Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (348)

Search Parameters:
Keywords = disaster management services

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 22134 KiB  
Article
Adaptive Pluvial Flood Disaster Management in Taiwan: Infrastructure and IoT Technologies
by Sheng-Hsueh Yang, Sheau-Ling Hsieh, Xi-Jun Wang, Deng-Lin Chang, Shao-Tang Wei, Der-Ren Song, Jyh-Hour Pan and Keh-Chia Yeh
Water 2025, 17(15), 2269; https://doi.org/10.3390/w17152269 - 30 Jul 2025
Viewed by 421
Abstract
In Taiwan, hydro-meteorological data are fragmented across multiple agencies, limiting the effectiveness of coordinated flood response. To address this challenge and the increasing uncertainty associated with extreme rainfall, a real-time disaster prevention platform has been developed. This system integrates multi-source data and geospatial [...] Read more.
In Taiwan, hydro-meteorological data are fragmented across multiple agencies, limiting the effectiveness of coordinated flood response. To address this challenge and the increasing uncertainty associated with extreme rainfall, a real-time disaster prevention platform has been developed. This system integrates multi-source data and geospatial information through a cluster-based architecture to enhance pluvial flood management. Built on a Service-Oriented Architecture (SOA) and incorporating Internet of Things (IoT) technologies, AI-based convolutional neural networks (CNNs), and 3D drone mapping, the platform enables automated alerts by linking sensor thresholds with real-time environmental data, facilitating synchronized operational responses. Deployed in New Taipei City over the past three years, the system has demonstrably reduced flood risk during severe rainfall events. Region-specific action thresholds and adaptive strategies are continually refined through feedback mechanisms, while integrated spatial and hydrological trend analyses extend the lead time available for emergency response. Full article
Show Figures

Figure 1

17 pages, 1396 KiB  
Article
Enhancing Disaster Resilience Through Mobile Solar–Biogas Hybrid PowerKiosks
by Seneshaw Tsegaye, Mason Lundquist, Alexis Adams, Thomas H. Culhane, Peter R. Michael, Jeffrey L. Pearson and Thomas M. Missimer
Sustainability 2025, 17(14), 6320; https://doi.org/10.3390/su17146320 - 10 Jul 2025
Viewed by 358
Abstract
Natural disasters in the United States frequently wreak havoc on critical infrastructure, affecting energy, water, transportation, and communication systems. To address these disruptions, the use of mobile power solutions like PowerKiosk trailers is a partial solution during recovery periods. PowerKiosk is a trailer [...] Read more.
Natural disasters in the United States frequently wreak havoc on critical infrastructure, affecting energy, water, transportation, and communication systems. To address these disruptions, the use of mobile power solutions like PowerKiosk trailers is a partial solution during recovery periods. PowerKiosk is a trailer equipped with renewable energy sources such as solar panels and biogas generators, offering a promising strategy for emergency power restoration. With a daily power output of 12.1 kWh, PowerKiosk trailers can support small lift stations or a few homes, providing a temporary solution during emergencies. Their key strength lies in their mobility, allowing them to quickly reach disaster-affected areas and deliver power when and where it is most needed. This flexibility is particularly valuable in regions like Florida, where hurricanes are common, and power outages can cause widespread disruption. Although the PowerKiosk might not be suitable for long-term use because of its limited capacity, it can play a critical role in disaster recovery efforts. In a community-wide power outage, deploying the PowerKiosk to a lift station ensures essential services like wastewater management, benefiting everyone. By using this mobile power solution, community resilience can be enhanced in the face of natural disasters. Full article
Show Figures

Figure 1

40 pages, 6398 KiB  
Article
A Supply–Demand-Driven Framework for Evaluating Service Effectiveness of University Campus Emergency Shelter: Evidence from Central Tianjin Under Earthquake Scenarios
by Hao Gao, Yuqi Han, Jiahao Zhang, Yuanzhen Song, Tianlin Zhang, Fengliang Tang and Su Sun
Land 2025, 14(7), 1411; https://doi.org/10.3390/land14071411 - 4 Jul 2025
Viewed by 440
Abstract
Urban disaster risks are escalating, and university campus emergency shelters (UCESs) are key to alleviating the supply–demand imbalance in emergency shelter services (ESSs) within high-density central urban areas. However, existing studies lacked the measurement of UCES service effectiveness from a regional supply–demand perspective, [...] Read more.
Urban disaster risks are escalating, and university campus emergency shelters (UCESs) are key to alleviating the supply–demand imbalance in emergency shelter services (ESSs) within high-density central urban areas. However, existing studies lacked the measurement of UCES service effectiveness from a regional supply–demand perspective, limiting the ability to guide planning practices. Therefore, we focused on the capacity of UCESs to improve regional supply–demand relationships and developed a service effectiveness evaluation framework for UCESs in the central urban area of Tianjin under an earthquake scenario. We identified emergency shelter spaces within the campuses and developed a campus–city collaborative shelter capacity model to determine their service supply capacity. Then we quantified regional service demand driven by seismic risk. Finally, we quantified the service effectiveness of each UCES by constructing a service effectiveness evaluation model. Results showed that (1) the total shelter capacity and service coverage of 13 UCESs accounted for approximately 32.1% of the central district’s population and 67.5% of its land area, indicating their strong potential to provide large-scale ESSs. (2) Average seismic risk values ranged from 0.200 to 0.260, exhibiting the characteristic of being higher in the south and lower in the north. (3) Service effectiveness was classified into three levels—higher (1.150–1.257), medium (0.957–0.988), and lower (0.842–0.932)—corresponding to planning interventions that can be implemented based on them. This study aims to reveal differences between different UCESs to improve regional supply–demand relationships by evaluating their service effectiveness and supporting refined emergency management and planning decisions. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

25 pages, 528 KiB  
Article
Lightweight and Security-Enhanced Key Agreement Protocol Using PUF for IoD Environments
by Sangjun Lee, Seunghwan Son and Youngho Park
Mathematics 2025, 13(13), 2062; https://doi.org/10.3390/math13132062 - 21 Jun 2025
Viewed by 355
Abstract
With the increasing demand for drones in diverse tasks, the Internet of Drones (IoD) has recently emerged as a significant technology in academia and industry. The IoD environment enables various services, such as traffic and environmental monitoring, disaster situation management, and military operations. [...] Read more.
With the increasing demand for drones in diverse tasks, the Internet of Drones (IoD) has recently emerged as a significant technology in academia and industry. The IoD environment enables various services, such as traffic and environmental monitoring, disaster situation management, and military operations. However, IoD communication is vulnerable to security threats due to the exchange of sensitive information over insecure public channels. Moreover, public key-based cryptographic schemes are impractical for communication with resource-constrained drones due to their limited computational capability and resource capacity. Therefore, a secure and lightweight key agreement scheme must be developed while considering the characteristics of the IoD environment. In 2024, Alzahrani proposed a secure key agreement protocol for securing the IoD environment. However, Alzahrani’s protocol suffers from high computational overhead due to its reliance on elliptic curve cryptography and is vulnerable to drone and mobile user impersonation attacks and session key disclosure attacks by eavesdropping on public-channel messages. Therefore, this work proposes a lightweight and security-enhanced key agreement scheme for the IoD environment to address the limitations of Alzahrani’s protocol. The proposed protocol employs a physical unclonable function and simple cryptographic operations (XOR and hash functions) to achieve high security and efficiency. This work demonstrates the security of the proposed protocol using informal security analysis. This work also conducted formal security analysis using the Real-or-Random (RoR) model, Burrows–Abadi–Needham (BAN) logic, and Automated Verification of Internet Security Protocols and Applications (AVISPA) simulation to verify the proposed protocol’s session key security, mutual authentication ability, and resistance to replay and MITM attacks, respectively. Furthermore, this work demonstrates that the proposed protocol offers better performance and security by comparing the computational and communication costs and security features with those of relevant protocols. Full article
Show Figures

Figure 1

27 pages, 470 KiB  
Review
Non-Communicable Disease (NCD) Management During Disasters and Humanitarian Emergencies: A Review of the Experiences Reported by Emergency Medical Teams (EMTs)
by Emanuela Parotto, Flavio Salio, Martina Valente and Luca Ragazzoni
J. Pers. Med. 2025, 15(6), 255; https://doi.org/10.3390/jpm15060255 - 16 Jun 2025
Viewed by 481
Abstract
Background/Objectives: Non-Communicable Diseases (NCDs) place an excessive strain on health systems in disaster-affected settings and may lead to a parallel public health emergency lasting months or years after a disaster. Although NCDs are increasingly recognized as a major challenge in disasters and [...] Read more.
Background/Objectives: Non-Communicable Diseases (NCDs) place an excessive strain on health systems in disaster-affected settings and may lead to a parallel public health emergency lasting months or years after a disaster. Although NCDs are increasingly recognized as a major challenge in disasters and humanitarian emergencies, a dedicated and standardized response plan is missing, as well as a shortage of evidence-based guidelines for NCD management in theses contexts. Over the years, Emergency Medical Teams (EMTs) have traditionally been deployed to manage acute conditions such as trauma and infectious diseases that quickly impact health systems. However, greater attention is needed to address acute exacerbation of NCDs and to ensure continuity of care for people with chronic health needs in disasters and emergencies. Methods: We conducted a scoping review exploring the EMTs’ management of chronic NCDs during disasters and humanitarian emergencies, in order to identify the strategies adopted, the challenges faced, and the recommendations provided to address this health problem. The online databases PubMed, Scopus, and EBSCO were searched to identify relevant papers. Results: After screening the papers against the eligibility criteria, 17 publications were retrieved. Five different areas of intervention concerning EMTs and NCDs management were identified: (i) EMTs pre-departure preparation, operational time, and length of stay; (ii) EMTs staff composition and training; (iii) EMTs logistics; (iv) EMTs integration with local health services; (v) EMTs clinical data record. Conclusions: The findings emerging from this study showed that NCDs significantly impact disaster response in different settings, underlining the need to implement a range of EMTs activities to guarantee assistance for chronic health needs. In view of strengthening the ability of health systems to cope with the NCDs’ burden, the EMTs’ initiatives should be considered as a bridge between the support provided during the acute phase of an emergency and the continuation of care ensured by the system in its early recovery phase. Full article
Show Figures

Figure 1

23 pages, 4406 KiB  
Article
The Impact of Geographical Factors on the Banking Sector in El Salvador
by Anders Lundvig Hansen and Luís Lima Santos
Int. J. Financial Stud. 2025, 13(2), 110; https://doi.org/10.3390/ijfs13020110 - 13 Jun 2025
Viewed by 669
Abstract
This study explores how geographical factors shape El Salvador’s banking sector, particularly focusing on regional disparities, urbanization, and vulnerability to natural disasters affecting access to financial services. By employing a mixed-methods approach that combines quantitative data and qualitative interviews, the research analyzes how [...] Read more.
This study explores how geographical factors shape El Salvador’s banking sector, particularly focusing on regional disparities, urbanization, and vulnerability to natural disasters affecting access to financial services. By employing a mixed-methods approach that combines quantitative data and qualitative interviews, the research analyzes how these geographical challenges impact financial inclusion and banking development. Data from the Central Reserve Bank of El Salvador and financial institutions is examined alongside Geographic Information Systems (GISs) to illustrate the spatial distribution of banking services. Interviews with stakeholders, including bank representatives and clients from urban and rural areas, reveal a significant urban–rural divide, with approximately 75% of bank branches and 80% of ATMs situated in urban centers, particularly in San Salvador. Rural areas face limited access to formal banking due to challenging topography and inadequate infrastructure, leading to increased financial exclusion and reliance on informal systems. Natural disasters further disrupt banking infrastructure and heighten the need for emergency loans. While urbanization has spurred financial growth, it has also resulted in informal settlements with restricted access to formal services. As its main contribution, this study provides one of the first in-depth, geographically grounded analyses of financial exclusion in El Salvador, offering original insights into how spatial inequalities and disaster vulnerability intersect to shape banking access and economic participation. The study calls for a more inclusive banking sector, recommending mobile and digital banking expansion, agent banking in underserved areas, and improved disaster risk management to enhance economic participation across all regions. Full article
Show Figures

Figure 1

31 pages, 10612 KiB  
Article
The Mediterranean Dune–Beach–Banquette Ecosystem, Its Pivotal Role in Land–Sea Coupling and the Functioning of Coastal Systems, and Some Related Management Issues
by Charles-François Boudouresque, Patrick Astruch, Bruno Belloni, Aurélie Blanfuné, Charlotte Francesiaz, Maële Maury, Frédéric Médail, Guilhan Paradis, Michèle Perret-Boudouresque, Carole Piazza, Philippe Ponel, Pauline Sindou and Thierry Thibaut
Sustainability 2025, 17(10), 4556; https://doi.org/10.3390/su17104556 - 16 May 2025
Viewed by 1027
Abstract
In the Mediterranean, the dune–beach ecosystem is characterized by the presence of thick deposits of dead leaves of the endemic seagrass Posidonia oceanica, called banquettes (Dune–Beach–Banquette ecosystem—DBB). This ecosystem plays an important role in the coupling between sea and land. The banquettes [...] Read more.
In the Mediterranean, the dune–beach ecosystem is characterized by the presence of thick deposits of dead leaves of the endemic seagrass Posidonia oceanica, called banquettes (Dune–Beach–Banquette ecosystem—DBB). This ecosystem plays an important role in the coupling between sea and land. The banquettes provide important ecosystem services: protection of beaches against erosion, contribution to the building of the dune, and a source of nitrogen for coastal vegetation. They are home to a rich and diverse invertebrate fauna that are consumed by other predatory invertebrates and seabirds. A conceptual model of the functioning of the DBB ecosystem and its relation with adjacent ecosystems has been outlined. When dead P. oceanica leaves return to the sea, which is the fate of most of the banquette, they constitute an important source of carbon and nutrients for coastal ecosystems and fisheries. Beach management, with the removal of banquettes and driftwood to meet the supposed requirements of beach users and tourists, is an ecological disaster, in addition to being an economic burden for coastal municipalities. Beach management methods that respect the interactions between the marine and terrestrial realms, which preserve the beaches from erosion and allow the return of the banquettes to the sea, and which take into account the real perceptions of beach users are feasible in the framework of the concept of the ‘ecological beach’. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

20 pages, 332 KiB  
Review
Data Privacy in the Internet of Things: A Perspective of Personal Data Store-Based Approaches
by George P. Pinto and Cássio Prazeres
J. Cybersecur. Priv. 2025, 5(2), 25; https://doi.org/10.3390/jcp5020025 - 13 May 2025
Cited by 1 | Viewed by 1351
Abstract
Data generated by Internet of Things devices enable the design of new business models and services, improving user experience and satisfaction. This data also serve as an essential information source for many fields, including disaster management, bio-surveillance, smart cities, and smart health. However, [...] Read more.
Data generated by Internet of Things devices enable the design of new business models and services, improving user experience and satisfaction. This data also serve as an essential information source for many fields, including disaster management, bio-surveillance, smart cities, and smart health. However, personal data are also collected in this context, introducing new challenges concerning data privacy protection, such as profiling, localization and tracking, linkage, and identification. This dilemma is further complicated by the “privacy paradox”, where users compromise privacy for service convenience. Hence, this paper reviews the literature on data privacy in the IoT, particularly emphasizing Personal Data Store (PDS)-based approaches as a promising class of user-centric solutions. PDS represents a user-centric approach to decentralizing data management, enhancing privacy by granting individuals control over their data. Addressing privacy solutions involves a triad of user privacy awareness, technology support, and ways to regulate data processing. Our discussion aims to advance the understanding of IoT privacy issues while emphasizing the potential of PDS to balance privacy protection and service delivery. Full article
(This article belongs to the Section Privacy)
Show Figures

Figure 1

34 pages, 45859 KiB  
Article
The Denser the Road Network, the More Resilient It Is?—A Multi-Scale Analytical Framework for Measuring Road Network Resilience
by Jianglin Lu, Shuiyu Yan, Wentao Yan, Zihao Li, Huihui Yang and Xin Huang
Sustainability 2025, 17(9), 4112; https://doi.org/10.3390/su17094112 - 1 May 2025
Cited by 1 | Viewed by 640
Abstract
A road network is an important spatial carrier for the efficient and reliable operation of urban services and material flows. In recent years, the “high road density, small block size” trend has become a major focus in urban planning practices. However, whether high-density [...] Read more.
A road network is an important spatial carrier for the efficient and reliable operation of urban services and material flows. In recent years, the “high road density, small block size” trend has become a major focus in urban planning practices. However, whether high-density road networks are highly resilient lacks quantitative evidence. This study presents a multi-scale analytical framework for measuring road network resilience from a topological perspective. We abstract 186 ideal orthogonal grid density models from an actual urban road network, quantifying resilience under two disturbance scenarios: random failures and intentional attacks. The results indicate that road network density indeed has a significant impact on resilience, with both scenarios showing a trend where higher densities correlate with greater resilience. However, the increase in resilience value under the intentional attack scenario is significantly higher than that under the random failure scenario. The findings indicate that network density plays a decisive role in determining resilience levels when critical edges fail. This is attributed to the greater presence of loops in denser networks, which helps maintain connectivity even under intentional disruption. In the random failure scenario, network resilience depends on the combined effects of the node degree and density. This study offers quantitative insights into the design of resilient urban forms in the face of disruptive events, establishing reference benchmarks for road network spacing at both meso- and micro-scales. The results provide practical guidance for resilient city planning in both newly developed and existing urban areas, supporting informed decision-making in urban morphology and disaster risk management. Full article
Show Figures

Figure 1

16 pages, 11641 KiB  
Article
Using Drones to Estimate and Reduce the Risk of Wildfire Propagation in Wildland–Urban Interfaces
by Osvaldo Santos and Natércia Santos
Appl. Syst. Innov. 2025, 8(3), 62; https://doi.org/10.3390/asi8030062 - 30 Apr 2025
Viewed by 1421
Abstract
Forest fires have become one of the most destructive natural disasters worldwide, causing catastrophic losses, sometimes with the loss of lives. Therefore, some countries have created legislation to enforce mandatory fuel management within buffer zones in the vicinity of buildings and roads. The [...] Read more.
Forest fires have become one of the most destructive natural disasters worldwide, causing catastrophic losses, sometimes with the loss of lives. Therefore, some countries have created legislation to enforce mandatory fuel management within buffer zones in the vicinity of buildings and roads. The purpose of this study is to investigate whether inexpensive off-the-shelf drones equipped with standard RGB cameras could be used to detect the excess of trees and vegetation within those buffer zones. The methodology used in this study was the development and evaluation of a complete system, which uses AI to detect the contours of buildings and the services provided by the CHAMELEON bundles to detect trees and vegetation within buffer zones. The developed AI model is effective at detecting the building contours, with a mAP50 of 0.888. The article analyses the results obtained from two use cases: a road surrounded by dense forest and an isolated building with dense vegetation nearby. The main conclusion of this study is that off-the-shelf drones equipped with standard RGB cameras can be effective at detecting non-compliant vegetation and trees within buffer zones. This can be used to manage biomass within buffer zones, thus helping to reduce the risk of wildfire propagation in wildland–urban interfaces. Full article
Show Figures

Figure 1

16 pages, 719 KiB  
Review
Local Public Works Management for Sustainable Cities: The United States Experience
by Neil S. Grigg
Urban Sci. 2025, 9(4), 96; https://doi.org/10.3390/urbansci9040096 - 25 Mar 2025
Cited by 1 | Viewed by 644
Abstract
Most people in the world now live in urban areas and their shared quest for better cities is embodied in several Sustainable Development Goals of the United Nations. These indicate that successful cities need jobs, adequate housing stock, effective governance, and other support [...] Read more.
Most people in the world now live in urban areas and their shared quest for better cities is embodied in several Sustainable Development Goals of the United Nations. These indicate that successful cities need jobs, adequate housing stock, effective governance, and other support systems. At the most basic level, they need a basket of core public works services like clean water and efficient transit, among others. These must be provided to improve public trust in government by addressing equity and affordability while also improving operational and cost efficiency. These targets are moving as transitions are occurring from stove-piped to integrated services, even while social contracts between government and the private sector are also shifting. Essential tools to improve cities include urban planning and infrastructure development, but applying them effectively faces challenges like climate change, inequality, social disorder, and even armed conflicts. This paper focuses on seven core public works services for drinking water, wastewater, stormwater, trash collection, mass transit, streets and traffic control, and disaster management. It reviews how these have evolved in the US, how they are organized under the federalism system, and how the goal of integrated management is being pursued. Challenges to integrated approaches include increasing responsibilities but lack of funding, political stress, and rule-driven and internally oriented management. Methods for performance assessment are explained under legacy systems based on methods like indicators and benchmarking applied to public works systems. Current methods focus on regulatory targets and the details; information has been shallow and not always timely. This paper projects how the performance assessment of core public works systems can be broadened to address goals like those of the SDGs and assesses why it is difficult to rate major systems. Examples of the activities of NGOs are given and an example of how progress toward SDG6 is included to show why performance management of integrated management applied to linked systems is needed. Performance dashboards with open government are currently the most common pathways, but emerging methods based on data analytics and visualization offer new possibilities. Reviewing the status of public works management shows that it is an important branch of the field of public administration, and it can be presented as a professional field with its own identity. The findings will support educators and researchers as well as provide policy insights into public works and stakeholder engagement. Full article
Show Figures

Figure 1

21 pages, 415 KiB  
Article
A New Graph Vulnerability Parameter: Fuzzy Node Integrity
by Ferhan Nihan Murater and Goksen Bacak-Turan
Symmetry 2025, 17(4), 474; https://doi.org/10.3390/sym17040474 - 21 Mar 2025
Viewed by 329
Abstract
Robustness in networks plays a vital role in mitigating the effects of failures caused by nodes or links, which can disrupt essential services. Among the various vulnerability parameters in graph theory, such as connectivity and integrity, their applications to fuzzy graphs remain underexplored, [...] Read more.
Robustness in networks plays a vital role in mitigating the effects of failures caused by nodes or links, which can disrupt essential services. Among the various vulnerability parameters in graph theory, such as connectivity and integrity, their applications to fuzzy graphs remain underexplored, despite fuzzy graphs being a powerful tool for modeling uncertainty. In this paper, we introduce the parameter ’fuzzy node integrity’, which considers both the number of disrupted elements and the strength of residual connections. We derive general formulas for different types of symmetric and asymmetric fuzzy graph structures, including cycle graphs, wheel graphs, and star graphs, to systematically demonstrate the utility of this parameter. The proposed parameter is then applied to a military logistics problem to gain insights into the identification of critical nodes and route optimization under uncertainty. This study bridges an important gap in fuzzy graph theory by redefining node integrity through the inclusion of connection strength, offering a promising tool for assessing network vulnerability. These findings lay the foundation not only for theoretical research but also for practical improvements in transportation, disaster management, and communication networks. Full article
Show Figures

Figure 1

26 pages, 6305 KiB  
Systematic Review
The Integration of IoT (Internet of Things) Sensors and Location-Based Services for Water Quality Monitoring: A Systematic Literature Review
by Rajapaksha Mudiyanselage Prasad Niroshan Sanjaya Bandara, Amila Buddhika Jayasignhe and Günther Retscher
Sensors 2025, 25(6), 1918; https://doi.org/10.3390/s25061918 - 19 Mar 2025
Cited by 1 | Viewed by 2206
Abstract
The increasing demand for clean and reliable water resources, coupled with the growing threat of water pollution, has made real-time water quality (WQ) monitoring and assessment a critical priority in many urban areas. Urban environments encounter substantial challenges in maintaining WQ, driven by [...] Read more.
The increasing demand for clean and reliable water resources, coupled with the growing threat of water pollution, has made real-time water quality (WQ) monitoring and assessment a critical priority in many urban areas. Urban environments encounter substantial challenges in maintaining WQ, driven by factors such as rapid population growth, industrial expansion, and the impacts of climate change. Effective real-time WQ monitoring is essential for safeguarding public health, promoting environmental sustainability, and ensuring adherence to regulatory standards. The rapid advancement of Internet of Things (IoT) sensor technologies and smartphone applications presents an opportunity to develop integrated platforms for real-time WQ assessment. Advances in the IoT provide a transformative solution for WQ monitoring, revolutionizing the way we assess and manage our water resources. Moreover, recent developments in Location-Based Services (LBSs) and Global Navigation Satellite Systems (GNSSs) have significantly enhanced the accessibility and accuracy of location information. With the proliferation of GNSS services, such as GPS, GLONASS, Galileo, and BeiDou, users now have access to a diverse range of location data that are more precise and reliable than ever before. These advancements have made it easier to integrate location information into various applications, from urban planning and disaster management to environmental monitoring and transportation. The availability of multi-GNSS support allows for improved satellite coverage and reduces the potential for signal loss in urban environments or densely built environments. To harness this potential and to enable the seamless integration of the IoT and LBSs for sustainable WQ monitoring, a systematic literature review was conducted to determine past trends and future opportunities. This research aimed to review the limitations of traditional monitoring systems while fostering an understanding of the positioning capabilities of LBSs in environmental monitoring for sustainable urban development. The review highlights both the advancements and challenges in using the IoT and LBSs for real-time WQ monitoring, offering critical insights into the current state of the technology and its potential for future development. There is a pressing need for an integrated, real-time WQ monitoring system that is cost-effective and accessible. Such a system should leverage IoT sensor networks and LBSs to provide continuous monitoring, immediate feedback, and spatially dynamic insights, empowering stakeholders to address WQ issues collaboratively and efficiently. Full article
Show Figures

Figure 1

25 pages, 3414 KiB  
Review
The Role of Urban Vegetation in Mitigating Fire Risk Under Climate Change: A Review
by Deshun Zhang, Manqing Yao, Yingying Chen and Yujia Liu
Sustainability 2025, 17(6), 2680; https://doi.org/10.3390/su17062680 - 18 Mar 2025
Cited by 2 | Viewed by 1654
Abstract
The confluence of global warming, the urban heat island effect, and alterations in the nature of underlying surfaces has led to a continuous escalation in the frequency, scale, and intensity of fires within urban green spaces. Mitigating or eliminating the adverse effects of [...] Read more.
The confluence of global warming, the urban heat island effect, and alterations in the nature of underlying surfaces has led to a continuous escalation in the frequency, scale, and intensity of fires within urban green spaces. Mitigating or eliminating the adverse effects of such fires on the service functions of urban ecosystems, while enhancing the resilience of urban greening systems in disaster prevention and risk reduction, has become a pivotal challenge in modern urban development and management. Academic focus has progressively broadened from isolated urban and forest domains to encompass the more intricate environments of the Wildland–Urban Interface (WUI) and urban–suburban forests, with a particular emphasis on the distinctive characteristics of urban greening and in-depth research. This study employs a combination of CiteSpace bibliometric analysis and a narrative literature review to comprehensively examine three critical aspects of urban fire safety as follows: (1) the evaluation of the fire-resistant performance of landscape plants in urban green spaces; (2) the mechanisms of fire behavior in urban greening systems; and (3) the assessment and prediction of urban fire risks. Our findings indicate that landscape plants play a crucial role in controlling the spread of fires in urban green spaces by providing physical barriers and inhibiting combustion processes, thereby mitigating fire propagation. However, the diversity and non-native characteristics of urban greenery species present challenges. The existing research lacks standardized experimental indicators and often focuses on single-dimensional analyses, leading to conclusions that are limited, inconsistent, or even contradictory. Furthermore, most current fire spread models are designed primarily for forests and wildland–urban interface (WUI) regions. Empirical and semi-empirical models dominate this field, yet future advancements will likely involve coupled models that integrate climate and environmental factors. Fire risk assessment and prediction represent a global research hotspot, with machine learning- and deep learning-based approaches increasingly gaining prominence. These advanced methods have demonstrated superior accuracy compared to traditional techniques in predicting urban fire risks. This synthesis aims to elucidate the current state, trends, and deficiencies within the existing research. Future research should explore methods for screening highly resistant landscape plants, with the goal of bolstering the ecological resilience of urban greening systems and providing theoretical underpinnings for the realization of sustainable urban environmental security. Full article
Show Figures

Figure 1

25 pages, 19380 KiB  
Article
GIS-Based Spatial Modeling of Soil Erosion and Wildfire Susceptibility Using VIIRS and Sentinel-2 Data: A Case Study of Šar Mountains National Park, Serbia
by Uroš Durlević, Tanja Srejić, Aleksandar Valjarević, Bojana Aleksova, Vojislav Deđanski, Filip Vujović and Tin Lukić
Forests 2025, 16(3), 484; https://doi.org/10.3390/f16030484 - 10 Mar 2025
Cited by 5 | Viewed by 1823
Abstract
Soil erosion and wildfires are frequent natural disasters that threaten the environment. Identifying and zoning susceptible areas are crucial for the implementation of preventive measures. The Šar Mountains are a national park with rich biodiversity and various climate zones. Therefore, in addition to [...] Read more.
Soil erosion and wildfires are frequent natural disasters that threaten the environment. Identifying and zoning susceptible areas are crucial for the implementation of preventive measures. The Šar Mountains are a national park with rich biodiversity and various climate zones. Therefore, in addition to protecting the local population from natural disasters, special attention must be given to preserving plant and animal species and their habitats. The first step in this study involved collecting and organizing the data. The second step applied geographic information systems (GIS) and remote sensing (RS) to evaluate the intensity of erosion using the erosion potential model (EPM) and the wildfire susceptibility index (WSI). The EPM involved the analysis of four thematic maps, and a new index for wildfires was developed, incorporating nine natural and anthropogenic factors. This study introduces a novel approach by integrating the newly developed WSI with the EPM, offering a comprehensive framework for assessing dual natural hazards in a single region using advanced geospatial tools. The third step involved obtaining synthetic maps and comparing the final results with satellite images and field research. For the Šar Mountains (Serbia), high and very high susceptibility to wildfires was identified in 21.3% of the total area. Regarding soil erosion intensity, about 8.2% of the area is affected by intensive erosion, while excessive erosion is present in 2.2% of the study area. The synthetic hazard maps provide valuable insights into the dynamics of the erosive process and areas susceptible to wildfires. The final results can be useful for decision-makers, spatial planners, and emergency management services in implementing anti-erosion measures and improving forest management in the study area. Full article
Show Figures

Figure 1

Back to TopTop