Genetic Risk Profiles for Atherosclerosis and Venous Thromboembolism in Azorean and Mainland Portuguese Populations: A Comparative Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Study Populations
2.3. SNP Selection and Genotype Determination
2.4. Statistical Analysis
3. Results
3.1. Allelic and Genotypic Frequencies
3.2. Haplotype Structure
3.3. Multilocus Genetic Profiles
4. Discussion
5. Conclusions
6. Study Limitations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shantsila, A.; Lip, G.Y. Can venous thromboembolism navigate the prevention of cardiovascular complications? Ann. Transl. Med. 2015, 3, 116. [Google Scholar] [CrossRef] [PubMed]
- Bereczky, Z.; Balogh, L.; Bagoly, Z. Inherited thrombophilia and the risk of myocardial infarction: Current evidence and uncertainties. Kardiol. Pol. 2019, 77, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, A.; Asada, Y. Underlying mechanisms of thrombus formation/growth in atherothrombosis and deep vein thrombosis. Pathol. Int. 2023, 73, 65–80. [Google Scholar] [CrossRef]
- Kanji, R.; Kubica, J.; Navarese, E.P.; Gorog, D.A. Endogenous fibrinolysis—Relevance to clinical thrombosis risk assessment. Eur. J. Clin. Investig. 2021, 51, e13471. [Google Scholar] [CrossRef]
- Erdmann, J.; Kessler, T.; Munoz Venegas, L.; Schunkert, H. A decade of genome-wide association studies for coronary artery disease: The challenges ahead. Cardiovasc. Res. 2018, 114, 1241–1257. [Google Scholar] [CrossRef]
- McPherson, R.; Pertsemlidis, A.; Kavaslar, N.; Stewart, A.; Roberts, R.; Cox, D.R.; Hinds, D.A.; Pennacchio, L.A.; Tybjaerg-Hansen, A.; Folsom, A.R.; et al. A common allele on chromosome 9 associated with coronary heart disease. Science 2007, 316, 1488–1491. [Google Scholar] [CrossRef]
- Semaev, S.; Shakhtshneider, E.; Shcherbakova, L.; Orlov, P.; Ivanoshchuk, D.; Malyutina, S.; Gafarov, V.; Voevoda, M.; Ragino, Y. Association of common variants of APOE, CETP, and the 9p21.3 chromosomal region with the risk of myocardial infarction: A prospective study. Int. J. Mol. Sci. 2023, 24, 10908. [Google Scholar] [CrossRef]
- Adamou, A.; Mavrovounis, G.; Beltsios, E.T.; Liampas, I.; Tsouris, Z.; Aloizou, A.M.; Siokas, V.; Dardiotis, E. The rs1333040 and rs10757278 9p21 locus polymorphisms in patients with intracranial aneurysm: A meta-analysis. Int. J. Neurosci. 2023, 133, 770–781. [Google Scholar] [CrossRef]
- Musunuru, K.; Strong, A.; Frank-Kamenetsky, M.; Lee, N.E.; Ahfeldt, T.; Sachs, K.V.; Li, X.; Li, H.; Kuperwasser, N.; Ruda, V.M.; et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 2010, 466, 714–719. [Google Scholar] [CrossRef]
- Hartiala, J.A.; Han, Y.; Jia, Q.; Hilser, J.R.; Huang, P.; Gukasyan, J.; Schwartzman, W.S.; Cai, Z.; Biswas, S.; Trégouët, D.A.; et al. Genome-wide analysis identifies novel susceptibility loci for myocardial infarction. Eur. Heart J. 2021, 42, 919–933. [Google Scholar] [CrossRef]
- Namitokov, A. Sortilin and its potential role in cardiovascular pathology. Egypt. Heart J. 2024, 76, 78. [Google Scholar] [CrossRef]
- Afonso, M.S.; Machado, R.M.; Lavrador, M.S.; Quintao, E.C.R.; Moore, K.J.; Lottenberg, A.M. Molecular pathways underlying cholesterol homeostasis. Nutrients 2018, 10, 760. [Google Scholar] [CrossRef]
- Linton, M.R.F.; Yancey, P.G.; Davies, S.S.; Jerome, W.G.; Linton, E.F.; Song, W.L.; Doran, A.C.; Vickers, K.C. The role of lipids and lipoproteins in atherosclerosis. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Boyce, A., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK343489/ (accessed on 10 January 2025).
- Abifadel, M.; Boileau, C. Genetic and molecular architecture of familial hypercholesterolemia. J. Intern. Med. 2023, 293, 144–165. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhao, J.; Zhang, Y.; Ma, X.; Dai, Q.; Zhi, H.; Wang, B.; Wang, L. Apolipoprotein E gene variants and risk of coronary heart disease: A meta-analysis. Biomed. Res. Int. 2016, 2016, 3912175. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Zeng, P.; Li, X.; Zhang, Z.; Pan, B.; Peng, Z.Y.F.; Li, Y.; Ma, Y.; Leng, Y.; Chen, R. What is the impact of PCSK9 rs505151 and rs11591147 polymorphisms on serum lipids level and cardiovascular risk: A meta-analysis. Lipids Health Dis. 2017, 16, 111. [Google Scholar] [CrossRef] [PubMed]
- Amput, P.; McSweeney, C.; Palee, S.; Phrommintikul, A.; Chattipakorn, S.C.; Chattipakorn, N. The effects of proprotein convertase subtilisin/kexin type 9 inhibitors on lipid metabolism and cardiovascular function. Biomed. Pharmacother. 2019, 109, 1171–1180. [Google Scholar] [CrossRef]
- Bao, X.; Liang, Y.; Chang, H.; Cai, T.; Feng, B.; Gordon, K.; Zhu, Y.; Shi, H.; He, Y.; Xie, L. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): From bench to bedside. Sig. Transduct. Target. Ther. 2024, 9, 13. [Google Scholar] [CrossRef]
- Sharifi, M.A.; Wierer, M.; Dang, T.A.; Milic, J.; Moggio, A.; Sachs, N.; von Scheidt, M.; Hinterdobler, J.; Müller, P.; Werner, J.; et al. ADAMTS-7 modulates atherosclerotic plaque formation by degradation of TIMP-1. Circ. Res. 2023, 133, 674–686. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Johnson, T.A.; Duru, N.; Buzza, M.S.; Pawar, N.R.; Sarkar, R.; Antalis, T.M. Fibrinolysis and inflammation in venous thrombus resolution. Front. Immunol. 2019, 10, 1348. [Google Scholar] [CrossRef]
- Underwood, M.; Bidlack, C.; Desch, K.C. Venous thromboembolic disease genetics: From variants to function. J. Thromb. Haemost. 2024, 22, 2393–2403. [Google Scholar] [CrossRef]
- Rosendaal, F.R.; Reitsma, P.H. Genetics of venous thrombosis. J. Thromb. Haemost. 2009, 7 (Suppl. 1), 301–304. [Google Scholar] [CrossRef]
- Simone, B.; De Stefano, V.; Leoncini, E.; Zacho, J.; Martinelli, I.; Emmerich, J.; Rossi, E.; Folsom, A.R.; Almawi, W.Y.; Scarabin, P.Y.; et al. Risk of venous thromboembolism associated with single and combined effects of Factor V Leiden, Prothrombin 20210A and Methylenetethraydrofolate reductase C677T: A meta-analysis involving over 11,000 cases and 21,000 controls. Eur. J. Epidemiol. 2013, 28, 621–647. [Google Scholar] [CrossRef]
- Moore, G.W.; Castoldi, E.; Teruya, J.; Morishita, E.; Adcock, D.M. Factor V Leiden-independent activated protein C resistance: Communication from the plasma coagulation inhibitors subcommittee of the International Society on Thrombosis and Haemostasis Scientific and Standardisation Committee. J. Thromb. Haemost. 2023, 21, 164–174. [Google Scholar] [CrossRef]
- Trégouët, D.A.; Morange, P.E. What is currently known about the genetics of venous thromboembolism at the dawn of next generation sequencing technologies. Br. J. Haematol. 2018, 180, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Klarin, D.; Busenkell, E.; Judy, R.; Lynch, J.; Levin, M.; Haessler, J.; Aragam, K.; Chaffin, M.; Haas, M.; Lindström, S.; et al. Genome-wide association analysis of venous thromboembolism identifies new risk loci and genetic overlap with arterial vascular disease. Nat. Genet. 2019, 51, 1574–1579. [Google Scholar] [CrossRef] [PubMed]
- Lupi-Herrera, E.; Soto-López, M.E.; Lugo-Dimas, A.J.; Núñez-Martínez, M.E.; Gamboa, R.; Huesca-Gómez, C.; Sierra-Galán, L.M.; Guarner-Lans, V. Polymorphisms C677T and A1298C of MTHFR gene: Homocysteine levels and prothrombotic biomarkers in coronary and pulmonary thromboembolic disease. Clin. Appl. Thromb. Hemost. 2018, 25, 1076029618780344. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zeng, Q. Correlations between methylenetetrahydrofolate reductase gene polymorphisms and venous thromboembolism: A meta-analysis of 99 genetic association studies. Eur. J. Prev. Cardiol. 2019, 26, 120–134. [Google Scholar] [CrossRef]
- Cirstoveanu, C.; Calin, N.; Heriseanu, C.; Filip, C.; Vasile, C.M.; Margarint, I.; Marcu, V.; Dimitriu, M.; Ples, L.; Tarnoveanu, S.; et al. Consistent correlation between MTHFR and vascular thrombosis in neonates—Case series and clinical considerations. J. Clin. Med. 2023, 12, 4856. [Google Scholar] [CrossRef]
- Timmis, A.; Townsend, N.; Gale, C.P.; Torbica, A.; Lettino, M.; Petersen, S.E.; Mossialos, E.A.; Maggioni, A.P.; Kazakiewicz, D.; May, H.T.; et al. European Society of Cardiology: Cardiovascular disease statistics 2019. Eur. Heart J. 2020, 41, 12–85. [Google Scholar] [CrossRef]
- Regional Health Plan 2030. Plano Regional de Saúde dos Açores 2030, Parte I—Perfil de Saúde da Região. Available online: https://portal.azores.gov.pt/documents/2314733/12d9d8a5-17f0-f001-8f49-a2b4c194b688 (accessed on 25 July 2025).
- Branco, C.C.; Pereirinha, T.; Cabral, R.; Pacheco, P.R.; Mota-Vieira, L. Thrombotic genetic risk factors and warfarin pharmacogenetic variants in São Miguel’s healthy population (Azores). Thromb. J. 2009, 7, 9. [Google Scholar] [CrossRef]
- Melo, M.S.; Balanco, L.; Branco, C.C.; Mota-Vieira, L. Genetic variation in key genes associated with statin therapy in the Azores Islands (Portugal) healthy population. Ann. Hum. Biol. 2014, 16, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Correia, M.; Branco, C.C.; Bruffaerts, N.; Balagué, A.; Mota-Vieira, L. Genetic risk assessment for cardiovascular disease in Azoreans (Portugal): A general population-based study. Gene 2013, 532, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Mota-Vieira, L.; Pacheco, P.R.; Almeida, M.L.; Cabral, R.; Carvalho, J.; Branco, C.C.; de Fez, L.; Peixoto, B.R.; Araujo, A.L.; Mendonça, P. Human DNA bank in São Miguel island (Azores): A resource for genetic diversity studies. ISFG, Ponta Delgada, São Miguel—Azores, Portugal. Int. Congr. Ser. 2006, 1288, 388–390. [Google Scholar] [CrossRef]
- Branco, C.C.; Mota-Vieira, L. The genetic makeup of Azoreans versus mainland Portugal population. In Human Genetic Diseases; Plaseska-Karanfilska, D., Ed.; InTech Open Access Publisher: London, UK, 2011; pp. 129–160. ISBN 978-953-307-936-3. [Google Scholar]
- Branco, C.C.; Pacheco, P.R.; Cabrol, E.; Cabral, R.; Vicente, A.M.; Mota-Vieira, L. Linkage disequilibrium and diversity for three genomic regions in Azoreans and mainland Portuguese. Genet. Mol. Biol. 2009, 32, 220–226. [Google Scholar] [CrossRef]
- Branco, C.C.; São Bento, M.; Gomes, C.T.; Cabral, R.; Pacheco, P.R.; Mota-Vieira, L. Azores Islands: Genetic origin, gene flow and diversity patterns. Ann. Hum. Biol. 2008, 35, 65–74. [Google Scholar] [CrossRef]
- Mendonça, I.; dos Reis, R.P.; Pereira, A.; Café, H.; Serrão, M.; Sousa, A.C.; Freitas, A.I.; Guerra, G.; Freitas, S.; Freitas, C.; et al. Independent association of the variant rs1333049 at the 9p21 locus and coronary heart disease. Rev. Port. Cardiol. 2011, 30, 575–591. [Google Scholar]
- Ferin, R.; Lima, A.; Baptista, J.; Alves, A.C.; ∙ Bourbon, M.; ∙Pavão, M.L. APOB/APOA-I ratio, and major cardiovascular risk factors in Azores and Lisbon populations—A comparison study. Abstract. Atherosclerosis 2015, 241, e138. [Google Scholar] [CrossRef]
- Lopes, C.; Torres, D.; Oliveira, A.; Severo, M.; Alarcão, V.; Guiomar, S.; Mota, J.; Teixeira, P.; Rodrigues, S.; Lobato, L.; et al. Inquérito Alimentar Nacional e de Atividade Física, IAN-AF 2015-2016: Relatório de Resultados; Universidade Do Porto: Porto, Portugal, 2017; ISBN 978-989-746-181-1. Available online: www.ian-af.up.pt (accessed on 28 July 2025).
- Madika, A.L.; Lemesle, G.; Lamblin, N.; Meurice, T.; Tricot, O.; Mounier-Vehier, C.; Bauters, C. Gender differences in clinical characteristics, medical management, risk factor control, and long-term outcome of patients with stable coronary artery disease: From the CORONOR registry. Panminerva. Med. 2019, 61, 432–438. [Google Scholar] [CrossRef]
- Trinchero, A.; Scheres, L.J.J.; Prochaska, J.H.; Ambaglio, C.; Wild, P.S.; Middeldorp, S.; Konstantinides, S.V.; Barco, S. Sex-specific differences in the distal versus proximal presenting location of acute deep vein thrombosis. Thromb. Res. 2018, 172, 74–79. [Google Scholar] [CrossRef]
- Ciarambino, T.; Crispino, P.; Para, O.; Giordano, M. Gender medicine: A new possible frontier of venous thromboembolism. Stresses 2023, 3, 167–181. [Google Scholar] [CrossRef]
- Middeldorp, S.; Nieuwlaat, R.; Baumann Kreuziger, L.; Coppens, M.; Houghton, D.; James, A.H.; Lang, E.; Moll, S.; Myers, T.; Bhatt, M.; et al. American Society of Hematology 2023 guidelines for management of venous thromboembolism: Thrombophilia testing. Blood Adv. 2023, 7, 7101–7138. [Google Scholar] [CrossRef]
- Morimont, L.; Haguet, H.; Dogné, J.M.; Gaspard, U.; Douxfils, J. Combined oral contraceptives and venous thromboembolism: Review and perspective to mitigate the risk. Front. Endocrinol. 2021, 12, 769187. [Google Scholar] [CrossRef]
- Zekavat, S.M.; Ruotsalainen, S.; Handsaker, R.E.; Alver, M.; Bloom, J.; Poterba, T.; Seed, C.; Ernst, J.; Chaffin, M.; Engreitz, J.; et al. Deep coverage whole genome sequences and plasma lipoprotein(a) in individuals of European and African ancestries. Nat. Commun. 2018, 9, 2606. [Google Scholar] [CrossRef]
- Schunkert, H.; König, I.R.; Kathiresan, S.; Reilly, M.P.; Assimes, T.L.; Holm, H.; Preuss, M.; Stewart, A.F.; Barbalic, M.; Gieger, C.; et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 2011, 43, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Imes, C.C.; Austin, M.A. Low-density lipoprotein cholesterol, apolipoprotein B, and risk of coronary heart disease: From familial hyperlipidemia to genomics. Biol. Res. Nurs. 2013, 15, 292–308. [Google Scholar] [CrossRef]
- Ding, K.; Kullo, I.J. Molecular population genetics of PCSK9: A signature of recent positive selection. Pharmacogenetics Genom. 2008, 18, 169–179. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, Y.; Li, X.; Zhang, J.; Chen, K.; Liang, Y.; Chen, Y.; Liu, Z.; Zhang, Z. Is there a significant interaction effect between apolipoprotein E rs405509 T/T and ε4 genotypes on cognitive impairment and gray matter volume? Eur. J. Neurol. 2016, 23, 1415–1425. [Google Scholar] [CrossRef]
- Anand, S.S.; Xie, C.; Paré, G.; Montpetit, A.; Rangarajan, S.; McQueen, M.J.; Cordell, H.J.; Keavney, B.; Yusuf, S.; Hudson, T.J.; et al. Genetic variants associated with myocardial infarction risk factors in over 8000 individuals from five ethnic groups: The INTERHEART Genetics Study. Circ. Cardiovasc. Genet. 2009, 2, 16–25. [Google Scholar] [CrossRef]
- Shiffman, D.; Kane, J.P.; Louie, J.Z.; Arellano, A.R.; Ross, D.A.; Catanese, J.J.; Malloy, M.J.; Ellis, S.G.; Devlin, J.J. Analysis of 17,576 potentially functional SNPs in three case-control studies of myocardial infarction. PLoS ONE 2008, 3, e2895. [Google Scholar] [CrossRef]
- Ye, H.; Zhao, Q.; Huang, Y.; Wang, L.; Liu, H.; Wang, C.; Dai, D.; Xu, L.; Ye, M.; Duan, S. Meta-analysis of low density lipoprotein receptor (LDLR) rs2228671 polymorphism and coronary heart disease. BioMed Res. Int. 2014, 2014, 564940. [Google Scholar] [CrossRef]
- Martinelli, N.; Girelli, D.; Lunghi, B.; Pinotti, M.; Marchetti, G.; Malerba, G.; Pignatti, P.F.; Corrocher, R.; Olivieri, O.; Bernardi, F. Polymorphisms at LDLR locus may be associated with coronary artery disease through modulation of coagulation factor VIII activity and independently from lipid profile. Blood 2010, 116, 5688–5697. [Google Scholar] [CrossRef]
- Angelakopoulou, A.; Shah, T.; Sofat, R.; Shah, S.; Berry, D.J.; Cooper, J.; Palmen, J.; Tzoulaki, I.; Wong, A.; Jefferis, B.J.; et al. Comparative analysis of genome-wide association studies signals for lipids, diabetes, and coronary heart disease: Cardiovascular Biomarker Genetics Collaboration. Eur. Heart J. 2012, 33, 393–407. [Google Scholar] [CrossRef]
- Herrera-Rivero, M.; Stoll, M.; Hegenbarth, J.C.; Rühle, F.; Limperger, V.; Junker, R.; Franke, A.; Hoffmann, P.; Shneyder, M.; Stach, M.; et al. Single- and Multimarker Genome-Wide Scans Evidence Novel Genetic Risk Modifiers for Venous Thromboembolism. Thromb. Haemost. 2021, 121, 1169–1180. [Google Scholar] [CrossRef]
- van Meurs, J.B.; Pare, G.; Schwartz, S.M.; Hazra, A.; Tanaka, T.; Vermeulen, S.H.; Cotlarciuc, I.; Yuan, X.; Mälarstig, A.; Bandinelli, S.; et al. Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease. Am. J. Clin. Nutr. 2013, 98, 668–676. [Google Scholar] [CrossRef]
- Christakoudi, S.; Evangelou, E.; Riboli, E.; Tsilidis, K.K. GWAS of allometric body-shape indices in UK Biobank identifies loci suggesting associations with morphogenesis, organogenesis, adrenal cell renewal and cancer. Sci. Rep. 2021, 11, 10688. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, H.; Ito, K.; Akiyama, M.; Takahashi, A.; Koyama, S.; Nomura, S.; Ieki, H.; Ozaki, K.; Onouchi, Y.; Sakaue, S.; et al. Transethnic Meta-Analysis of Genome-Wide Association Studies Identifies Three New Loci and Characterizes Population-Specific Differences for Coronary Artery Disease. Circ. Genom. Precis. Med. 2020, 13, e002670. [Google Scholar] [CrossRef] [PubMed]
- Sinnott-Armstrong, N.; Tanigawa, Y.; Amar, D.; Mars, N.; Benner, C.; Aguirre, M.; Venkataraman, G.R.; Wainberg, M.; Ollila, H.M.; Kiiskinen, T.; et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat. Genet. 2021, 53, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Koskeridis, F.; Evangelou, E.; Said, S.; Boyle, J.J.; Elliott, P.; Dehghan, A.; Tzoulaki, I. Pleiotropic genetic architecture and novel loci for C-reactive protein levels. Nat. Commun. 2022, 13, 6939. [Google Scholar] [CrossRef]
- Nelson, C.P.; Goel, A.; Butterworth, A.S.; Kanoni, S.; Webb, T.R.; Marouli, E.; Zeng, L.; Ntalla, I.; Lai, F.Y.; Hopewell, J.C.; et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat. Genet. 2017, 49, 1385–1391. [Google Scholar] [CrossRef]
- Kraja, A.T.; Vaidya, D.; Pankow, J.S.; Goodarzi, M.O.; Assimes, T.L.; Kullo, I.J.; Sovio, U.; Mathias, R.A.; Sun, Y.V.; Franceschini, N.; et al. A bivariate genome-wide approach to metabolic syndrome: STAMPEED consortium. Diabetes 2011, 60, 1329–1339. [Google Scholar] [CrossRef]
- Riveros-Mckay, F.; Oliver-Williams, C.; Karthikeyan, S.; Walter, K.; Kundu, K.; Ouwehand, W.H.; Roberts, D.; Di Angelantonio, E.; Soranzo, N.; Danesh, J.; et al. The influence of rare variants in circulating metabolic biomarkers. PLoS Genet. 2020, 16, e1008605. [Google Scholar] [CrossRef]
- Hoffmann, T.J.; Theusch, E.; Haldar, T.; Ranatunga, D.K.; Jorgenson, E.; Medina, M.W.; Kvale, M.N.; Kwok, P.Y.; Schaefer, C.; Krauss, R.M.; et al. A large electronic-health-record-based genome-wide study of serum lipids. Nat. Genet. 2018, 50, 401–413. [Google Scholar] [CrossRef]
- Jones, G.T.; Tromp, G.; Kuivaniemi, H.; Gretarsdottir, S.; Baas, A.F.; Giusti, B.; Strauss, E.; Van't Hof, F.N.; Webb, T.R.; Erdman, R.; et al. Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic Aneurysm Identifies Four New Disease-Specific Risk Loci. Circ. Res. 2017, 120, 341–353. [Google Scholar] [CrossRef]
- The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature 2007, 447, 661–678. [Google Scholar] [CrossRef]
Gene or Genomic Region | dbSNP ID | Variant Effect * | Allele Frequencies | |||||
---|---|---|---|---|---|---|---|---|
Portugal | gnomAD | |||||||
Mainland | Azores | EUR | AFR | AMR | SAS | |||
F5 | rs6025 | A | 0.028 | 0.021 | 0.022 | 0.004 | 0.008 | 0.014 |
F2 | rs1799963 | A | 0.019 | 0.024 | 0.013 | 0.002 | 0.011 | 0.002 |
MTHFR | rs1801133 | T | 0.375 | 0.326 | 0.337 | 0.109 | 0.478 | 0.149 |
rs1801131 | C | 0.309 | 0.279 | 0.313 | 0.163 | 0.177 | 0.411 | |
SORT1 | rs12740374 | T | 0.208 | 0.185 | 0.221 | 0.249 | 0.210 | 0.244 |
ADAMTS7 | rs3825807 | T | 0.574 | 0.541 | 0.446 | 0.152 | 0.246 | 0.348 |
PCSK9 | rs11206510 | T | 0.782 | 0.821 | 0.182 | 0.137 | 0.110 | 0.049 |
rs11591147 | T | 0.009 | 0.009 | 0.017 | 0.002 | 0.007 | 0.001 | |
rs562556 | A | 0.880 | 0.821 | 0.824 | 0.790 | 0.904 | 0.874 | |
rs505151 | G | 0.037 | 0.035 | 0.966 | 0.736 | 0.967 | 0.977 | |
APOE | rs405509 | T | 0.644 | 0.412 | 0.523 | 0.747 | 0.502 | 0.444 |
rs429358 | C | 0.088 | 0.094 | 0.151 | 0.221 | 0.107 | 0.101 | |
rs7412 | C | 0.894 | 0.915 | 0.078 | 0.106 | 0.035 | 0.042 | |
rs439401 | T | 0.264 | 0.274 | 0.630 | 0.853 | 0.502 | 0.442 | |
LDLR | rs2228671 | T | 0.139 | 0.097 | 0.123 | 0.038 | 0.072 | 0.071 |
rs688 | T | 0.157 | 0.218 | 0.446 | 0.102 | 0.421 | 0.393 | |
rs1433099 | T | 0.301 | 0.291 | 0.731 | 0.461 | 0.788 | 0.673 | |
9p21 | rs10757274 | G | 0.389 | 0.479 | 0.496 | 0.217 | 0.457 | 0.523 |
rs1333049 | C | 0.421 | 0.453 | 0.488 | 0.239 | 0.483 | 0.515 |
Gene or Genomic Region | Haplotypes * | Haplotype Frequencies | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mainland Portugal | Azores | |||||||||||
Total | Geographic Group | Sex | ||||||||||
Eastern | Central | Western | Male | Female | ||||||||
MTHFR | H1 | C | A | 0.787 | 0.765 | 0.814 | 0.671 | 0.867 | 0.718 | 0.812 | ||
H2 | C | C | 0.102 | 0.094 | 0.043 | 0.171 | 0.033 | 0.129 | 0.059 | |||
H3 | T | A | 0.111 | 0.141 | 0.143 | 0.157 | 0.100 | 0.153 | 0.129 | |||
PCSK9 | H1 | C | G | A | A | 0.190 | 0.134 | 0.170 | 0.132 | 0.085 | 0.088 | 0.170 |
H2 | C | G | G | A | 0.018 | 0.036 | 0.071 | − | 0.015 | 0.057 | 0.018 | |
H3 | C | G | G | G | − | 0.003 | 0.002 | 0.004 | − | 0.009 | − | |
H4 | C | T | G | A | 0.004 | 0.006 | 0.007 | 0.007 | − | 0.006 | 0.006 | |
H5 | C | G | A | G | 0.001 | <0.001 | − | − | − | 0.005 | − | |
H6 | C | T | A | A | 0.005 | − | − | − | − | − | − | |
H7 | T | G | A | A | 0.655 | 0.657 | 0.584 | 0.696 | 0.715 | 0.683 | 0.642 | |
H8 | T | G | A | G | 0.028 | 0.026 | 0.039 | 0.008 | 0.033 | 0.018 | 0.029 | |
H9 | T | G | G | A | 0.091 | 0.128 | 0.125 | 0.130 | 0.151 | 0.131 | 0.123 | |
H10 | T | G | G | G | 0.008 | 0.006 | 0.002 | 0.016 | − | 0.003 | 0.006 | |
H11 | T | T | A | A | − | 0.003 | − | 0.007 | − | − | 0.006 | |
APOE | H1 | G | C | C | C | − | 0.028 | 0.009 | 0.058 | − | − | 0.005 |
H2 | G | C | C | T | 0.038 | 0.001 | 0.006 | − | − | 0.424 | 0.463 | |
H3 | G | T | C | C | 0.485 | 0.434 | 0.405 | 0.420 | 0.583 | 0.029 | 0.041 | |
H4 | G | T | C | T | 0.014 | 0.040 | 0.053 | 0.036 | − | 0.076 | 0.078 | |
H5 | G | T | T | C | 0.103 | 0.085 | 0.105 | 0.084 | − | − | 0.009 | |
H6 | G | T | T | T | 0.002 | <0.001 | − | 0.002 | − | − | − | |
H7 | G | C | T | C | 0.001 | − | − | − | − | 0.047 | 0.081 | |
H8 | T | C | C | C | 0.049 | 0.065 | 0.048 | 0.092 | 0.033 | 0.111 | 0.117 | |
H9 | T | T | C | C | 0.060 | 0.114 | 0.138 | 0.103 | 0.083 | 0.283 | 0.177 | |
H10 | T | T | C | T | 0.248 | 0.233 | 0.234 | 0.205 | 0.267 | − | 0.004 | |
H11 | T | C | T | C | − | <0.001 | 0.002 | − | − | − | 0.003 | |
H12 | T | T | T | T | − | <0.001 | − | − | 0.033 | − | 0.005 | |
LDLR | H1 | C | C | C | 0.461 | 0.427 | 0.407 | 0.408 | 0.517 | 0.429 | 0.424 | |
H2 | C | C | T | 0.261 | 0.282 | 0.271 | 0.321 | 0.217 | 0.306 | 0.258 | ||
H3 | C | T | C | 0.119 | 0.187 | 0.228 | 0.157 | 0.167 | 0.153 | 0.223 | ||
H4 | C | T | T | 0.020 | 0.007 | 0.007 | 0.008 | − | − | 0.012 | ||
H5 | T | C | C | 0.100 | 0.074 | 0.071 | 0.079 | 0.067 | 0.076 | 0.071 | ||
H6 | T | T | C | 0.019 | 0.021 | 0.007 | 0.029 | 0.033 | 0.029 | 0.012 | ||
H7 | T | T | T | − | 0.002 | 0.007 | − | − | 0.006 | − | ||
H8 | T | C | T | 0.020 | − | − | − | − | − | − | ||
9p21 | H1 | A | C | 0.052 | 0.019 | 0.039 | 0.007 | − | 0.018 | 0.019 | ||
H2 | A | G | 0.559 | 0.502 | 0.489 | 0.478 | 0.583 | 0.523 | 0.481 | |||
H3 | G | C | 0.369 | 0.434 | 0.389 | 0.486 | 0.417 | 0.417 | 0.452 | |||
H4 | G | G | 0.020 | 0.045 | 0.082 | 0.029 | − | 0.042 | 0.048 |
AT-MGP ID * | RV # | PV $ | HoR & | GRS + | AT-MGP Relative Frequency | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mainland Portugal | Azores | ||||||||||||
Total | Sex | Total | Geographic Group | Sex | |||||||||
Male | Female | Eastern | Central | Western | Male | Female | |||||||
High risk | |||||||||||||
AT-MGP1 | 15 | 2 | 6 | 16.17 | 0.009 | - | 0.143 | - | - | - | - | - | - |
AT-MGP2 | 12 | 3 | 3 | 15.20 | 0.009 | 0.010 | - | - | - | - | - | - | - |
AT-MGP3 | 12 | 3 | 3 | 15.13 | - | - | - | 0.006 | - | 0.014 | - | 0.012 | - |
AT-MGP4 | 12 | 3 | 4 | 14.80 | - | - | - | 0.006 | - | - | 0.033 | 0.012 | - |
AT-MGP5 | 10 | 4 | 3 | 14.54 | - | - | - | 0.006 | 0.014 | - | - | 0.012 | - |
AT-MGP6 | 13 | 4 | 5 | 14.54 | - | - | - | 0.006 | - | 0.014 | - | 0.009 | |
AT-MGP7 | 13 | 2 | 4 | 14.16 | - | - | - | 0.006 | 0.014 | - | - | - | 0.009 |
AT-MGP8 | 13 | 2 | 5 | 13.92 | - | - | - | 0.006 | - | - | 0.033 | - | 0.009 |
AT-MGP9 | 13 | 2 | 5 | 13.88 | - | - | - | 0.006 | 0.014 | - | - | 0.012 | - |
AT-MGP10 | 13 | 2 | 3 | 13.86 | - | - | - | 0.006 | 0.014 | - | - | - | 0.009 |
AT-MGP11 | 14 | 2 | 6 | 13.83 | - | - | - | 0.006 | 0.014 | - | - | - | 0.009 |
AT-MGP12 | 12 | 2 | 3 | 13.83 | - | - | - | 0.006 | - | 0.014 | - | 0.012 | - |
AT-MGP13 | 12 | 2 | 4 | 13.83 | 0.009 | 0.010 | - | - | - | - | - | - | |
AT-MGP14 | 12 | 3 | 3 | 13.77 | - | - | 0.006 | - | 0.014 | - | - | 0.009 | |
AT-MGP15 | 12 | 3 | 4 | 13.70 | 0.009 | 0.010 | - | - | - | - | - | - | |
AT-MGP16 | 13 | 3 | 5 | 13.66 | 0.009 | - | 0.143 | - | - | - | - | - | - |
AT-MGP17 | 12 | 4 | 4 | 13.55 | - | - | - | 0.006 | - | 0.014 | - | - | 0.009 |
AT-MGP18 | 11 | 4 | 4 | 13.48 | - | - | 0.006 | - | 0.014 | - | 0.012 | - | |
AT-MGP19 | 11 | 4 | 5 | 13.38 | - | - | - | 0.006 | 0.014 | - | - | - | 0.009 |
AT-MGP20 | 14 | 1 | 6 | 13.19 | - | - | - | 0.006 | - | 0.014 | - | - | 0.009 |
AT-MGP21 | 11 | 2 | 3 | 12.86 | - | - | - | 0.006 | 0.014 | - | - | 0.012 | - |
AT-MGP22 | 13 | 2 | 6 | 12.82 | 0.009 | 0.010 | - | - | - | - | - | - | - |
AT-MGP23 | 11 | 3 | 3 | 12.70 | 0.009 | 0.010 | - | - | - | - | - | - | - |
AT-MGP24 | 12 | 2 | 4 | 12.65 | - | - | - | 0.006 | - | 0.014 | - | 0.012 | - |
AT-MGP25 | 11 | 3 | 4 | 12.64 | - | - | - | 0.006 | - | 0.014 | - | 0.012 | - |
AT-MGP26 | 12 | 3 | 5 | 12.61 | 0.009 | 0.010 | - | - | - | - | - | - | |
AT-MGP27 | 11 | 3 | 5 | 12.59 | - | - | - | 0.006 | - | - | 0.033 | - | 0.019 |
Total | 0.074 | 0.059 | 0.286 | 0.112 | 0.100 | 0.129 | 0.100 | 0.106 | 0.102 | ||||
Low Risk | |||||||||||||
AT-MGP28 | 8 | 2 | 4 | 5.98 | - | - | - | 0.006 | 0.0143 | - | - | - | 0.009 |
AT-MGP29 | 6 | 2 | 1 | 5.95 | 0.009 | 0.010 | - | - | - | - | - | - | - |
AT-MGP30 | 7 | 2 | 2 | 5.89 | 0.009 | 0.010 | - | - | - | - | - | - | - |
AT-MGP31 | 7 | 3 | 2 | 5.87 | - | - | - | 0.006 | - | 0.0143 | - | - | 0.009 |
AT-MGP32 | 7 | 2 | 3 | 5.86 | - | - | - | 0.006 | - | - | 0.0333 | - | 0.009 |
AT-MGP33 | 7 | 2 | 3 | 5.86 | 0.009 | 0.010 | - | - | - | - | - | - | - |
AT-MGP34 | 4 | 3 | 0 | 5.82 | - | - | - | 0.006 | 0.0143 | - | - | 0.0118 | - |
AT-MGP35 | 5 | 3 | 1 | 5.75 | - | - | - | 0.006 | - | 0.0143 | - | 0.0118 | - |
AT-MGP36 | 5 | 3 | 1 | 5.74 | 0.009 | 0.010 | - | - | - | - | - | - | - |
AT-MGP37 | 7 | 3 | 3 | 5.68 | 0.009 | 0.010 | - | - | - | - | - | - | - |
AT-MGP38 | 7 | 3 | 3 | 5.65 | - | - | - | 0.006 | - | - | 0.0333 | - | 0.009 |
AT-MGP39 | 6 | 2 | 2 | 5.02 | - | - | - | 0.006 | 0.014 | - | - | - | 0.012 |
AT-MGP40 | 7 | 2 | 1 | 4.94 | 0.009 | 0.010 | - | - | - | - | - | - | - |
AT-MGP41 | 5 | 2 | 2 | 4.90 | - | - | - | 0.006 | - | - | 0.033 | 0.012 | - |
AT-MGP42 | 5 | 3 | 1 | 4.79 | - | - | - | 0.006 | 0.014 | - | - | - | 0.012 |
AT-MGP43 | 4 | 3 | 0 | 4.76 | - | - | - | 0.006 | 0.014 | - | - | 0.012 | - |
AT-MGP44 | 6 | 2 | 1 | 4.92 | - | - | - | 0.012 | 0.0143 | - | 0.0333 | 0.009 | |
AT-MGP45 | 7 | 2 | 3 | 4.78 | - | - | - | 0.006 | - | - | 0.0333 | 0.0118 | - |
AT-MGP46 | 5 | 3 | 1 | 4.73 | - | - | - | 0.006 | 0.0143 | - | - | - | 0.009 |
AT-MGP47 | 5 | 3 | 1 | 4.70 | 0.009 | 0.010 | - | - | - | - | - | - | - |
AT-MGP48 | 6 | 3 | 2 | 4.61 | 0.009 | 0.010 | - | - | - | - | - | - | |
AT-MGP49 | 7 | 1 | 3 | 4.00 | - | - | - | 0.006 | - | 0.0143 | - | 0.0118 | - |
AT-MGP50 | 6 | 2 | 2 | 3.86 | 0.009 | 0.010 | - | - | - | - | - | - | - |
AT-MGP51 | 5 | 2 | 2 | 3.72 | - | - | - | 0.006 | 0.0143 | - | - | 0.0118 | - |
AT-MGP52 | 6 | 2 | 2 | 3.71 | 0.009 | - | 0.143 | - | - | - | - | - | - |
AT-MGP53 | 3 | 3 | 1 | 3.63 | - | - | - | 0.006 | 0.0143 | - | - | - | 0.009 |
AT-MGP54 | 7 | 0 | 3 | 3.26 | 0.009 | 0.010 | - | - | - | - | - | - | - |
Total | 0.120 | 0.119 | 0.143 | 0.088 | 0.100 | 0.057 | 0.133 | 0.071 | 0.074 |
VTE-MGP ID * | RV # | PV $ | HoR & | GRS + | VTE-MGP Relative Frequency | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mainland Portugal | Azores | |||||||||||||
Total | Sex | Total | Geographic Group | Sex | ||||||||||
Male | Female | Eastern | Central | Western | Male | Female | ||||||||
High risk | ||||||||||||||
VTE-MGP1 | 3 | 0 | 0 | 6.18 | 0.009 | 0.010 | - | - | - | - | - | - | - | |
VTE-MGP2 | 1 | 0 | 0 | 4.38 | - | 0.010 | - | 0.006 | 0.014 | - | - | - | 0.012 | |
VTE-MGP3 | 2 | 0 | 0 | 4.38 | - | - | - | 0.024 | 0.043 | 0.014 | 0.012 | 0.035 | ||
VTE-MGP4 | 2 | 0 | 0 | 4.38 | 0.009 | 0.010 | - | 0.012 | 0.029 | - | - | - | 0.024 | |
VTE-MGP5 | 3 | 0 | 1 | 4.38 | 0.009 | 0.010 | - | - | - | - | - | - | - | |
VTE-MGP6 | 3 | 0 | 0 | 4.38 | 0.009 | 0.010 | - | - | - | - | - | - | - | |
VTE-MGP7 | 3 | 0 | 1 | 4.38 | 0.009 | 0.010 | - | - | - | - | - | - | - | |
TOTAL | 0.045 | 0.059 | 0.000 | 0.041 | 0.086 | 0.014 | 0.000 | 0.012 | 0.071 | |||||
Low Risk | ||||||||||||||
VTE-MGP8 | 0 | 0 | 0 | 0.00 | 0.102 | 0.099 | 0.143 | 0.153 | 0.114 | 0.157 | 0.233 | 0.153 | 0.153 | |
VTE-MGP9 | 1 | 0 | 0 | 0.00 | 0.139 | 0.149 | - | 0.194 | 0.114 | 0.257 | 0.233 | 0.153 | 0.235 | |
VTE-MGP10 | 2 | 0 | 1 | 0.00 | 0.083 | 0.089 | - | 0.088 | 0.043 | 0.157 | 0.033 | 0.118 | 0.059 | |
VTE-MGP11 | 1 | 0 | 0 | 0.00 | 0.241 | 0.228 | 0.429 | 0.212 | 0.229 | 0.171 | 0.267 | 0.235 | 0.188 | |
VTE-MGP12 | 2 | 0 | 0 | 0.00 | 0.250 | 0.257 | 0.143 | 0.129 | 0.186 | 0.071 | 0.133 | 0.129 | 0.129 | |
VTE-MGP13 | 2 | 0 | 1 | 0.00 | 0.093 | 0.079 | 0.286 | 0.141 | 0.143 | 0.157 | 0.100 | 0.153 | 0.129 | |
VTE-MGP14 | 3 | 0 | 1 | 0.00 | 0.009 | 0.010 | - | - | - | - | - | - | - | |
TOTAL | 0.824 | 0.911 | 1.000 | 0.918 | 0.829 | 0.971 | 1.000 | 0.941 | 0.894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mota-Vieira, L.; Duarte, J.; Catena, X.; Gonzalez, J.; Capocci, A.; Branco, C.C. Genetic Risk Profiles for Atherosclerosis and Venous Thromboembolism in Azorean and Mainland Portuguese Populations: A Comparative Analysis. Curr. Issues Mol. Biol. 2025, 47, 625. https://doi.org/10.3390/cimb47080625
Mota-Vieira L, Duarte J, Catena X, Gonzalez J, Capocci A, Branco CC. Genetic Risk Profiles for Atherosclerosis and Venous Thromboembolism in Azorean and Mainland Portuguese Populations: A Comparative Analysis. Current Issues in Molecular Biology. 2025; 47(8):625. https://doi.org/10.3390/cimb47080625
Chicago/Turabian StyleMota-Vieira, Luisa, Joana Duarte, Xavier Catena, Jaime Gonzalez, Andrea Capocci, and Cláudia C. Branco. 2025. "Genetic Risk Profiles for Atherosclerosis and Venous Thromboembolism in Azorean and Mainland Portuguese Populations: A Comparative Analysis" Current Issues in Molecular Biology 47, no. 8: 625. https://doi.org/10.3390/cimb47080625
APA StyleMota-Vieira, L., Duarte, J., Catena, X., Gonzalez, J., Capocci, A., & Branco, C. C. (2025). Genetic Risk Profiles for Atherosclerosis and Venous Thromboembolism in Azorean and Mainland Portuguese Populations: A Comparative Analysis. Current Issues in Molecular Biology, 47(8), 625. https://doi.org/10.3390/cimb47080625