Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (709)

Search Parameters:
Keywords = dissipated energy ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9695 KiB  
Article
Dynamic Response and Stress Evolution of RPC Slabs Protected by a Three-Layered Energy-Dissipating System Based on the SPH-FEM Coupled Method
by Dongmin Deng, Hanqing Zhong, Shuisheng Chen and Zhixiang Yu
Buildings 2025, 15(15), 2769; https://doi.org/10.3390/buildings15152769 - 6 Aug 2025
Abstract
Aiming at the lightweight design of a bridge-shed integration structure, this paper presents a three-layered absorbing system in which a part of the sand cushion is replaced by expanded polystyrene (EPS) geofoam and the reinforced concrete (RC) protective slab is arranged above the [...] Read more.
Aiming at the lightweight design of a bridge-shed integration structure, this paper presents a three-layered absorbing system in which a part of the sand cushion is replaced by expanded polystyrene (EPS) geofoam and the reinforced concrete (RC) protective slab is arranged above the sand cushion to enhance the composite system’s safety. A three-dimensional Smoothed Particle Hydrodynamics–Finite Element Method (SPH-FEM) coupled numerical model is developed in LS-DYNA (Livermore Software Technology Corporation, Livermore, CA, USA, version R13.1.1), with its validity rigorously verified. The dynamic response of rockfall impacts on the shed slab with composite cushions of various thicknesses is analyzed by varying the thickness of sand and EPS materials. To optimize the cushion design, a specific energy dissipation ratio (SEDR), defined as the energy dissipation rate per unit mass (η/M), is introduced as a key performance metric. Furthermore, the complicated interactional mechanism between the rockfall and the optimum-thickness composite system is rationally interpreted, and the energy dissipation mechanism of the composite cushion is revealed. Using logistic regression, the ultimate stress state of the reactive powder concrete (RPC) slab is methodically analyzed, accounting for the speed and mass of the rockfall. The results are indicative of the fact that the composite cushion not only has less dead weight but also exhibits superior impact resistance compared to the 90 cm sand cushions; the impact resistance performance index SEDR of the three-layered absorbing system reaches 2.5, showing a remarkable 55% enhancement compared to the sand cushion (SEDR = 1.61). Additionally, both the sand cushion and the RC protective slab effectively dissipate most of the impact energy, while the EPS material experiences relatively little internal energy build-up in comparison. This feature overcomes the traditional vulnerability of EPS subjected to impact loads. One of the highlights of the present investigation is the development of an identification model specifically designed to accurately assess the stress state of RPC slabs under various rockfall impact conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 14898 KiB  
Article
SSI Effects on Constant-Ductility Inelastic Displacement Ratio and Residual Displacement of Self-Centering Systems Under Pulse-Type Ground Motions
by Muberra Eser Aydemir
Appl. Sci. 2025, 15(15), 8661; https://doi.org/10.3390/app15158661 (registering DOI) - 5 Aug 2025
Abstract
This study aims to examine the seismic response of self-centering single-degree-of-freedom (SDOF) systems exhibiting flag-shaped hysteretic behavior, while considering soil–structure interaction, in contrast to prior research that predominantly addressed conventional hysteretic behavior and overlooked soil flexibility. The inelastic displacement ratio, residual displacement, and [...] Read more.
This study aims to examine the seismic response of self-centering single-degree-of-freedom (SDOF) systems exhibiting flag-shaped hysteretic behavior, while considering soil–structure interaction, in contrast to prior research that predominantly addressed conventional hysteretic behavior and overlooked soil flexibility. The inelastic displacement ratio, residual displacement, and residual displacement ratio are used to analyze the seismic response of interacting structures. These structural response parameters are calculated based on the nonlinear dynamic analyses of SDOF systems subjected to 56 near-fault pulse-type ground motions. Analyses are conducted for varying values of ductility, energy dissipation coefficient, strain hardening ratio, aspect ratio, structural period, and normalized vibration period by pulse period of the record. New formulas to estimate the inelastic displacement ratio and residual displacement of self-centering SDOF systems with soil–structure interaction are developed based on a statistical analysis of the findings. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

22 pages, 11766 KiB  
Article
Seismic Performance of Tall-Pier Girder Bridge with Novel Transverse Steel Dampers Under Near-Fault Ground Motions
by Ziang Pan, Qiming Qi, Ruifeng Yu, Huaping Yang, Changjiang Shao and Haomeng Cui
Buildings 2025, 15(15), 2666; https://doi.org/10.3390/buildings15152666 - 28 Jul 2025
Viewed by 159
Abstract
This study develops a novel transverse steel damper (TSD) to enhance the seismic performance of tall-pier girder bridges, featuring superior lateral strength and energy dissipation capacity. The TSD’s design and arrangement are presented, with its hysteretic behavior simulated in ABAQUS. Key parameters (yield [...] Read more.
This study develops a novel transverse steel damper (TSD) to enhance the seismic performance of tall-pier girder bridges, featuring superior lateral strength and energy dissipation capacity. The TSD’s design and arrangement are presented, with its hysteretic behavior simulated in ABAQUS. Key parameters (yield strength: 3000 kN; initial gap: 100 mm; post-yield stiffness ratio: 15%) are optimized through seismic analysis under near-fault ground motions, incorporating pulse characteristic investigations. The optimized TSD effectively reduces bearing displacements and results in smaller pier top displacements and internal forces compared to the bridge with fixed bearings. Due to the higher-order mode effects, there is no direct correlation between top displacements and bottom internal forces. As pier height decreases, the S-shaped shear force and bending moment envelopes gradually become linear, reflecting the reduced influence of these modes. Medium- to long-period pulse-like motions amplify seismic responses due to resonance (pulse period ≈ fundamental period) or susceptibility to large low-frequency spectral values. Higher-order mode effects on bending moments and shear forces intensify under prominent high-frequency components. However, the main velocity pulse typically masks the influence of high-order modes by the overwhelming seismic responses due to large spectral values at medium to long periods. Full article
(This article belongs to the Special Issue Seismic Analysis and Design of Building Structures)
Show Figures

Figure 1

19 pages, 7033 KiB  
Article
The Influence of Combined Energy Dissipators on Navigable Flow Characteristics at Main Channel—Tributary Confluences in Trans-Basin Canals: A Case Study of the Jiuzhou River Section, Pinglu Canal
by Linfeng Han, Kaixian Deng, Tao Yu and Junhui He
Water 2025, 17(15), 2214; https://doi.org/10.3390/w17152214 - 24 Jul 2025
Viewed by 441
Abstract
The flow characteristics at the tributary entrance are crucial for ensuring safe navigation where the main channel and tributary converge. Along the inter-basin canal, numerous tributaries feature large confluence angles and significant flow discharge ratios. An experimental study investigated how these factors influence [...] Read more.
The flow characteristics at the tributary entrance are crucial for ensuring safe navigation where the main channel and tributary converge. Along the inter-basin canal, numerous tributaries feature large confluence angles and significant flow discharge ratios. An experimental study investigated how these factors influence flow patterns, leading to proposed mitigation measures. This research employed a 1:50-scale physical river model and a sediment deposition model. It analyzed navigable flow conditions including velocity, flow patterns, the confluence ratio, the bottom elevation difference, and the confluence angle at the main channel–tributary junction. Focusing on the Jiuzhou River tributary entrance (Pinglu Canal), which has a large confluence ratio, significant bottom elevation difference, and wide confluence angle, this study tested two solutions: a single energy dissipator and a combined energy dissipator system. Sediment deposition modeling compared the effectiveness of these approaches. The results showed that implementing a steep slope with a three-stage stilling pool in the Jiuzhou River entrance section effectively manages confluences with large elevation differences, wide angles, and high flow discharge ratios. This configuration significantly improves entrance flow characteristics. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

15 pages, 5980 KiB  
Article
Seismic Performance of Cladding-Panel-Equipped Frames with Novel Friction-Energy-Dissipating Joints
by Xi-Long Chen, Xian Gao, Li Xu, Jian-Wen Zhao and Lian-Qiong Zheng
Buildings 2025, 15(15), 2618; https://doi.org/10.3390/buildings15152618 - 24 Jul 2025
Viewed by 184
Abstract
Based on the need to enhance the seismic performance of point-supported steel frame precast cladding panel systems, this study proposes a novel friction-energy-dissipating connection joint. Through establishing refined finite element models, low-cycle reversed loading analyses and elastoplastic time-history analyses were conducted on three [...] Read more.
Based on the need to enhance the seismic performance of point-supported steel frame precast cladding panel systems, this study proposes a novel friction-energy-dissipating connection joint. Through establishing refined finite element models, low-cycle reversed loading analyses and elastoplastic time-history analyses were conducted on three frame systems. These included a benchmark bare frame and two cladding-panel-equipped frame structures configured with energy-dissipating joints using different specifications of high-strength bolts (M14 and M20, respectively). The low-cycle reversed loading results demonstrate that the friction energy dissipation of the novel joints significantly improved the seismic performance of the frame structures. Compared to the bare frame, the frames equipped with cladding panels using M14 bolts demonstrated 10.9% higher peak lateral load capacity, 17.6% greater lateral stiffness, and 45.6% increased cumulative energy dissipation, while those with M20 bolts showed more substantial improvements of 22.8% in peak load capacity, 32.0% in lateral stiffness, and 64.2% in cumulative energy dissipation. The elastoplastic time-history analysis results indicate that under seismic excitation, the maximum inter-story drift ratios of the panel-equipped frames with M14 and M20 bolts were reduced by 42.7% and 53%, respectively, compared to the bare frame. Simultaneously, the equivalent plastic strain in the primary structural members significantly decreased. Finally, based on the mechanical equilibrium conditions, a calculation formula was derived to quantify the contribution of joint friction to the horizontal load-carrying capacity of the frame. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 1923 KiB  
Review
Review of Energy Dissipation Mechanisms in Concrete: Role of Advanced Materials, Mix Design, and Curing Conditions
by Hadi Bahmani, Hasan Mostafaei and Davood Mostofinejad
Sustainability 2025, 17(15), 6723; https://doi.org/10.3390/su17156723 - 24 Jul 2025
Viewed by 372
Abstract
Concrete structures increasingly face dynamic loading conditions, such as seismic events, vehicular traffic, and environmental vibrations, necessitating enhanced energy dissipation capabilities. The damping ratio, a critical parameter quantifying a material’s ability to dissipate vibrational energy, is typically low in conventional concrete, prompting extensive [...] Read more.
Concrete structures increasingly face dynamic loading conditions, such as seismic events, vehicular traffic, and environmental vibrations, necessitating enhanced energy dissipation capabilities. The damping ratio, a critical parameter quantifying a material’s ability to dissipate vibrational energy, is typically low in conventional concrete, prompting extensive research into strategies for improvement. This review comprehensively explores the impact of advanced concrete types—such as Engineered Cementitious Composites (ECCs), Ultra-High-Performance Concrete (UHPC), High-Performance Concrete (HPC), and polymer concrete—on enhancing the damping behavior. Additionally, key mix design innovations, including fiber reinforcement, rubber powder incorporation, and aggregate modification, are evaluated for their roles in increasing energy dissipation. External factors, particularly curing conditions, are also discussed for their influence on the damping performance. The findings consolidate experimental and theoretical insights into how material composition, mix design, and external treatments interact to optimize dynamic resilience. To guide future research, this paper identifies critical gaps including the need for multi-scale numerical simulation frameworks, standardized damping test protocols, and long-term performance evaluation under realistic service conditions. Advancing work in material innovation, optimized mix design, and controlled curing environments will be essential for developing next-generation concretes with superior vibration control, durability, and sustainability. These insights provide a strategic foundation for applications in seismic-prone and vibration-sensitive infrastructure. Full article
(This article belongs to the Special Issue Advanced Concrete- and Cement-Based Composite Materials)
Show Figures

Figure 1

29 pages, 6649 KiB  
Article
Optimizing Kang-to-Room Area Ratios for Thermal Comfort in Traditional Chinese Architecture: An Empirical and Simulation-Based Approach
by Ning Li, Zhihua Zhao, Dongxu Wang, Qian Zhang and Lin Li
Buildings 2025, 15(15), 2593; https://doi.org/10.3390/buildings15152593 - 22 Jul 2025
Viewed by 218
Abstract
Traditional Chinese Kang heating systems have been used for over two millennia in northern China, yet their thermal efficiency and optimal design parameters lack scientific validation. This study aims to establish evidence-based guidelines for Kang-to-room area ratios to enhance thermal comfort and energy [...] Read more.
Traditional Chinese Kang heating systems have been used for over two millennia in northern China, yet their thermal efficiency and optimal design parameters lack scientific validation. This study aims to establish evidence-based guidelines for Kang-to-room area ratios to enhance thermal comfort and energy efficiency in rural architecture. We conducted direct measurements in a controlled experimental house (24 m2) in Huludao City, collecting temperature and humidity data from Kang surfaces and interior spaces over five-day periods. A benchmark curve for heat flux density was developed based on specific fuelwood consumption rates (1 kg/m2). TRNSYS simulations were employed to validate experimental data and analyze thermal performance in the historical Qingning Palace (352 m2) at Shenyang Imperial Palace. The benchmark curve demonstrated high accuracy with a Mean Absolute Error of 0.46 °C and Root Mean Square Error of 0.53 °C when compared to measured temperatures over the 48 h validation period; these values are well within acceptable ranges for calibrated thermal models. Simulations revealed optimal thermal comfort conditions when heat dissipation parameters were scaled appropriately for building size. The optimal Kang-to-room area ratio ranges from 0.28 to 0.69, with the existing Qingning Palace ratio (0.34) falling within this range, validating traditional design wisdom. This research provides a scientific foundation for sustainable architectural practices, bridging traditional knowledge with contemporary thermal engineering principles for both heritage preservation and modern rural construction applications. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 5236 KiB  
Article
Research on Slope Stability Based on Bayesian Gaussian Mixture Model and Random Reduction Method
by Jingrong He, Tao Deng, Shouxing Peng, Xing Pang, Daochun Wan, Shaojun Zhang and Xiaoqiang Zhang
Appl. Sci. 2025, 15(14), 7926; https://doi.org/10.3390/app15147926 - 16 Jul 2025
Viewed by 211
Abstract
Slope stability analysis is conventionally performed using the strength reduction method with the proportional reduction in shear strength parameters. However, during actual slope failure processes, the attenuation characteristics of rock mass cohesion (c) and internal friction angle (φ) are [...] Read more.
Slope stability analysis is conventionally performed using the strength reduction method with the proportional reduction in shear strength parameters. However, during actual slope failure processes, the attenuation characteristics of rock mass cohesion (c) and internal friction angle (φ) are often inconsistent, and their reduction paths exhibit clear nonlinearity. Relying solely on proportional reduction paths to calculate safety factors may therefore lack scientific rigor and fail to reflect true slope behavior. To address this limitation, this study proposes a novel approach that considers the non-proportional reduction of c and φ, without dependence on predefined reduction paths. The method begins with an analysis of slope stability states based on energy dissipation theory. A Bayesian Gaussian Mixture Model (BGMM) is employed for intelligent interpretation of the dissipated energy data, and, combined with energy mutation theory, is used to identify instability states under various reduction parameter combinations. To compute the safety factor, the concept of a “reference slope” is introduced. This reference slope represents the state at which the slope reaches limit equilibrium under strength reduction. The safety factor is then defined as the ratio of the shear strength of the target analyzed slope to that of the reference slope, providing a physically meaningful and interpretable safety index. Compared with traditional proportional reduction methods, the proposed approach offers more accurate estimation of safety factors, demonstrates superior sensitivity in identifying critical slopes, and significantly improves the reliability and precision of slope stability assessments. These advantages contribute to enhanced safety management and risk control in slope engineering practice. Full article
(This article belongs to the Special Issue Slope Stability and Earth Retaining Structures—2nd Edition)
Show Figures

Figure 1

25 pages, 10123 KiB  
Article
Fabrication of Micro-Holes with High Aspect Ratios in Cf/SiC Composites Using Coaxial Waterjet-Assisted Nanosecond Laser Drilling
by Chenhu Yuan, Zenggan Bian, Yue Cao, Yinan Xiao, Bin Wang, Jianting Guo and Liyuan Sheng
Micromachines 2025, 16(7), 811; https://doi.org/10.3390/mi16070811 - 14 Jul 2025
Viewed by 272
Abstract
In the present study, the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in Cf/SiC composites, coupled with nanosecond laser drilling in air for fabricating micro-holes with high aspect ratios, were investigated. The surface morphology, reaction products, and micro-hole shapes were thoroughly [...] Read more.
In the present study, the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in Cf/SiC composites, coupled with nanosecond laser drilling in air for fabricating micro-holes with high aspect ratios, were investigated. The surface morphology, reaction products, and micro-hole shapes were thoroughly examined. The results reveal that, for the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in the Cf/SiC composite, the increasing of waterjet velocity enhances the material removal rate and micro-hole depth, but reduces the micro-hole diameter and taper angle. The coaxial waterjet isolates the laser-ablated region and cools down the corresponding region rapidly, leading to the formation of a mixture of SiC, SiO2, and Si on the surface. As the coaxial waterjet velocity increases, the morphology of residual surface products changes from a net-like structure to individual spheres. Coaxial waterjet-assisted nanosecond laser drilling, with a waterjet velocity of 9.61 m/s, achieves micro-holes with a good balance between efficiency and quality. For the fabrication of micro-holes with a high aspect ratio in Cf/SiC composites, micro-holes fabricated by nanosecond laser drilling in air exhibit obvious taper features, which should be ascribed to the combined effects of spattering slag, plasma, and energy dissipation. The application of coaxial waterjet-assisted nanosecond laser drilling on micro-holes fabricated by laser drilling in air effectively expands the hole diameter. The fabricated micro-holes have very small taper angles, with clean wall surfaces and almost no reaction products. This approach, combining nanosecond laser drilling in air followed by coaxial waterjet-assisted nanosecond laser drilling, offers a promising technique for fabricating high-quality micro-holes with high aspect ratios in Cf/SiC composites. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

19 pages, 11950 KiB  
Article
Enhancing Tensile Performance of Cemented Tailings Backfill Through 3D-Printed Polymer Lattices: Mechanical Properties and Microstructural Investigation
by Junzhou Huang, Lan Deng, Haotian Gao, Cai Wu, Juan Li and Daopei Zhu
Materials 2025, 18(14), 3314; https://doi.org/10.3390/ma18143314 - 14 Jul 2025
Viewed by 301
Abstract
This study presents an innovative solution to improve the mechanical performance of traditional cemented tailings backfill (CTB) by incorporating 3D-printed polymer lattice (3DPPL) reinforcements. We systematically investigated three distinct 3DPPL configurations (four-column FC, six-column SC, and cross-shaped CO) through comprehensive experimental methods including [...] Read more.
This study presents an innovative solution to improve the mechanical performance of traditional cemented tailings backfill (CTB) by incorporating 3D-printed polymer lattice (3DPPL) reinforcements. We systematically investigated three distinct 3DPPL configurations (four-column FC, six-column SC, and cross-shaped CO) through comprehensive experimental methods including Brazilian splitting tests, digital image correlation (DIC), and scanning electron microscopy (SEM). The results show that the 3DPPL reinforcement significantly enhances the CTB’s tensile properties, with the CO structure demonstrating the most substantial improvement—increasing the tensile strength by 85.6% (to 0.386 MPa) at a cement-to-tailings ratio of 1:8. The 3DPPL-modified CTB exhibited superior ductility and progressive failure characteristics, as evidenced by multi-stage load-deflection behavior and a significantly higher strain capacity (41.698–51.765%) compared to unreinforced specimens (2.504–4.841%). The reinforcement mechanism involved synergistic effects of macroscopic truss behavior and microscopic interfacial bonding, which effectively redistributed the stress and dissipated energy. This multi-scale approach successfully transforms CTB’s failure mode from brittle to progressive while optimizing both strength and toughness, providing a promising advancement for mine backfill material design. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

16 pages, 4237 KiB  
Article
Solid-State Circuit Breaker Topology Design Methodology for Smart DC Distribution Grids with Millisecond-Level Self-Healing Capability
by Baoquan Wei, Haoxiang Xiao, Hong Liu, Dongyu Li, Fangming Deng, Benren Pan and Zewen Li
Energies 2025, 18(14), 3613; https://doi.org/10.3390/en18143613 - 9 Jul 2025
Viewed by 336
Abstract
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing [...] Read more.
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing an adaptive current-limiting branch topology, the proposed solution reduces the risk of system oscillations induced by current-limiting inductors during normal operation and minimizes steady-state losses in the breaker. Upon fault occurrence, the current-limiting inductor is automatically activated to effectively suppress the transient current rise rate. An energy dissipation circuit (EDC) featuring a resistor as the primary energy absorber and an auxiliary varistor (MOV) for voltage clamping, alongside a snubber circuit, provides an independent path for inductor energy release after faults. This design significantly alleviates the impact of MOV capacity constraints on the fault isolation process compared to traditional schemes where the MOV is the primary energy sink. The proposed topology employs a symmetrical bridge structure compatible with both pole-to-pole and pole-to-ground fault scenarios. Parameter optimization ensures the IGBT voltage withstand capability and energy dissipation efficiency. Simulation and experimental results demonstrate that this scheme achieves fault isolation within 0.1 ms, reduces the maximum fault current-to-rated current ratio to 5.8, and exhibits significantly shorter isolation times compared to conventional approaches. This provides an effective solution for segment switches and tie switches in millisecond-level self-healing systems for both low-voltage (LVDC, e.g., 750 V/1500 V DC) and medium-voltage (MVDC, e.g., 10–35 kV DC) smart DC distribution grids, particularly in applications demanding ultra-fast fault isolation such as data centers, electric vehicle (EV) fast-charging parks, and shipboard power systems. Full article
(This article belongs to the Special Issue AI Solutions for Energy Management: Smart Grids and EV Charging)
Show Figures

Figure 1

15 pages, 2836 KiB  
Article
Pressure-Amplified Structural Superiority in Silty Clays: Dynamic Divergence Between Undisturbed and Remolded States
by Jinhu Hu, Banglong Zhou, Penggang Li, Jing Wang and Yayuan Yang
Buildings 2025, 15(13), 2319; https://doi.org/10.3390/buildings15132319 - 2 Jul 2025
Viewed by 265
Abstract
Silty clay is extensively distributed in northern China. Numerous seismic events have demonstrated that underground structures embedded in silty clay strata are prone to severe damage during earthquakes. This study employs dynamic cyclic triaxial tests on undisturbed and remolded specimens (50–300 kPa confining [...] Read more.
Silty clay is extensively distributed in northern China. Numerous seismic events have demonstrated that underground structures embedded in silty clay strata are prone to severe damage during earthquakes. This study employs dynamic cyclic triaxial tests on undisturbed and remolded specimens (50–300 kPa confining pressures) to pioneer the quantification of pressure-amplified structural superiority. The experimental results reveal that: (1) Undisturbed soils exhibit 20–30% higher maximum shear stress (τdmax) and shear modulus (Gdmax) than remolded counterparts at 300 kPa, far exceeding the <5% deviation at 50 kPa due to enhanced particle-cementation synergy under pressure. (2) The normalized shear modulus ratio (Gd/Gdmax) exhibits low sensitivity to confining pressure, with Gd/Gdmaxγd relationship curves predominantly confined within a narrow band range. A triphasic evolutionary characteristic is manifested in the progressive reduction of Gd/Gdmax with increasing shear strain (γd), and quasi-linear attenuation is observed within the shear strain range of 1 × 10−4γd ≤ 1 × 10−2. (3) Remolded and undisturbed specimens demonstrate close correspondence in damping ratio (λd) across consolidation pressures. Under identical γd conditions, undisturbed specimens consistently exhibit lower λd values than remolded counterparts, attributable to enhanced energy dissipation resulting from structural homogenization in remolded soils, with λdmax magnitudes ranging between 0.2 and 0.3. The research provides mechanistic insights for seismic design of underground structures in silty clay terrains, particularly regarding disturbance sensitivity under deep burial conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 8731 KiB  
Article
Energy Dissipation Device Design for Irregular Structures Based on Yield Mechanism
by Xisen Fan, Yihang Bai, Liang Chen, Hao Wu, Yifei Qiao and Abdul Ghani
Buildings 2025, 15(13), 2305; https://doi.org/10.3390/buildings15132305 - 30 Jun 2025
Viewed by 311
Abstract
The seismic performance of irregular structures can be enhanced by installing energy dissipation devices. The location and specification of those devices are crucial for the design of the structure with an energy dissipation device. In this paper, an idea based on the structural [...] Read more.
The seismic performance of irregular structures can be enhanced by installing energy dissipation devices. The location and specification of those devices are crucial for the design of the structure with an energy dissipation device. In this paper, an idea based on the structural yield mechanism is proposed. Specifically, the pushover method was employed to analyze the yield sequence of structural members, thereby determining weak components that dictate the location of these devices. Additionally, the story drift ratios were taken as the control target to determine the performance parameters of the devices. This concept has been applied to the design of an energy dissipation device for a medical building. The results demonstrated that by using a design method based on the yield mechanism, the location of the damper was rapidly determined to ensure that the yield mechanism of the irregular structure met expectations. To control the story drift ratios, the parameters of the damper were selected, and the center of damping strength and the center of stiffness were made symmetrical about the center of mass, which could enable the irregular structure to have a better damping effect. After setting the energy dissipation devices according to this method, the structural torsional displacement ratio was reduced from 1.32 to 1.04, and the displacement angle between layers was reduced from 0.01 to 0.0048. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 3716 KiB  
Article
Water Demand and Photosynthetic Performance of Tomatoes Grown Hydroponically Under Increasing Nitrogen Concentrations
by Pablo Rugero Magalhães Dourado, Martha Katharinne Silva Souza Paulino, Lucas Yago de Carvalho Leal, Cicero Aparecido Ferreira Araújo, José Alfredo Nunes, Emidio Cantídio de Oliveira, José Amilton Santos Júnior, Aline de Camargo Santos, Diego Arruda Huggins de Sá Leitão, Márcio Renato Nunes, Bruce Schaffer and Edivan Rodrigues de Souza
Water 2025, 17(13), 1951; https://doi.org/10.3390/w17131951 - 29 Jun 2025
Viewed by 444
Abstract
Water and nitrogen (N) availability are among the primary limiting factors for the productivity of tomato (Solanum licopersicum L.). This study evaluated the interaction between these factors by assessing the effects of different N concentrations (85.5, 128.3, 171.0, 213.8, and 256.1 ppm [...] Read more.
Water and nitrogen (N) availability are among the primary limiting factors for the productivity of tomato (Solanum licopersicum L.). This study evaluated the interaction between these factors by assessing the effects of different N concentrations (85.5, 128.3, 171.0, 213.8, and 256.1 ppm N) on the water consumption, growth, and photosynthetic efficiency of hydroponically-grown tomato plants. The variables that were analyzed included the leaf N content, leaf chlorophyll index (LCI), maximum quantum efficiency of photosystem II (the ratio of variable to maximum chlorophyll fluorescence; Fv/Fm), non-photochemical quenching (NPQ), fresh mass (FM), dry mass (DM), cumulative water consumption, and water use efficiency (WUE). Increasing N concentrations led to higher water consumption and FM accumulation. Dry biomass was quadratically related to the N concentration, which peaked between doses of 213.8 and 256.1 ppm N. The LCI and Fv/Fm increased with the N supply, reaching a peak at N concentrations above 171 ppm, and then remained relatively constant. Conversely, the NPQ was reduced at the highest N level (256.1 ppm), which indicated diminished excess energy dissipation capacity. The highest WUE was observed at 213.8 ppm N, which was associated with greater DM and reduced water consumption compared to the highest N treatment. These findings suggest that the N concentration significantly affects the biomass production and water use in hydroponically-grown tomato plants, with 213.8 ppm N being the most efficient for vegetative growth under the studied conditions. Full article
(This article belongs to the Special Issue Soil Water Use and Irrigation Management)
Show Figures

Figure 1

22 pages, 1984 KiB  
Article
Large Eddy Simulation of the Diurnal Cycle of Shallow Convection in the Central Amazon
by Jhonatan A. A. Manco and Silvio Nilo Figueroa
Atmosphere 2025, 16(7), 789; https://doi.org/10.3390/atmos16070789 - 27 Jun 2025
Viewed by 359
Abstract
Climate models often face challenges in accurately simulating the daily precipitation cycle over tropical land areas, particularly in the Amazon. One contributing factor may be the incomplete representation of the diurnal evolution of shallow cumulus (ShCu) clouds. This study aimed to enhance the [...] Read more.
Climate models often face challenges in accurately simulating the daily precipitation cycle over tropical land areas, particularly in the Amazon. One contributing factor may be the incomplete representation of the diurnal evolution of shallow cumulus (ShCu) clouds. This study aimed to enhance the understanding of the diurnal cycles of ShCu clouds—from formation to maturation and dissipation—over the Central Amazon (CAMZ). Using observational data from the Green Ocean Amazon 2014 (GoAmazon) campaign and large eddy simulation (LES) modeling, we analyzed the diurnal cycles of six selected pure ShCu cases and their composite behavior. Our results revealed a well-defined cycle, with cloud formation occurring between 10 and 11 local time (LT), maturity from 13 to 15 LT, and dissipation by 17–18 LT. The vertical extent of the liquid water mixing ratio and the intensity of the updraft mass flux were closely associated with increases in turbulent kinetic energy (TKE), enhanced buoyancy flux within the cloud layer, and reduced large-scale subsidence. We further analyzed the diurnal cycles of the convective available potential energy (CAPE), the convective inhibition (CIN), the Bowen ratio (BR), and the vertically integrated TKE in the mixed layer (ITKE-ML), exploring their relationships with the cloud base mass flux (Mb) and cloud depth across the six ShCu cases. ITKE-ML and Mb exhibited similar diurnal trends, peaking at approximately 14–15 LT. However, no consistent relationships were found between CAPE (or BR) and Mb. Similarly, comparisons of the cloud depth with CAPE, BR, ITKE-ML, CIN, and Mb revealed no clear relationships. Smaller ShCu clouds were sometimes linked to higher CAPE and lower CIN. It is important to emphasize that these findings are preliminary and based on a limited sample of ShCu cases. Further research involving an expanded dataset and more detailed analyses of the TKE budget and synoptic conditions is necessary. Such efforts would yield a more comprehensive understanding of the factors influencing ShCu clouds’ vertical development. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

Back to TopTop