Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,201)

Search Parameters:
Keywords = disease variants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1349 KiB  
Article
A Retrospective Study of Clinical and Genetic Features in a Long-Term Cohort of Mexican Children with Alagille Syndrome
by Rodrigo Vázquez-Frias, Gustavo Varela-Fascinetto, Carlos Patricio Acosta-Rodríguez-Bueno, Alejandra Consuelo, Ariel Carrillo, Magali Reyes-Apodaca, Rodrigo Moreno-Salgado, Jaime López-Valdez, Elizabeth Hernández-Chávez, Beatriz González-Ortiz, José F Cadena-León, Salvador Villalpando-Carrión, Liliana Worona-Dibner, Valentina Martínez-Montoya, Arantza Cerón-Muñiz, Edgar Ramírez-Ramírez and Tania Barragán-Arévalo
Int. J. Mol. Sci. 2025, 26(15), 7626; https://doi.org/10.3390/ijms26157626 - 6 Aug 2025
Abstract
Alagille syndrome (ALGS) is a multisystem disorder characterized by a paucity of intrahepatic bile ducts and cholestasis, often requiring liver transplantation before adulthood. Due to the lack of genotype–phenotype correlation, case series are essential to understand disease presentation and prognosis. Data on Mexican [...] Read more.
Alagille syndrome (ALGS) is a multisystem disorder characterized by a paucity of intrahepatic bile ducts and cholestasis, often requiring liver transplantation before adulthood. Due to the lack of genotype–phenotype correlation, case series are essential to understand disease presentation and prognosis. Data on Mexican ALGS patients are limited. Therefore, we aimed to characterize a large series of Mexican patients by consolidating cases from major institutions and independent geneticists, with the goal of generating one of the most comprehensive cohorts in Latin America. We retrospectively analyzed clinical records of pediatric ALGS patients, focusing on demographics, clinical features, laboratory and imaging results, biopsy findings, and transplant status. Genetic testing was performed for all cases without prior molecular confirmation. We identified 52 ALGS cases over 13 years; 22 had available clinical records. Of these, only 6 had molecular confirmation at study onset, prompting genetic testing in the remaining 16. We identified six novel JAG1 variants and several previously unreported phenotypic features. A liver transplantation rate of 13% was observed in the cohort. This study represents the largest molecularly confirmed ALGS cohort in Mexico to date. Novel genetic and clinical findings expand the known spectrum of ALGS and emphasize the need for improved therapies, such as IBAT inhibitors, which may alleviate symptoms and reduce the need for transplantation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

10 pages, 902 KiB  
Case Report
Gene Mutation-Negative Malignant Melanoma in a Prepubertal Patient: A Clinical and Molecular Case Report
by Adrian Guźniczak, Patrycja Sosnowska-Sienkiewicz, Jarosław Szydłowski, Paweł Kurzawa and Danuta Januszkiewicz-Lewandowska
Genes 2025, 16(8), 937; https://doi.org/10.3390/genes16080937 (registering DOI) - 6 Aug 2025
Abstract
Conventional melanoma is exceedingly rare in the pediatric population, particularly among prepubescent children, and its diagnosis and management necessitate a multidisciplinary approach. The objective of this present report is to delineate the diagnostic pathway and therapeutic management of a 4-year-old girl with conventional [...] Read more.
Conventional melanoma is exceedingly rare in the pediatric population, particularly among prepubescent children, and its diagnosis and management necessitate a multidisciplinary approach. The objective of this present report is to delineate the diagnostic pathway and therapeutic management of a 4-year-old girl with conventional melanoma, with particular focus on the molecular context. A pigmented lesion located on the auricle was surgically excised, and subsequent histopathological and immunohistochemical analyses confirmed the diagnosis of malignant melanoma (pT3b). Radiologic investigations revealed no evidence of metastatic disease, and comprehensive genetic testing utilizing next-generation sequencing (NGS) identified no pathogenic variants in the germline genes examined, nor in the BRAF, NRAS, KRAS, and TP53 genes within the excised lesion. The patient remains in good general health. This case report adds to the limited body of literature on melanoma in pediatric patients and underscores the importance of thorough diagnostic evaluation in this age group. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

12 pages, 888 KiB  
Article
Identification of Candidate Genes for Endometriosis in a Three-Generation Family with Multiple Affected Members Using Whole-Exome Sequencing
by Carla Lintas, Alessia Azzarà, Vincenzo Panasiti and Fiorella Gurrieri
Biomedicines 2025, 13(8), 1922; https://doi.org/10.3390/biomedicines13081922 - 6 Aug 2025
Abstract
Background: Endometriosis is a chronic inflammatory condition affecting 10–15% of women of reproductive age. Genome-wide association studies (GWASs) have accounted for only a fraction of its high heritability, indicating the need for alternative approaches to identify rare genetic variants contributing to its [...] Read more.
Background: Endometriosis is a chronic inflammatory condition affecting 10–15% of women of reproductive age. Genome-wide association studies (GWASs) have accounted for only a fraction of its high heritability, indicating the need for alternative approaches to identify rare genetic variants contributing to its etiology. To this end, we performed whole-exome sequencing (WES) in a multi-affected family. Methods: A multigenerational family was studied, comprising three sisters, their mother, grandmother, and a daughter, all diagnosed with endometriosis. WES was conducted on the three sisters and their mother. We used the enGenome-Evai and Varelect software to perform our analysis, which mainly focused on rare, missense, frameshift, and stop variants. Results: Bioinformatic analysis identified 36 co-segregating rare variants. Six missense variants in genes associated with cancer growth were prioritized. The top candidates were c.3319G>A (p.Gly1107Arg) in the LAMB4 gene and c.1414G>A (p.Gly472Arg) in the EGFL6 gene. Variants in NAV3, ADAMTS18, SLIT1, and MLH1 may also contribute to disease onset through a synergistic and additive model. Conclusions: We identified novel candidate genes for endometriosis in a multigenerational affected family, supporting a polygenic model of the disease. Our study is an exploratory family-based WES study, and replication and functional studies are warranted to confirm these preliminary findings. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

20 pages, 2614 KiB  
Article
Porphyrin-Modified Polyethersulfone Ultrafiltration Membranes for Enhanced Bacterial Inactivation and Filtration Performance
by Funeka Matebese, Nonkululeko Malomane, Meladi L. Motloutsi, Richard M. Moutloali and Muthumuni Managa
Membranes 2025, 15(8), 239; https://doi.org/10.3390/membranes15080239 - 6 Aug 2025
Abstract
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone [...] Read more.
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone (PES) ultrafiltration (UF) membranes was conducted to improve bacterial inactivation in complex municipal wastewater and enhance the fouling resistance and filtration performance. The synthesis and fabrication of porphyrin nanofillers and the resultant membrane characteristics were studied. The incorporation of porphyrin-based nanofillers improved the membrane’s hydrophilicity, morphology, and flux (247 Lm−2 h−1), with the membrane contact angle (CA) decreasing from 90° to ranging between 58° and 50°. The membrane performance was monitored for its flux, antifouling properties, reusability potential, municipal wastewater, and humic acid. The modified membranes demonstrated an effective application in wastewater treatment, achieving notable antibacterial activity, particularly under light exposure. The In-BP@SW/PES membrane demonstrated effective antimicrobial photodynamic effects against both Gram-positive S. aureus and Gram-negative E. coli. It achieved at least a 3-log reduction in bacterial viability, meeting Food and Drug Administration (FDA) standards for efficient antimicrobial materials. Among the variants tested, membranes modified with In-PB@SW nanofillers exhibited superior antifouling properties with flux recovery ratios (FRRs) of 78.9% for the humic acid (HA) solution and 85% for the municipal wastewater (MWW), suggesting a strong potential for long-term filtration use. These results highlight the promise of porphyrin-functionalized membranes as multifunctional tools in advanced water treatment technologies. Full article
Show Figures

Figure 1

19 pages, 1372 KiB  
Article
Assessing CFTR Function and Epithelial Morphology in Human Nasal Respiratory Cell Cultures: A Combined Immunofluorescence and Electrophysiological Study
by Roshani Narayan Singh, Vanessa Mete, Willy van Driessche, Heymut Omran, Wolf-Michael Weber and Jörg Grosse-Onnebrink
Int. J. Mol. Sci. 2025, 26(15), 7618; https://doi.org/10.3390/ijms26157618 - 6 Aug 2025
Abstract
Cystic fibrosis (CF), the most common hereditary lung disease in Caucasians, is caused by dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR). We evaluated CFTR function using a newly developed Ussing chamber system, the Multi Trans Epithelial Current Clamp (MTECC), in an [...] Read more.
Cystic fibrosis (CF), the most common hereditary lung disease in Caucasians, is caused by dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR). We evaluated CFTR function using a newly developed Ussing chamber system, the Multi Trans Epithelial Current Clamp (MTECC), in an in vitro model of human airway epithelia. Air–liquid interface (ALI) cultures were established from nasal brushings of healthy controls (HC) and CF patients with biallelic CFTR variants. ALI layer thickness was similar between groups (HC: 62 ± 13 µm; CF: 55 ± 9 µm). Immunofluorescence showed apical CFTR expression in HC, but reduced or absent signal in CF cultures. MTECC enabled continuous measurement of transepithelial resistance (Rt), potential difference (PD), and conductance (Gt). Gt was significantly reduced in CF cultures compared to HC (0.825 ± 0.024 vs. −0.054 ± 0.016 mS/cm2), indicating impaired cAMP-inducible ion transport by CFTR. Treatment of CF cultures with elexacaftor, tezacaftor, and ivacaftor (Trikafta®) increased Gt, reflecting partial restoration of CFTR function. These findings demonstrate the utility of MTECC in detecting functional differences in CFTR activity and support its use as a platform for evaluating CFTR-modulating therapies. Our model may contribute to the development of personalized treatment strategies for CF patients. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Pathophysiology of Cystic Fibrosis)
25 pages, 1504 KiB  
Article
Systemic Sclerosis with Interstitial Lung Disease: Identification of Novel Immunogenetic Markers and Ethnic Specificity in Kazakh Patients
by Lina Zaripova, Abay Baigenzhin, Zhanar Zarkumova, Zhanna Zhabakova, Alyona Boltanova, Maxim Solomadin and Alexey Pak
Epidemiologia 2025, 6(3), 41; https://doi.org/10.3390/epidemiologia6030041 - 6 Aug 2025
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by vascular abnormalities, immune dysfunction, and progressive fibrosis. One of the most common manifestations of SSc is interstitial lung disease (ILD), known by a progressive course leading to significant morbidity and mortality. Aim: [...] Read more.
Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by vascular abnormalities, immune dysfunction, and progressive fibrosis. One of the most common manifestations of SSc is interstitial lung disease (ILD), known by a progressive course leading to significant morbidity and mortality. Aim: to investigate autoantibodies, cytokines, and genetic markers in SSc-ILD through a systematic review and analysis of a Kazakh cohort of SSc-ILD patients. Methods: A PubMed search over the past 10 years was performed with “SSc-ILD”, “autoantibodies”, “cytokines”, and “genes”. Thirty patients with SSc were assessed for lung involvement, EScSG score, and modified Rodnan skin score. IL-6 was measured by ELISA, antinuclear factor on HEp-2 cells by indirect immunofluorescence, and specific autoantibodies by immunoblotting. Genetic analysis was performed using a 120-gene AmpliSeq panel on the Ion Proton platform. Results: The literature review identified 361 articles, 26 addressed autoantibodies, 20 genetic variants, and 12 cytokine profiles. Elevated levels of IL-6, TGF-β, IL-33, and TNF-α were linked to SSc. Based on the results of the systemic review, we created a preliminary immunogenic panel for SSc-ILD with following analysis in Kazakh patients with SSc (n = 30). Fourteen of them (46.7%) demonstrated signs of ILD and/or lung hypertension, with frequent detection of antibodies such as Scl-70, U1-snRNP, SS-A, and genetic variants in SAMD9L, REL, IRAK1, LY96, IL6R, ITGA2B, AIRE, TREX1, and CD40 genes. Conclusions: Current research confirmed the presence of the broad range of autoantibodies and variations in IRAK1, TNFAIP3, SAMD9L, REL, IRAK1, LY96, IL6R, ITGA2B, AIRE, TREX1, CD40 genes in of Kazakhstani cohort of SSc-ILD patients. Full article
Show Figures

Figure 1

15 pages, 329 KiB  
Article
Genetic Risk Profiles for Atherosclerosis and Venous Thromboembolism in Azorean and Mainland Portuguese Populations: A Comparative Analysis
by Luisa Mota-Vieira, Joana Duarte, Xavier Catena, Jaime Gonzalez, Andrea Capocci and Cláudia C. Branco
Curr. Issues Mol. Biol. 2025, 47(8), 625; https://doi.org/10.3390/cimb47080625 - 6 Aug 2025
Abstract
The frequency of specific variants associated with the risk of developing cardiovascular diseases has been extensively studied through genome-wide association studies (GWASs). Differences between populations may be caused by the interaction of several factors, such as environmental and genetic backgrounds. Here, we studied [...] Read more.
The frequency of specific variants associated with the risk of developing cardiovascular diseases has been extensively studied through genome-wide association studies (GWASs). Differences between populations may be caused by the interaction of several factors, such as environmental and genetic backgrounds. Here, we studied 19 SNPs involved in atherosclerosis (AT) and venous thromboembolism (VTE) risk in the Azorean and mainland Portuguese populations and compared their frequencies with other European, Asian, and African populations. Results revealed that, although there was no difference between Azorean and mainland populations, eight SNPs in ADAMTS7, PCSK9, APOE, and LDLR genes showed significant statistical differences (χ2, p < 0.05) when compared with the European population. The multilocus genetic profile (MGP) analysis demonstrated that 7.4% of mainlanders and 11.2% of Azoreans have a high-risk of developing atherosclerosis. The opposite tendency was observed for venous thromboembolism risk, where the mainland population presented a higher risk (6.5%) than the Azorean population (4.1%). Significant differences in VTE-MGP distribution were found among the Azorean geographic groups (p < 0.05), with the Eastern group showing the highest VTE risk. Conversely, for the risk AT-MGP, the Central group shows the highest risk (12.9%). Taken together, the data suggest a risk of developing a cardiovascular disease consistent with the European population. However, the Azorean-specific genetic background and socio-cultural habits (dietary and sedentary) may explain the differences observed, validating the need to assess the allelic and genotypic frequencies between different populations, especially in small geographical locations, such as the Azores archipelago. In conclusion, these findings can improve the prevention, diagnosis, and treatment of high-risk individuals, and contribute to reducing the lifelong burden of cardiovascular diseases in the Azorean population. Full article
(This article belongs to the Section Molecular Medicine)
22 pages, 2029 KiB  
Article
Regulatory Effects of Endometriosis-Associated Genetic Variants: A Multi-Tissue eQTL Analysis
by Asbiel Felipe Garibaldi-Ríos, Perla Graciela Rodríguez-Gutiérrez, Jesús Magdiel García-Díaz, Guillermo Moisés Zúñiga-González, Luis E. Figuera, Belinda Claudia Gómez-Meda, Ana María Puebla-Pérez, Ingrid Patricia Dávalos-Rodríguez, Blanca Miriam Torres-Mendoza, Itzae Adonai Gutiérrez-Hurtado and Martha Patricia Gallegos-Arreola
Diseases 2025, 13(8), 248; https://doi.org/10.3390/diseases13080248 - 6 Aug 2025
Abstract
Backgroud. Endometriosis is a chronic, estrogen-dependent inflammatory disease characterized by the ectopic presence of endometrial-like tissue. Although genome-wide association studies (GWAS) have identified susceptibility variants, their tissue-specific regulatory impact remains poorly understood. Objective. To functionally characterize endometriosis-associated variants by exploring their regulatory effects [...] Read more.
Backgroud. Endometriosis is a chronic, estrogen-dependent inflammatory disease characterized by the ectopic presence of endometrial-like tissue. Although genome-wide association studies (GWAS) have identified susceptibility variants, their tissue-specific regulatory impact remains poorly understood. Objective. To functionally characterize endometriosis-associated variants by exploring their regulatory effects as expression quantitative trait loci (eQTLs) across six physiologically relevant tissues: peripheral blood, sigmoid colon, ileum, ovary, uterus, and vagina. Methods. GWAS-identified variants were cross-referenced with tissue-specific eQTL data from the GTEx v8 database. We prioritized genes either frequently regulated by eQTLs or showing the strongest regulatory effects (based on slope values, which indicate the direction and magnitude of the effect on gene expression). Functional interpretation was performed using MSigDB Hallmark gene sets and Cancer Hallmarks gene collections. Results. A tissue specificity was observed in the regulatory profiles of eQTL-associated genes. In the colon, ileum, and peripheral blood, immune and epithelial signaling genes predominated. In contrast, reproductive tissues showed the enrichment of genes involved in hormonal response, tissue remodeling, and adhesion. Key regulators such as MICB, CLDN23, and GATA4 were consistently linked to hallmark pathways, including immune evasion, angiogenesis, and proliferative signaling. Notably, a substantial subset of regulated genes was not associated with any known pathway, indicating potential novel regulatory mechanisms. Conclusions. This integrative approach highlights the com-plexity of tissue-specific gene regulation mediated by endometriosis-associated variants. Our findings provide a functional framework to prioritize candidate genes and support new mechanistic hypotheses for the molecular pathophysiology of endometriosis. Full article
Show Figures

Figure 1

11 pages, 592 KiB  
Systematic Review
Lermoyez Syndrome: A Systematic Review and Narrative Synthesis of Reported Cases
by Giorgos Sideris, Leonidas Katsis, Styliani Karle and George Korres
Audiol. Res. 2025, 15(4), 98; https://doi.org/10.3390/audiolres15040098 (registering DOI) - 6 Aug 2025
Abstract
Objectives: Lermoyez syndrome (LS) is a rare variant of endolymphatic hydrops with a unique clinical presentation characterized by reversible sensorineural hearing loss preceding vertigo. This review aims to synthesize available literature on LS to clarify its clinical characteristics, diagnostic approach, management strategies, and [...] Read more.
Objectives: Lermoyez syndrome (LS) is a rare variant of endolymphatic hydrops with a unique clinical presentation characterized by reversible sensorineural hearing loss preceding vertigo. This review aims to synthesize available literature on LS to clarify its clinical characteristics, diagnostic approach, management strategies, and outcomes, and to highlight the distinguishing features from Menière’s disease (MD). Methods: A systematic literature review according to PRISMA guidelines was conducted from 1919 to 2025. The extracted data included demographics, symptom profiles, audiovestibular testing, imaging findings, treatment approaches, and patient outcomes. Results: A total of 23 studies were identified, reporting 53 individual cases of LS. Patients ranged from 27 to 85 years of age, with a mean age of 50.34 years and a male predominance (64.1%). The hallmark of LS across cases was a reproducible clinical pattern of unilateral low-frequency hearing loss followed by vertigo and subsequent auditory recovery. Audiometry typically confirmed reversible sensorineural hearing loss, while vestibular tests and imaging were often unremarkable, primarily used to exclude alternative diagnoses. Treatment approaches varied and were often based on MD protocols, including dietary modifications, vasodilators, diuretics, and vestibular suppressants. Prognosis was generally favorable, with most patients experiencing both hearing recovery and symptom resolution. Conclusions: LS remains a clinically distinct but underrecognized inner ear disorder. Its defining feature—the paradoxical improvement in hearing after vertigo—distinguishes it from Menière’s disease and should prompt clinicians to consider LS in differential diagnosis. Due to the rarity of LS and the lack of standardized guidelines, diagnosis and treatment rely on careful clinical assessment and individualized management strategies. Full article
(This article belongs to the Section Balance)
Show Figures

Figure 1

16 pages, 1302 KiB  
Article
Screening of Medicinal Herbs Identifies Cimicifuga foetida and Its Bioactive Component Caffeic Acid as SARS-CoV-2 Entry Inhibitors
by Ching-Hsuan Liu, Yu-Ting Kuo, Chien-Ju Lin, Feng-Lin Yen, Shu-Jing Wu and Liang-Tzung Lin
Viruses 2025, 17(8), 1086; https://doi.org/10.3390/v17081086 - 5 Aug 2025
Abstract
The emergence of SARS-CoV-2 variants highlights the urgent need for novel therapeutic strategies, particularly entry inhibitors that could efficiently prevent viral infection. Medicinal herbs and herbal combination formulas have long been recognized for their effects in treating infectious diseases and their antiviral properties, [...] Read more.
The emergence of SARS-CoV-2 variants highlights the urgent need for novel therapeutic strategies, particularly entry inhibitors that could efficiently prevent viral infection. Medicinal herbs and herbal combination formulas have long been recognized for their effects in treating infectious diseases and their antiviral properties, thus providing abundant resources for the discovery of antiviral candidates. While many candidates have been suggested to have antiviral activity against SARS-CoV-2 infection, few have been validated for their mechanisms, including possible effects on viral entry. This study aimed to identify SARS-CoV-2 entry inhibitors from medicinal herbs and herbal formulas that are known for heat-clearing and detoxifying properties and/or antiviral activities. A SARS-CoV-2 pseudoparticle (SARS-CoV-2pp) system was used to assess mechanism-specific entry inhibition. Our results showed that the methanol extract of Anemarrhena asphodeloides rhizome, as well as the water extracts of Cimicifuga foetida rhizome, Xiao Chai Hu Tang (XCHT), and Sheng Ma Ge Gen Tang (SMGGT), have substantial inhibitory effects on the entry of SARS-CoV-2pps into host cells. Given the observation that Cimicifuga foetida exhibited the most potent inhibition and is a constituent of SMGGT, we further investigated the major compounds of the herb and identified caffeic acid as a bioactive component for blocking SARS-CoV-2pp entry. Entry inhibition of Cimicifuga foetida and caffeic acid was validated on both wild-type and the currently dominant JN.1 strain SARS-CoV-2pp systems. Moreover, caffeic acid was able to both inactivate the pseudoparticles and prevent their entry into pretreated host cells. The results support the traditional use of these herbal medicines and underscore their potential as valuable resources for identifying active compounds and developing therapeutic entry inhibitors for the management of COVID-19. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

15 pages, 1636 KiB  
Article
The Immunoproteasome Is Expressed but Dispensable for a Leukemia Infected Cell Vaccine
by Delphine Béland, Victor Mullins-Dansereau, Karen Geoffroy, Mélissa Viens, Kim Leclerc Desaulniers and Marie-Claude Bourgeois-Daigneault
Vaccines 2025, 13(8), 835; https://doi.org/10.3390/vaccines13080835 - 5 Aug 2025
Abstract
Background/Objectives: Leukemia is associated with high recurrence rates and cancer vaccines are emerging as a promising immunotherapy against the disease. Here, we investigate the mechanism of action by which a personalized vaccine made from leukemia cells infected with an oncolytic virus (ICV) induces [...] Read more.
Background/Objectives: Leukemia is associated with high recurrence rates and cancer vaccines are emerging as a promising immunotherapy against the disease. Here, we investigate the mechanism of action by which a personalized vaccine made from leukemia cells infected with an oncolytic virus (ICV) induces anti-tumor immunity. Methods: Using the L1210 murine model, leukemia cells were infected and irradiated to create the ICV. The CRISPR-Cas9 system was used to engineer knockout cells to test in treatment efficacy studies. Results: We found that pro-inflammatory interferons (IFNs) that are produced by infected vaccine cells induce the immunoproteasome (ImP), a specialized proteasome subtype that is found in immune cells. Interestingly, we show that while a vaccine using the oncolytic vesicular stomatitis virus (oVSV) completely protects against tumor challenge, the wild-type (wt) virus, which does not induce the ImP, is not as effective. To delineate the contribution of the ImP for vaccine efficacy, we generated ImP-knockout cell lines and found no differences in treatment efficacy compared to wild-type cells. Furthermore, an ICV using another murine leukemia model that expresses the ImP only when infected by an IFN gamma-encoding variant of the virus demonstrated similar efficacy as the parental virus. Conclusions: Taken together, our data show that ImP expression by vaccine cells was not required for the efficacy of leukemia ICVs. Full article
(This article belongs to the Special Issue Personalised Cancer Vaccines)
Show Figures

Figure 1

17 pages, 3095 KiB  
Article
Haplotypes, Genotypes, and DNA Methylation Levels of Neuromedin U Gene Are Associated with Cardio-Metabolic Parameters: Results from the Moli-sani Study
by Fabrizia Noro, Annalisa Marotta, Simona Costanzo, Benedetta Izzi, Alessandro Gialluisi, Amalia De Curtis, Antonietta Pepe, Sarah Grossi, Augusto Di Castelnuovo, Chiara Cerletti, Maria Benedetta Donati, Giovanni de Gaetano, Francesco Gianfagna and Licia Iacoviello
Biomedicines 2025, 13(8), 1906; https://doi.org/10.3390/biomedicines13081906 - 5 Aug 2025
Abstract
Background/Objectives: Neuromedin U (NMU) is a highly conserved gene encoding a neuropeptide involved in the regulation of feeding behavior and energy homeostasis. We aimed to analyze the association between NMU genetic and epigenetic variations and cardio-metabolic parameters in an Italian population to identify [...] Read more.
Background/Objectives: Neuromedin U (NMU) is a highly conserved gene encoding a neuropeptide involved in the regulation of feeding behavior and energy homeostasis. We aimed to analyze the association between NMU genetic and epigenetic variations and cardio-metabolic parameters in an Italian population to identify the role of these variants in cardio-metabolic risk. Methods: A total of 4028 subjects were randomly selected from the Moli-sani study cohort. NMU haplotypes were estimated using seven SNPs located in the gene body and in the promoter region; DNA methylation levels in the promoter region, previously associated with lipid-related variables in the same population, were also used. Results: Among the haplotypes inferred, the haplotype carrying the highest number of minor variants (frequency 16.6%), when compared with the most frequent haplotype, was positively associated with insulin levels, HOMA-IR, and diastolic blood pressure, and negatively with HDL-cholesterol. The multivariable analysis that considered methylation levels along with their interactions with SNPs showed that increased methylation levels in two close CpG sites were associated with higher levels of lipid-related variables. Conclusions: This study supports a role for NMU as a regulator of human metabolism. This finding suggests that NMU could be a potential target for preventive interventions against coronary and cerebrovascular diseases, and that NMU genetic and epigenetic variability may serve as a biomarker for cardio-metabolic risk. Full article
(This article belongs to the Special Issue Epigenetics and Metabolic Disorders)
Show Figures

Figure 1

33 pages, 452 KiB  
Review
Uncommon Factors Leading to Nephrotic Syndrome
by Ljiljana Bogdanović, Ivana Babić, Mirjana Prvanović, Dragana Mijač, Ana Mladenović-Marković, Dušan Popović and Jelena Bogdanović
Biomedicines 2025, 13(8), 1907; https://doi.org/10.3390/biomedicines13081907 - 5 Aug 2025
Abstract
Nephrotic syndrome (NS) is characterized by proteinuria, hypoalbuminemia, edema, and hyperlipidemia. Apart from the traditional causes of NS, such as minimal change disease, focal segmental glomerulosclerosis, diabetes, infections, malignancies, autoimmune conditions, and nephrotoxic agents, there are also rare causes of NS, whose knowledge [...] Read more.
Nephrotic syndrome (NS) is characterized by proteinuria, hypoalbuminemia, edema, and hyperlipidemia. Apart from the traditional causes of NS, such as minimal change disease, focal segmental glomerulosclerosis, diabetes, infections, malignancies, autoimmune conditions, and nephrotoxic agents, there are also rare causes of NS, whose knowledge is of the utmost importance. The aim of this article was to highlight the less well-known causes that have a significant impact on diagnosis and treatment. Genetic syndromes such as Schimke immuno-osseous dysplasia, familial lecithin-cholesterol acyltransferase deficiency with two clinical variants (fish-eye Disease and the p.Leu364Pro mutation), lead to NS through mechanisms involving podocyte and lipid metabolism dysfunction. Congenital disorders of glycosylation and Nail–Patella Syndrome emphasize the role of deranged protein processing and transcriptional regulation in glomerular injury. The link of NS with type 1 diabetes, though rare, suggests an etiology on the basis of common HLA loci and immune dysregulation. Histopathological analysis, particularly electron microscopy, shows mainly podocyte damage, mesangial sclerosis, and alteration of the basement membrane, which aids in differentiating rare forms. Prompt recognition of these novel etiologies by genetic analysis, renal biopsy, and an interdisciplinary panel is essential to avoid delays in diagnosis and tailored treatment. Full article
Show Figures

Graphical abstract

11 pages, 261 KiB  
Article
Investigation of the P1104A/TYK2 Genetic Variant in a COVID-19 Patient Cohort from Southern Brazil
by Giulianna Sonnenstrahl, Eduarda Sgarioni, Mayara Jorgens Prado, Marilea Furtado Feira, Renan Cezar Sbruzzi, Bibiana S. O. Fam, Alessandra Helena Da Silva Hellwig, Nathan Araujo Cadore, Osvaldo Artigalás, Alexandre da Costa Pereira, Lygia V. Pereira, Tábita Hünemeier and Fernanda Sales Luiz Vianna
COVID 2025, 5(8), 126; https://doi.org/10.3390/covid5080126 - 5 Aug 2025
Abstract
The P1104A variant in the TYK2 gene is recognized as the first common monogenic cause of tuberculosis, and recent studies also suggest a potential role in COVID-19 severity. However, its frequency and impact in admixed Latin American populations remain underexplored. Therefore, we investigated [...] Read more.
The P1104A variant in the TYK2 gene is recognized as the first common monogenic cause of tuberculosis, and recent studies also suggest a potential role in COVID-19 severity. However, its frequency and impact in admixed Latin American populations remain underexplored. Therefore, we investigated the P1104A/TYK2 variant in a cohort comprising 1826 RT-PCR-confirmed COVID-19 patients from Southern Brazil. Cases were stratified by severity into non-severe (n = 1190) and severe (n = 636). Three homozygous individuals were identified—one non-severe and two severe cases—although no statistically significant association with disease severity was observed. The frequency of the C allele in the COVID-19 cohort (2.85%) was significantly higher than in Brazilian population databases, including “DNA do Brasil” (1.81%, p < 0.001) and ABraOM (2.34%, p = 0.03), but lower than in the multi-ancestry gnomAD database (3.71%, p = 0.01), possibly reflecting ancestry bias. We also observed associations between COVID-19 severity and sex (p = 0.003), age (p < 0.001), obesity (p < 0.001), diabetes (p < 0.001), and hypertension (p < 0.001). Future studies in larger and more diverse cohorts are needed to characterize the prevalence of the variant in admixed populations and assess its contribution to COVID-19 susceptibility. Full article
(This article belongs to the Section Host Genetics and Susceptibility/Resistance)
13 pages, 2127 KiB  
Article
Assessing SARS-CoV-2 Rare Mutations and Transmission in New York City by NGS
by Dakai Liu, Harlan Pietz, George D. Rodriguez, Yuexiu Wu, Yihan Cao, Vishnu Singh, Hui Li, Eric Konadu, Keither K. James, Calvin Lui, Bright Varghese, Mingyu Shao, Gary Chen, Andrew Schreiner, Jiankun Tong, Carl Urban, Nishant Prasad, Ameer Hassoun, Manish Sharma and William Harry Rodgers
Microorganisms 2025, 13(8), 1821; https://doi.org/10.3390/microorganisms13081821 - 4 Aug 2025
Abstract
SARS-CoV-2 undergoes frequent mutations that drive viral evolution and genomic diversity, influencing transmissibility, immune escape, and disease severity. In this study, we performed whole-genome sequencing on SARS-CoV-2 isolates from patients in New York City and identified several globally rare mutations across multiple viral [...] Read more.
SARS-CoV-2 undergoes frequent mutations that drive viral evolution and genomic diversity, influencing transmissibility, immune escape, and disease severity. In this study, we performed whole-genome sequencing on SARS-CoV-2 isolates from patients in New York City and identified several globally rare mutations across multiple viral lineages. The isolates analyzed for rare mutations belonged to three lineages: B.1.1.7 (Alpha), B.1.526 (Iota), and B.1.623. We identified 16 rare mutations (global incidence <1000) in non-structural protein genes, including nsp2, nsp3, nsp4, nsp6, nsp8, nsp13, nsp14, ORF7a, and ORF8. Three of these mutations—located in nsp2, nsp13, and ORF8—have been reported in fewer than 100 individuals worldwide. We also detected five rare mutations in structural proteins (S, M, and N), including two—one in M and one in N—previously reported in fewer than 100 cases globally. We present clinical profiles of three patients, each infected with genetically distinct viral isolates from the three lineages studied. Furthermore, we illustrate a local transmission chain inferred from unique mutation patterns identified in the Omicron genome. These findings underscore the importance of whole-genome sequencing for detecting rare mutations, tracking community spread, and identifying emerging variants with clinical and public health significance. Full article
(This article belongs to the Special Issue The Molecular Epidemiology of Infectious Diseases)
Show Figures

Figure 1

Back to TopTop