergistic integration of features from diverse model architectures through the ensemble and fusion strategies. Conclusions: The findings underscore the effectiveness of TL-based DL models in automating melanoma image classification and enhancing CBIR systems. The integration of deep features from multiple pre-trained models using an Ensemble approach not only improved accuracy but also demonstrated robustness in feature generalization. This approach holds promise for integration into clinical workflows, offering improved diagnostic accuracy and efficiency in the early detection of melanoma. Full article
Show Figures

Figure 1

12 pages, 249 KiB  
Article
Efficient Implementation of a Robot-Assisted Radical Cystectomy Program in a Naïve Centre Experienced in Open Radical Cystectomy and Other Robot-Assisted Surgeries: A Comparative Analysis of Perioperative Outcomes and Complications
by Gianluca Giannarini, Gioacchino De Giorgi, Maria Abbinante, Carmine Franzese, Jeanlou Collavino, Fabio Traunero, Marco Buttazzi, Antonio Amodeo, Angelo Porreca and Alessandro Crestani
Cancers 2025, 17(15), 2532; https://doi.org/10.3390/cancers17152532 - 31 Jul 2025
Viewed by 43
Abstract
Background/Objectives: While robot-assisted radical cystectomy (RARC) has shown potential benefits over open radical cystectomy (ORC), such as reduced blood loss and quicker recovery, its adoption has been limited because of its complexity and long learning curve, especially for urinary diversion. We assessed whether [...] Read more.
Background/Objectives: While robot-assisted radical cystectomy (RARC) has shown potential benefits over open radical cystectomy (ORC), such as reduced blood loss and quicker recovery, its adoption has been limited because of its complexity and long learning curve, especially for urinary diversion. We assessed whether a RARC program with fully intracorporeal urinary diversion could be safely implemented in a hospital with no prior experience in RARC, but with expertise in ORC and other robotic surgeries. We also compared perioperative outcomes and complications between RARC and ORC during the implementation phase. Methods: This retrospective comparative study included 50 consecutive patients who underwent RARC between June 2023 and January 2025 and 50 patients previously treated with ORC. All RARC cases were performed with intracorporeal urinary diversion. A structured proctoring program guided two surgeons through a stepwise training approach by an expert RARC surgeon. Perioperative outcomes and 90-day complications were compared. Results: All RARC procedures were completed fully intracorporeally with no conversions to open surgery. Compared with ORC, RARC was associated with significantly shorter operative times (for ileal conduit diversion) and hospital stays, lower estimated blood loss, and fewer postoperative complications. There were no differences in intraoperative complications. Worst single grade ≥ 3 complications were significantly less frequent in the RARC than the ORC group (11 [11%] versus 21 [21%], p = 0.045). On multivariable analysis, the robotic approach independently predicted fewer any-grade complications (odds ratio 0.81, 95% confidence intervals 0.65–0.95, p = 0.01). Conclusions: A RARC program can be safely and effectively implemented in a previously RARC-naïve centre with existing surgical expertise. The robotic approach offers clear perioperative benefits and may represent a favourable alternative to open surgery. Full article
16 pages, 628 KiB  
Article
Beyond the Bot: A Dual-Phase Framework for Evaluating AI Chatbot Simulations in Nursing Education
by Phillip Olla, Nadine Wodwaski and Taylor Long
Nurs. Rep. 2025, 15(8), 280; https://doi.org/10.3390/nursrep15080280 (registering DOI) - 31 Jul 2025
Viewed by 98
Abstract
Background/Objectives: The integration of AI chatbots in nursing education, particularly in simulation-based learning, is advancing rapidly. However, there is a lack of structured evaluation models, especially to assess AI-generated simulations. This article introduces the AI-Integrated Method for Simulation (AIMS) evaluation framework, a dual-phase [...] Read more.
Background/Objectives: The integration of AI chatbots in nursing education, particularly in simulation-based learning, is advancing rapidly. However, there is a lack of structured evaluation models, especially to assess AI-generated simulations. This article introduces the AI-Integrated Method for Simulation (AIMS) evaluation framework, a dual-phase evaluation framework adapted from the FAITA model, designed to evaluate both prompt design and chatbot performance in the context of nursing education. Methods: This simulation-based study explored the application of an AI chatbot in an emergency planning course. The AIMS framework was developed and applied, consisting of six prompt-level domains (Phase 1) and eight performance criteria (Phase 2). These domains were selected based on current best practices in instructional design, simulation fidelity, and emerging AI evaluation literature. To assess the chatbots educational utility, the study employed a scoring rubric for each phase and incorporated a structured feedback loop to refine both prompt design and chatbox interaction. To demonstrate the framework’s practical application, the researchers configured an AI tool referred to in this study as “Eval-Bot v1”, built using OpenAI’s GPT-4.0, to apply Phase 1 scoring criteria to a real simulation prompt. Insights from this analysis were then used to anticipate Phase 2 performance and identify areas for improvement. Participants (three individuals)—all experienced healthcare educators and advanced practice nurses with expertise in clinical decision-making and simulation-based teaching—reviewed the prompt and Eval-Bot’s score to triangulate findings. Results: Simulated evaluations revealed clear strengths in the prompt alignment with course objectives and its capacity to foster interactive learning. Participants noted that the AI chatbot supported engagement and maintained appropriate pacing, particularly in scenarios involving emergency planning decision-making. However, challenges emerged in areas related to personalization and inclusivity. While the chatbot responded consistently to general queries, it struggled to adapt tone, complexity and content to reflect diverse learner needs or cultural nuances. To support replication and refinement, a sample scoring rubric and simulation prompt template are provided. When evaluated using the Eval-Bot tool, moderate concerns were flagged regarding safety prompts and inclusive language, particularly in how the chatbot navigated sensitive decision points. These gaps were linked to predicted performance issues in Phase 2 domains such as dialog control, equity, and user reassurance. Based on these findings, revised prompt strategies were developed to improve contextual sensitivity, promote inclusivity, and strengthen ethical guidance within chatbot-led simulations. Conclusions: The AIMS evaluation framework provides a practical and replicable approach for evaluating the use of AI chatbots in simulation-based education. By offering structured criteria for both prompt design and chatbot performance, the model supports instructional designers, simulation specialists, and developers in identifying areas of strength and improvement. The findings underscore the importance of intentional design, safety monitoring, and inclusive language when integrating AI into nursing and health education. As AI tools become more embedded in learning environments, this framework offers a thoughtful starting point for ensuring they are applied ethically, effectively, and with learner diversity in mind. Full article
Show Figures

Figure 1

47 pages, 5162 KiB  
Review
Drought Analysis Methods: A Multidisciplinary Review with Insights on Key Decision-Making Factors in Method Selection
by Abdul Baqi Ahady, Elena-Maria Klopries, Holger Schüttrumpf and Stefanie Wolf
Water 2025, 17(15), 2248; https://doi.org/10.3390/w17152248 - 28 Jul 2025
Viewed by 263
Abstract
Drought is one of the most complex natural hazards, characterized by its slow onset, persistent nature, diverse sectoral impacts (e.g., agriculture, water resources, ecosystems), and dependence on meteorological, hydrological, and socioeconomic factors. Over the years, significant scientific effort has been devoted to developing [...] Read more.
Drought is one of the most complex natural hazards, characterized by its slow onset, persistent nature, diverse sectoral impacts (e.g., agriculture, water resources, ecosystems), and dependence on meteorological, hydrological, and socioeconomic factors. Over the years, significant scientific effort has been devoted to developing methodologies that address its multifaceted nature, reflecting the interdisciplinary challenges of drought analysis. However, previous reviews have typically focused on individual methods, while this study presents a unified, multidisciplinary framework that integrates multiple drought analysis methods and links them to key factors guiding method selection. To address this gap, five widely used methods—index-based, remote sensing, threshold-level methods (TLM), impact-based methods, and the storyline approach—are critically evaluated from a multidisciplinary perspective. In addition, the study examines spatial and temporal trends in scientific publications, illustrating how the application of these methods has evolved over time and across regions. The primary objective of this review is twofold: (1) to provide a holistic, state-of-the-art synthesis of these methods, their applications, and their limitations; and (2) to evaluate and prioritize the critical decision-making factors, including drought type, data type/availability, study scale, and management objectives that influence method selection. By bridging this gap, the paper offers a conceptual decision-support framework for selecting context-appropriate drought analysis methods. However, challenges remain, including the vast diversity of methods beyond the scope of this review and the limited consideration of less influential factors such as user expertise, computational resources, and policy context. The paper concludes with insights and recommendations for optimizing method selection under varying circumstances, aiming to support both drought research and effective policy implementation. Full article
(This article belongs to the Section Hydrology)
Show Figures

Graphical abstract

19 pages, 290 KiB  
Article
Artificial Intelligence in Primary Care: Support or Additional Burden on Physicians’ Healthcare Work?—A Qualitative Study
by Stefanie Mache, Monika Bernburg, Annika Würtenberger and David A. Groneberg
Clin. Pract. 2025, 15(8), 138; https://doi.org/10.3390/clinpract15080138 - 25 Jul 2025
Viewed by 156
Abstract
Background: Artificial intelligence (AI) is being increasingly promoted as a means to enhance diagnostic accuracy, to streamline workflows, and to improve overall care quality in primary care. However, empirical evidence on how primary care physicians (PCPs) perceive, engage with, and emotionally respond [...] Read more.
Background: Artificial intelligence (AI) is being increasingly promoted as a means to enhance diagnostic accuracy, to streamline workflows, and to improve overall care quality in primary care. However, empirical evidence on how primary care physicians (PCPs) perceive, engage with, and emotionally respond to AI technologies in everyday clinical settings remains limited. Concerns persist regarding AI’s usability, transparency, and potential impact on professional identity, workload, and the physician–patient relationship. Methods: This qualitative study investigated the lived experiences and perceptions of 28 PCPs practicing in diverse outpatient settings across Germany. Participants were purposively sampled to ensure variation in age, practice characteristics, and digital proficiency. Data were collected through in-depth, semi-structured interviews, which were audio-recorded, transcribed verbatim, and subjected to rigorous thematic analysis employing Mayring’s qualitative content analysis framework. Results: Participants demonstrated a fundamentally ambivalent stance toward AI integration in primary care. Perceived advantages included enhanced diagnostic support, relief from administrative burdens, and facilitation of preventive care. Conversely, physicians reported concerns about workflow disruption due to excessive system prompts, lack of algorithmic transparency, increased cognitive and emotional strain, and perceived threats to clinical autonomy and accountability. The implications for the physician–patient relationship were seen as double-edged: while some believed AI could foster trust through transparent use, others feared depersonalization of care. Crucial prerequisites for successful implementation included transparent and explainable systems, structured training opportunities, clinician involvement in design processes, and seamless integration into clinical routines. Conclusions: Primary care physicians’ engagement with AI is marked by cautious optimism, shaped by both perceived utility and significant concerns. Effective and ethically sound implementation requires co-design approaches that embed clinical expertise, ensure algorithmic transparency, and align AI applications with the realities of primary care workflows. Moreover, foundational AI literacy should be incorporated into undergraduate health professional curricula to equip future clinicians with the competencies necessary for responsible and confident use. These strategies are essential to safeguard professional integrity, support clinician well-being, and maintain the humanistic core of primary care. Full article
20 pages, 718 KiB  
Communication
Examining Crisis Communication in Geopolitical Conflicts: The Micro-Influencer Impact Model
by Ahmed Taher, Hoda El Kolaly and Nourhan Tarek
Journal. Media 2025, 6(3), 116; https://doi.org/10.3390/journalmedia6030116 - 24 Jul 2025
Viewed by 318
Abstract
In the digital communication ecosystem, micro-influencers have influenced public response during crises, especially in complex geopolitical contexts. This paper introduces the micro-influencer impact model (MIIM), a framework for analyzing the impact of micro-influencers on crisis communication. The MIIM integrates four components (micro-influencer characteristics, [...] Read more.
In the digital communication ecosystem, micro-influencers have influenced public response during crises, especially in complex geopolitical contexts. This paper introduces the micro-influencer impact model (MIIM), a framework for analyzing the impact of micro-influencers on crisis communication. The MIIM integrates four components (micro-influencer characteristics, message framing and delivery, audience factors, and crisis context) offering a comprehensive approach to understanding micro-influencer dynamics during crises. Cross-conflict analysis spanning Ukraine–Russia, Sudan–Ethiopia, Armenia–Azerbaijan, Myanmar, Syria, and India–Pakistan tensions demonstrates the MIIM’s broad applicability across diverse geopolitical crises, showing how factors like perceived authenticity, niche expertise, narrative personalization, and audience digital literacy consistently shape public opinion and crisis response. The MIIM synthesizes crisis communication theories, social influence models, and digital media research, providing a sophisticated framework for studying the dissemination of information and public engagement during crises. The paper proposes theoretically grounded propositions on the impact of micro-influencers, encompassing perceived authenticity, narrative framing, and influence over time, thereby laying the groundwork for future empirical research. Implications for communication scholars, crisis managers, policymakers, and social media platforms are discussed, emphasizing the MIIM’s relevance to theory and practice in crisis communication. Full article
Show Figures

Figure 1

26 pages, 10927 KiB  
Article
Enhanced Recognition of Sustainable Wood Building Materials Based on Deep Learning and Augmentation
by Wei Gan, Shengbiao Li, Jinyu Li, Shuqi Peng, Ruoxi Li, Lan Qiu, Baofeng Li and Yi He
Sustainability 2025, 17(15), 6683; https://doi.org/10.3390/su17156683 - 22 Jul 2025
Viewed by 214
Abstract
The accurate identification of wood patterns is critical for optimizing the use of sustainable wood building materials, promoting resource efficiency, and reducing waste in construction. This study presents a deep learning-based approach for enhanced wood material recognition, combining EfficientNet architecture with advanced data [...] Read more.
The accurate identification of wood patterns is critical for optimizing the use of sustainable wood building materials, promoting resource efficiency, and reducing waste in construction. This study presents a deep learning-based approach for enhanced wood material recognition, combining EfficientNet architecture with advanced data augmentation techniques to achieve robust classification. The augmentation strategy incorporates geometric transformations (flips, shifts, and rotations) and photometric adjustments (brightness and contrast) to improve dataset diversity while preserving discriminative wood grain features. Validation was performed using a controlled augmentation pipeline to ensure realistic performance assessment. Experimental results demonstrate the model’s effectiveness, achieving 88.9% accuracy (eight out of nine correct predictions), with further improvements from targeted image preprocessing. The approach provides valuable support for preliminary sustainable building material classification, and can be deployed through user-friendly interfaces without requiring specialized AI expertise. The system retains critical wood pattern characteristics while enhancing adaptability to real-world variability, supporting reliable material classification in sustainable construction. This study highlights the potential of integrating optimized neural networks with tailored preprocessing to advance AI-driven sustainability in building material recognition, contributing to circular economy practices and resource-efficient construction. Full article
(This article belongs to the Special Issue Analysis on Real-Estate Marketing and Sustainable Civil Engineering)
Show Figures

Figure 1

16 pages, 2108 KiB  
Article
Decoding the JAK-STAT Axis in Colorectal Cancer with AI-HOPE-JAK-STAT: A Conversational Artificial Intelligence Approach to Clinical–Genomic Integration
by Ei-Wen Yang, Brigette Waldrup and Enrique Velazquez-Villarreal
Cancers 2025, 17(14), 2376; https://doi.org/10.3390/cancers17142376 - 17 Jul 2025
Viewed by 336
Abstract
Background/Objectives: The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway is a critical mediator of immune regulation, inflammation, and cancer progression. Although implicated in colorectal cancer (CRC) pathogenesis, its molecular heterogeneity and clinical significance remain insufficiently characterized—particularly within early-onset CRC [...] Read more.
Background/Objectives: The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway is a critical mediator of immune regulation, inflammation, and cancer progression. Although implicated in colorectal cancer (CRC) pathogenesis, its molecular heterogeneity and clinical significance remain insufficiently characterized—particularly within early-onset CRC (EOCRC) and across diverse treatment and demographic contexts. We present AI-HOPE-JAK-STAT, a novel conversational artificial intelligence platform built to enable the real-time, natural language-driven exploration of JAK/STAT pathway alterations in CRC. The platform integrates clinical, genomic, and treatment data to support dynamic, hypothesis-generating analyses for precision oncology. Methods: AI-HOPE-JAK-STAT combines large language models (LLMs), a natural language-to-code engine, and harmonized public CRC datasets from cBioPortal. Users define analytical queries in plain English, which are translated into executable code for cohort selection, survival analysis, odds ratio testing, and mutation profiling. To validate the platform, we replicated known associations involving JAK1, JAK3, and STAT3 mutations. Additional exploratory analyses examined age, treatment exposure, tumor stage, and anatomical site. Results: The platform recapitulated established trends, including improved survival among EOCRC patients with JAK/STAT pathway alterations. In FOLFOX-treated CRC cohorts, JAK/STAT-altered tumors were associated with significantly enhanced overall survival (p < 0.0001). Stratification by age revealed survival advantages in younger (age < 50) patients with JAK/STAT mutations (p = 0.0379). STAT5B mutations were enriched in colon adenocarcinoma and correlated with significantly more favorable trends (p = 0.0000). Conversely, JAK1 mutations in microsatellite-stable tumors did not affect survival, emphasizing the value of molecular context. Finally, JAK3-mutated tumors diagnosed at Stage I–III showed superior survival compared to Stage IV cases (p = 0.00001), reinforcing stage as a dominant clinical determinant. Conclusions: AI-HOPE-JAK-STAT establishes a new standard for pathway-level interrogation in CRC by empowering users to generate and test clinically meaningful hypotheses without coding expertise. This system enhances access to precision oncology analyses and supports the scalable, real-time discovery of survival trends, mutational associations, and treatment-response patterns across stratified patient cohorts. Full article
(This article belongs to the Special Issue AI-Based Applications in Cancers)
Show Figures

Figure 1

18 pages, 871 KiB  
Review
Artificial Intelligence-Assisted Selection Strategies in Sheep: Linking Reproductive Traits with Behavioral Indicators
by Ebru Emsen, Muzeyyen Kutluca Korkmaz and Bahadir Baran Odevci
Animals 2025, 15(14), 2110; https://doi.org/10.3390/ani15142110 - 17 Jul 2025
Viewed by 365
Abstract
Reproductive efficiency is a critical determinant of productivity and profitability in sheep farming. Traditional selection methods have largely relied on phenotypic traits and historical reproductive records, which are often limited by subjectivity and delayed feedback. Recent advancements in artificial intelligence (AI), including video [...] Read more.
Reproductive efficiency is a critical determinant of productivity and profitability in sheep farming. Traditional selection methods have largely relied on phenotypic traits and historical reproductive records, which are often limited by subjectivity and delayed feedback. Recent advancements in artificial intelligence (AI), including video tracking, wearable sensors, and machine learning (ML) algorithms, offer new opportunities to identify behavior-based indicators linked to key reproductive traits such as estrus, lambing, and maternal behavior. This review synthesizes the current research on AI-powered behavioral monitoring tools and proposes a conceptual model, ReproBehaviorNet, that maps age- and sex-specific behaviors to biological processes and AI applications, supporting real-time decision-making in both intensive and semi-intensive systems. The integration of accelerometers, GPS systems, and computer vision models enables continuous, non-invasive monitoring, leading to earlier detection of reproductive events and greater breeding precision. However, the implementation of such technologies also presents challenges, including the need for high-quality data, a costly infrastructure, and technical expertise that may limit access for small-scale producers. Despite these barriers, AI-assisted behavioral phenotyping has the potential to improve genetic progress, animal welfare, and sustainability. Interdisciplinary collaboration and responsible innovation are essential to ensure the equitable and effective adoption of these technologies in diverse farming contexts. Full article
Show Figures

Figure 1

26 pages, 6624 KiB  
Article
Data-Efficient Sowing Position Estimation for Agricultural Robots Combining Image Analysis and Expert Knowledge
by Shuntaro Aotake, Takuya Otani, Masatoshi Funabashi and Atsuo Takanishi
Agriculture 2025, 15(14), 1536; https://doi.org/10.3390/agriculture15141536 - 16 Jul 2025
Viewed by 472
Abstract
We propose a data-efficient framework for automating sowing operations by agricultural robots in densely mixed polyculture environments. This study addresses the challenge of enabling robots to identify suitable sowing positions with minimal labeled data by integrating image-based field sensing with expert agricultural knowledge. [...] Read more.
We propose a data-efficient framework for automating sowing operations by agricultural robots in densely mixed polyculture environments. This study addresses the challenge of enabling robots to identify suitable sowing positions with minimal labeled data by integrating image-based field sensing with expert agricultural knowledge. We collected 84 RGB-depth images from seven field sites, labeled by synecological farming practitioners of varying proficiency levels, and trained a regression model to estimate optimal sowing positions and seeding quantities. The model’s predictions were comparable to those of intermediate-to-advanced practitioners across diverse field conditions. To implement this estimation in practice, we mounted a Kinect v2 sensor on a robot arm and integrated its 3D spatial data with axis-specific movement control. We then applied a trajectory optimization algorithm based on the traveling salesman problem to generate efficient sowing paths. Simulated trials incorporating both computation and robotic control times showed that our method reduced sowing operation time by 51% compared to random planning. These findings highlight the potential of interpretable, low-data machine learning models for rapid adaptation to complex agroecological systems and demonstrate a practical approach to combining structured human expertise with sensor-based automation in biodiverse farming environments. Full article
Show Figures

Figure 1

26 pages, 1735 KiB  
Perspective
Optimizing Adjuvant Care in Early Breast Cancer: Multidisciplinary Strategies and Innovative Models from Canadian Centers
by Angela Chan, Nancy Nixon, Muna Al-Khaifi, Alain Bestavros, Christine Blyth, Winson Y. Cheung, Caroline Hamm, Thomas Joly-Mischlich, Mita Manna, Tom McFarlane, Laura V. Minard, Sarah Naujokaitis, Christine Peragine, Cindy Railton and Scott Edwards
Curr. Oncol. 2025, 32(7), 402; https://doi.org/10.3390/curroncol32070402 - 14 Jul 2025
Viewed by 580
Abstract
The adjuvant treatment landscape for hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2–) early breast cancer (EBC) is rapidly evolving, with a diverse range of therapeutic options—including endocrine therapies, bisphosphonates, ovarian function suppression, olaparib, CDK4/6 inhibitors, and emerging agents such as [...] Read more.
The adjuvant treatment landscape for hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2–) early breast cancer (EBC) is rapidly evolving, with a diverse range of therapeutic options—including endocrine therapies, bisphosphonates, ovarian function suppression, olaparib, CDK4/6 inhibitors, and emerging agents such as immunotherapy. While these advances have markedly improved patient outcomes, they also introduce challenges related to implementation, monitoring, and resource allocation. Notably, therapies like CDK4/6 inhibitors require particularly close monitoring, creating logistical and capacity challenges for medical oncologists, whose workloads are already stretched due to rising cancer incidence and treatment complexities. These challenges underscore the need for innovative care delivery solutions to ensure patients with EBC continue to receive optimal care. This paper offers a comprehensive guide—a playbook—of multidisciplinary-team-based care models designed to optimize adjuvant treatment delivery in EBC. Drawing on real-world evidence and successful applications across Canadian centers, we explore models led by nurses, nurse practitioners (NPs), general practitioners in oncology (GPO), and pharmacists. Each model leverages the unique expertise of its team to manage treatment toxicities, facilitate adherence, and enhance patient education, thereby promoting effective and sustainable care delivery. Importantly, these models are not intended to compete with one another, but rather to serve as a flexible recipe book from which breast cancer care teams can draw strategies tailored to their local resources and patient needs. By detailing implementation strategies, benefits, and challenges—in many instances supported by quantitative metrics and economic evaluations—this work aims to inspire care teams nationwide to optimize the adjuvant management of patients with HR+, HER2– EBC. Full article
(This article belongs to the Section Breast Cancer)
Show Figures

Figure 1

24 pages, 1645 KiB  
Article
Dual-Stage Clean-Sample Selection for Incremental Noisy Label Learning
by Jianyang Li, Xin Ma and Yonghong Shi
Bioengineering 2025, 12(7), 743; https://doi.org/10.3390/bioengineering12070743 - 8 Jul 2025
Viewed by 408
Abstract
Class-incremental learning (CIL) in deep neural networks is affected by catastrophic forgetting (CF), where acquiring knowledge of new classes leads to the significant degradation of previously learned representations. This challenge is particularly severe in medical image analysis, where costly, expertise-dependent annotations frequently contain [...] Read more.
Class-incremental learning (CIL) in deep neural networks is affected by catastrophic forgetting (CF), where acquiring knowledge of new classes leads to the significant degradation of previously learned representations. This challenge is particularly severe in medical image analysis, where costly, expertise-dependent annotations frequently contain pervasive and hard-to-detect noisy labels that substantially compromise model performance. While existing approaches have predominantly addressed CF and noisy labels as separate problems, their combined effects remain largely unexplored. To address this critical gap, this paper presents a dual-stage clean-sample selection method for Incremental Noisy Label Learning (DSCNL). Our approach comprises two key components: (1) a dual-stage clean-sample selection module that identifies and leverages high-confidence samples to guide the learning of reliable representations while mitigating noise propagation during training, and (2) an experience soft-replay strategy for memory rehearsal to improve the model’s robustness and generalization in the presence of historical noisy labels. This integrated framework effectively suppresses the adverse influence of noisy labels while simultaneously alleviating catastrophic forgetting. Extensive evaluations on public medical image datasets demonstrate that DSCNL consistently outperforms state-of-the-art CIL methods across diverse classification tasks. The proposed method boosts the average accuracy by 55% and 31% compared with baseline methods on datasets with different noise levels, and achieves an average noise reduction rate of 73% under original noise conditions, highlighting its effectiveness and applicability in real-world medical imaging scenarios. Full article
Show Figures

Figure 1

28 pages, 1987 KiB  
Article
LLM-as-a-Judge Approaches as Proxies for Mathematical Coherence in Narrative Extraction
by Brian Keith
Electronics 2025, 14(13), 2735; https://doi.org/10.3390/electronics14132735 - 7 Jul 2025
Viewed by 556
Abstract
Evaluating the coherence of narrative sequences extracted from large document collections is crucial for applications in information retrieval and knowledge discovery. While mathematical coherence metrics based on embedding similarities provide objective measures, they require substantial computational resources and domain expertise to interpret. We [...] Read more.
Evaluating the coherence of narrative sequences extracted from large document collections is crucial for applications in information retrieval and knowledge discovery. While mathematical coherence metrics based on embedding similarities provide objective measures, they require substantial computational resources and domain expertise to interpret. We propose using large language models (LLMs) as judges to evaluate narrative coherence, demonstrating that their assessments correlate with mathematical coherence metrics. Through experiments on two data sets—news articles about Cuban protests and scientific papers from visualization conferences—we show that the LLM judges achieve Pearson correlations up to 0.65 with mathematical coherence while maintaining high inter-rater reliability (ICC > 0.92). The simplest evaluation approach achieves a comparable performance to the more complex approaches, even outperforming them for focused data sets while achieving over 90% of their performance for the more diverse data sets while using less computational resources. Our findings indicate that LLM-as-a-judge approaches are effective as a proxy for mathematical coherence in the context of narrative extraction evaluation. Full article
Show Figures

Figure 1

Back to TopTop