Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (430)

Search Parameters:
Keywords = direct foaming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3500 KiB  
Article
Effect of Window Structure and Mounting on Sound Insulation: A Laboratory-Based Study
by Leszek Dulak and Artur Nowoświat
Sustainability 2025, 17(15), 6892; https://doi.org/10.3390/su17156892 - 29 Jul 2025
Viewed by 149
Abstract
The acoustic performance of windows significantly influences evaluations of building quality, particularly in urban environments. This study presents the results of laboratory tests on the airborne sound insulation of windows with dimensions greater than those specified in ISO 10140-5:2021-10. The aim was to [...] Read more.
The acoustic performance of windows significantly influences evaluations of building quality, particularly in urban environments. This study presents the results of laboratory tests on the airborne sound insulation of windows with dimensions greater than those specified in ISO 10140-5:2021-10. The aim was to determine the impact of construction details and installation techniques on sound insulation, specifically Rw and Rw + Ctr values. The experimental variables included mounting methods (expansion tape versus low-pressure polyurethane foam), the presence or absence of a threshold in the lower frame, and the type of mullion (fixed versus movable). The tests involved two types of IGUs characterized by different acoustic properties. The findings indicate that the frame configuration, including threshold and mullion type, has a negligible influence on sound insulation. However, the standard method for estimating acoustic performance (EN 14351-1:2006 + A2:2017), which relies on IGU-based data, proved unreliable for modern window assemblies. The estimated values of Rw and Rw + Ctr were consistently lower than those obtained from direct laboratory measurements. These results highlight the need for verification through full-size window testing and suggest that reliance on simplified estimation procedures may lead to underperformance in real-world acoustic applications. Full article
(This article belongs to the Special Issue Advancements in Green Building Materials, Structures, and Techniques)
Show Figures

Figure 1

14 pages, 1410 KiB  
Article
Uptake, Distribution, and Activity of Pluronic F68 Adjuvant in Wheat and Its Endophytic Bacillus Isolate
by Anthony Cartwright, Mohammad Zargaran, Anagha Wankhade, Astrid Jacobson, Joan E. McLean, Anne J. Anderson and David W. Britt
Agrochemicals 2025, 4(3), 12; https://doi.org/10.3390/agrochemicals4030012 - 23 Jul 2025
Viewed by 239
Abstract
Surfactants are widely utilized in agriculture as emulsifying, dispersing, anti-foaming, and wetting agents. In these adjuvant roles, the inherent biological activity of the surfactant is secondary to the active ingredients. Here, the hydrophilic non-ionic surface-active tri-block copolymer Pluronic® F68 is investigated for [...] Read more.
Surfactants are widely utilized in agriculture as emulsifying, dispersing, anti-foaming, and wetting agents. In these adjuvant roles, the inherent biological activity of the surfactant is secondary to the active ingredients. Here, the hydrophilic non-ionic surface-active tri-block copolymer Pluronic® F68 is investigated for direct biological activity in wheat. F68 binds to and inserts into lipid membranes, which may benefit crops under abiotic stress. F68’s interactions with Triticum aestivum (var Juniper) seedlings and a seed-borne Bacillus spp. endophyte are presented. At concentrations below 10 g/L, F68-primed wheat seeds exhibited unchanged emergence. Root-applied fluorescein-F68 (fF68) was internalized in root epidermal cells and concentrated in highly mobile endosomes. The potential benefit of F68 in droughted wheat was examined and contrasted with wheat treated with the osmolyte, glycine betaine (GB). Photosystem II activity of droughted plants dropped significantly below non-droughted controls, and no clear benefit of F68 (or GB) during drought or rehydration was observed. However, F68-treated wheat exhibited increased transpiration values (for watered plants only) and enhanced shoot dry mass (for watered and droughted plants), not observed for GB-treated or untreated plants. The release of seed-borne bacterial endophytes into the spermosphere of germinating seeds was not affected by F68 (for F68-primed seeds as well as F68 applied to roots), and the planktonic growth of a purified Bacillus spp. seed endophyte was not reduced by F68 applied below the critical micelle concentration. These studies demonstrated that F68 entered wheat root cells, concentrated in endosomes involved in transport, significantly promoted shoot growth, and showed no adverse effects to plant-associated bacteria. Full article
Show Figures

Figure 1

37 pages, 8085 KiB  
Review
Scaling Amphiphilicity with Janus Nanoparticles: A New Frontier in Nanomaterials and Interface Science
by Mirela Honciuc and Andrei Honciuc
Nanomaterials 2025, 15(14), 1079; https://doi.org/10.3390/nano15141079 - 11 Jul 2025
Viewed by 401
Abstract
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and [...] Read more.
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and are capable of reducing interfacial tension, adsorbing spontaneously at interfaces, stabilizing emulsions and foams, and forming micelles, bilayers, or vesicles. Recent experimental, theoretical, and computational studies demonstrate that these behaviors are scalable to nanostructured colloids such as JNPs. Amphiphilic JNPs, defined by anisotropic surface chemistry on distinct hemispheres, display interfacial activity driven by directional wetting, variable interfacial immersion depth, and strong interfacial anchoring. They can stabilize liquid/liquid and liquid/gas interfaces, and enable templated or spontaneous self-assembly into supra-structures, such as monolayer sheets, vesicles, capsules, etc., both in bulk and at interfaces. Their behavior mimics the “soft” molecular amphiphiles but also includes additional particularities given by their “hard” structure, as well as contributions from capillary, van der Waals, hydrophobic, and shape-dependent forces. This review focuses on compiling the evidence supporting amphiphilicity as a scalable property, discussing how JNPs function as colloidal amphiphiles and how geometry, polarity contrast, interfacial interactions, and environmental parameters influence their behavior. By comparing surfactant behavior and JNP assembly, this work aims to clarify the transferable principles, the knowledge gap, as well as the emergent properties associated with amphiphilic Janus colloids. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Graphical abstract

21 pages, 5680 KiB  
Article
Polyvinylpyrrolidone-Functionalized NiCo2O4 Electrodes for Advanced Asymmetric Supercapacitor Application
by Rutuja U. Amate, Mrunal K. Bhosale, Pritam J. Morankar, Aviraj M. Teli and Chan-Wook Jeon
Polymers 2025, 17(13), 1802; https://doi.org/10.3390/polym17131802 - 28 Jun 2025
Viewed by 379
Abstract
Designing advanced electrode architectures with tailored morphology and redox synergy is essential for achieving high-performance supercapacitive energy storage. In this study, a PVP-assisted hydrothermal approach was employed to synthesize binder-free NiCo2O4 nanostructured electrodes directly on nickel foam substrates. By modulating [...] Read more.
Designing advanced electrode architectures with tailored morphology and redox synergy is essential for achieving high-performance supercapacitive energy storage. In this study, a PVP-assisted hydrothermal approach was employed to synthesize binder-free NiCo2O4 nanostructured electrodes directly on nickel foam substrates. By modulating the PVP concentration (0.5–2 wt%), hierarchical flower-like nanosheets were engineered, with the NiCo-P1 sample (1 wt% PVP) exhibiting an optimized structure, superior electroactive surface area, and enhanced ion accessibility. Comprehensive electrochemical analysis revealed that NiCo-P1 delivered an outstanding areal capacitance of 36.5 F/cm2 at 10 mA/cm2, along with excellent cycling stability over 15,000 cycles with 80.97% retention. Kinetic studies confirmed dominant diffusion-controlled redox behavior with high OH diffusion coefficients and minimal polarization. An asymmetric pouch-type supercapacitor device (NiCo-P1//AC) exhibited a wide operating window of 1.5 V, achieving a remarkable areal capacitance of 187 mF/cm2, energy density of 0.058 mWh/cm2, and capacitive retention of 78.78% after 5000 cycles. The superior performance is attributed to the synergistic integration of mixed-valence Ni and Co species, engineered nanosheet morphology, and low interfacial resistance. This work underscores the significance of surfactant-directed design in advancing cost-effective, high-performance electrodes for next-generation flexible energy storage technologies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 3945 KiB  
Article
Static Analysis of a Composite Box Plate with Functionally Graded Foam Core
by Andrejs Kovalovs
J. Manuf. Mater. Process. 2025, 9(7), 209; https://doi.org/10.3390/jmmp9070209 - 22 Jun 2025
Viewed by 452
Abstract
In functionally graded polymer foam, mechanical properties and chemical composition vary in a prescribed direction according to a power law distribution. However, most manufacturing methods lack precise control over pore size, limiting their application. In this case, the graded foam structure can be [...] Read more.
In functionally graded polymer foam, mechanical properties and chemical composition vary in a prescribed direction according to a power law distribution. However, most manufacturing methods lack precise control over pore size, limiting their application. In this case, the graded foam structure can be formed from separate layers, with each layer assigned unique values in terms of mechanical properties or chemical composition based on the power law distribution. The hypothesis of the work is that the application of functionally graded (FG) foam materials inside the rotor blades or wings of an unmanned aerial vehicle can provide the ability to vary their stiffness properties. The aim of this work is to conduct an investigation of the static behaviour of a composite box plate with constant and variable heights that simulate the dimensions and changing profile of a helicopter rotor blade. In the numerical analysis, two models of composite box plate are considered and the material properties of graded polymeric foam core are assumed to vary continuously by the power law along the width of cross-sectional structures. It is not possible to model the continuous flow of graded properties through the foam in construction; therefore, the layers of foam are modelled using discontinuous gradients, where the gradient factor changes step by step. The numerical results are obtained using ANSYS software. The results of the numerical calculation showed that the use of graded foam affects the parameters under study. The stiffness of a structure significantly decreases with an increase in the power law index. Full article
Show Figures

Figure 1

13 pages, 3918 KiB  
Article
Fayalite-Based Geopolymer Foam
by Aleksandar Nikolov, Mihail Tarassov, Ivan Rostovsky, Miryana Raykovska, Ivan Georgiev and Kinga Korniejenko
Ceramics 2025, 8(2), 77; https://doi.org/10.3390/ceramics8020077 - 19 Jun 2025
Viewed by 394
Abstract
The present work is the first study exploring the potential of geopolymer foams based on fayalite slag, an industrial by-product, as the primary precursor, for lightweight and fireproof construction applications. The research involved the synthesis and characterization of geopolymer foams with varying water [...] Read more.
The present work is the first study exploring the potential of geopolymer foams based on fayalite slag, an industrial by-product, as the primary precursor, for lightweight and fireproof construction applications. The research involved the synthesis and characterization of geopolymer foams with varying water to solid ratio, followed by testing their physical and mechanical properties. The phase composition and microstructure of the obtained geopolymer foams were examined using powder XRD, Micro-CT and SEM. The geopolymer foams at optimal water to solid ratio (0.15) demonstrated 73.2% relative porosity, 0.92 g/cm3 apparent density and 1.3 MPa compressive strength. The use of an air-entraining admixture improved compressive strength to 2.8 MPa but lowered the relative porosity to 64.5%. Real-size lightweight panel (300 × 300 × 30 mm) specimens were prepared to measure thermal conductivity coefficient (0.243 W/mK) and evaluate size effect and the reaction to direct fire. This study demonstrates the successful preparation of geopolymer foam products containing 81% fayalite slag, highlighting its potential as a lightweight, insulating and fire-resistant material for sustainable construction applications. Full article
(This article belongs to the Special Issue The Production Processes and Applications of Geopolymers, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 2944 KiB  
Article
The Development of a Coconut-Oil-Based Derived Polyol in a Polyurethane Matrix: A Potential Sorbent Material for Marine Oil Spill Applications
by John Louie L. Tefora, Tomas Ralph B. Tomon, Joy Ian Dan S. Ungang, Roberto M. Malaluan, Arnold A. Lubguban and Hernando P. Bacosa
J. Mar. Sci. Eng. 2025, 13(6), 1176; https://doi.org/10.3390/jmse13061176 - 16 Jun 2025
Viewed by 1316
Abstract
Marine oil spills have caused significant environmental problems. Among the array of clean-up methods, the utilization of sorbents emerges as promising for removing and recovering oil from spills. Developing cost-effective, reliable, and eco-friendly material that efficiently and sustainably removes oil from water is [...] Read more.
Marine oil spills have caused significant environmental problems. Among the array of clean-up methods, the utilization of sorbents emerges as promising for removing and recovering oil from spills. Developing cost-effective, reliable, and eco-friendly material that efficiently and sustainably removes oil from water is increasingly seen as crucial and pressing. In the present study, we report the development of coco-polyurethane (PU) foam (CCF) through the conventional foaming process using varying amounts of coconut-oil-derived polyol (CODP) in a PU matrix. Characterization of the foams showed an increased ester band with the incorporation of COPD into the polyurethane networks and no direct influence of the cell size distribution on the surface morphology. Furthermore, this study highlighted the increasing CODP in every CCF formulation, showing high oil sorption and low water uptake due to its porous structure. The experimental results revealed that CCF is a potential candidate sorbent for the recovery of spilled oil. This signifies a significant leap towards reducing the dependency on petroleum in developing sorbent materials and advancing sustainable responses to oil spills in marine environments. Full article
(This article belongs to the Section Marine Pollution)
Show Figures

Figure 1

25 pages, 2683 KiB  
Review
Unraveling LncRNA GAS5 in Atherosclerosis: Mechanistic Insights and Clinical Translation
by Yu Wei, Quanye Luo, Xiang Li, Xi Liu, Zheyu Yang, Qinhui Tuo and Wen Chen
Biology 2025, 14(6), 697; https://doi.org/10.3390/biology14060697 - 13 Jun 2025
Viewed by 496
Abstract
Atherosclerosis, a chronic inflammatory disease driving cardiovascular events, involves complex molecular networks where long non-coding RNAs (lncRNAs) are key regulators. This review synthesizes current knowledge on lncRNA Growth Arrest-Specific 5 (GAS5) in atherosclerosis, covering its expression, multifaceted roles in vascular cells, and molecular [...] Read more.
Atherosclerosis, a chronic inflammatory disease driving cardiovascular events, involves complex molecular networks where long non-coding RNAs (lncRNAs) are key regulators. This review synthesizes current knowledge on lncRNA Growth Arrest-Specific 5 (GAS5) in atherosclerosis, covering its expression, multifaceted roles in vascular cells, and molecular mechanisms. GAS5 is significantly upregulated in atherosclerotic plaques, exerting complex, cell-specific effects on vascular smooth muscle cells, macrophages, and endothelial cells. GAS5 modulates crucial pathophysiological processes like cell proliferation, apoptosis, inflammation, lipid metabolism, and foam cell formation, primarily by acting as a competing endogenous RNA (ceRNA) and through direct protein interactions. While promising as a biomarker, circulating GAS5 levels require further validation. Therapeutic strategies targeting GAS5, including antisense oligonucleotides (ASO) and small-molecule compounds, are under investigation. In conclusion, lncRNA GAS5 is a critical regulatory node in atherosclerosis pathobiology, offering significant opportunities for novel diagnostic and therapeutic interventions. Further research is vital to elucidate its intricate roles and translate these findings into clinical applications for atherosclerotic cardiovascular disease. Full article
(This article belongs to the Section Medical Biology)
Show Figures

Figure 1

24 pages, 7924 KiB  
Article
Mechanisms and Optimization of Foam Flooding in Heterogeneous Thick Oil Reservoirs: Insights from Large-Scale 2D Sandpack Experiments
by Qingchun Meng, Hongmei Wang, Weiyou Yao, Yuyang Han, Xianqiu Chao, Tairan Liang, Yongxian Fang, Wenzhao Sun and Huabin Li
ChemEngineering 2025, 9(3), 62; https://doi.org/10.3390/chemengineering9030062 - 4 Jun 2025
Viewed by 978
Abstract
To address the challenges of low displacement efficiency and gas channeling in the Lukqin thick oil reservoir, characterized by high viscosity (286 mPa·s) and strong heterogeneity (permeability contrast 5–10), this study systematically investigated water flooding and foam flooding mechanisms using a large-scale 2D [...] Read more.
To address the challenges of low displacement efficiency and gas channeling in the Lukqin thick oil reservoir, characterized by high viscosity (286 mPa·s) and strong heterogeneity (permeability contrast 5–10), this study systematically investigated water flooding and foam flooding mechanisms using a large-scale 2D sandpack model (5 m × 1 m × 0.04 m). Experimental results indicate that water flooding achieves only 30% oil recovery due to a mobility ratio imbalance (M = 128) and preferential channeling. In contrast, foam flooding enhances recovery by 15–20% (final recovery: 45%) through synergistic mechanisms of dynamic high-permeability channel plugging and mobility ratio optimization. By innovatively integrating electrical resistivity tomography with HSV color mapping, this work achieves the first visualization of foam migration pathways in meter-scale heterogeneous reservoirs at a spatial resolution of ≤0.5 cm, reducing monitoring costs by approximately 30% compared to conventional CT techniques. Key controlling factors for gas channeling (injection rate, foam quality, permeability contrast) are identified, and a nonlinear predictive model for plugging strength ((S = 0.70C0.6 kr−0.28) (R2 = 0.91)) is established. A composite optimization strategy—combining high-concentration slugs (0.7% AOS), salt-resistant polymer-enhanced foaming, and multi-round profile control—achieves a 67% reduction in gas channeling. This study elucidates the dynamic plugging mechanisms of foam flooding in heterogeneous thick oil reservoirs through large-scale physical simulations and data fusion, offering direct technical guidance for optimizing foam flooding operations in the Lukqin Oilfield and analogous reservoirs. Full article
Show Figures

Figure 1

23 pages, 2295 KiB  
Article
Laboratory-Scale Evaluation of a Plant-Based Algaecide for Harmful and Non-Harmful Algae
by Raphael M. Kudela
Toxins 2025, 17(6), 270; https://doi.org/10.3390/toxins17060270 - 27 May 2025
Viewed by 532
Abstract
Harmful algal blooms can negatively impact freshwater, estuarine, and coastal marine systems globally and pose serious risks to water quality, human and ecosystem health, and food production. Algae can produce toxic compounds, directly interfere with aquaculture species through (e.g.,) the production of foam [...] Read more.
Harmful algal blooms can negatively impact freshwater, estuarine, and coastal marine systems globally and pose serious risks to water quality, human and ecosystem health, and food production. Algae can produce toxic compounds, directly interfere with aquaculture species through (e.g.,) the production of foam or mucilage, as well as causing diseases and disorders in fish, and can result in hypoxic conditions when the bloom senesces. Application of US Environmental Protection Agency (USEPA) registered algaecides can be effective, scalable, and inexpensive, but there is growing interest in plant- or bacterial-derived compounds that do not require the use of chemicals such as hydrogen peroxide or copper. The algaecide C7X1 is a plant-based organic algaecide that proves effective against a wide variety of algae, including harmful algal species such as Microcystis, Heterosigma, and Pseudo-nitzschia. Performance is comparable to other USEPA-registered algaecides, with low to moderate extracellular toxin release and a potential lifetime of weeks in treated waters. The mode of action is inhibition of photosynthesis, suggesting that direct off-target impacts on zooplankton and other organisms would be minimal. Full article
Show Figures

Figure 1

20 pages, 3353 KiB  
Article
Improvements in Turbulent Jet Particle Dispersion Modeling and Its Validation with DNS
by Ege Batmaz, Florian Webner, Daniel Schmeling and Claus Wagner
Atmosphere 2025, 16(6), 637; https://doi.org/10.3390/atmos16060637 - 23 May 2025
Viewed by 492
Abstract
Particle dispersion models (PDMs) are essential to capture the influence of unresolved turbulent eddies on particle transport in computational fluid dynamics (CFD) simulations. However, the validation of these models remains challenging, especially when relying on experimental data or CFD simulations that are based [...] Read more.
Particle dispersion models (PDMs) are essential to capture the influence of unresolved turbulent eddies on particle transport in computational fluid dynamics (CFD) simulations. However, the validation of these models remains challenging, especially when relying on experimental data or CFD simulations that are based on turbulence models. In this work, we use time-averaged data obtained in a direct numerical simulation (DNS) instead of relying on turbulence models to model particle dispersion. In addition, a new particle dispersion model is presented, referred to as the limited particle–eddy interaction time (LPI) model. For a detailed and systematic evaluation of the new LPI model, we compare its performance with that of other commonly used models, such as the mean particle–eddy interaction time (MPI) model implemented in OpenFOAM® and the randomized particle–eddy interaction time (RPI) model from the literature. The MPI model shows good agreement with the DNS for the largest particles tested (Stokes number, St = 0.2) but exhibits erratic and unphysical trajectories for smaller particles (St ≤ 0.05). To mitigate this erratic behavior, we have adjusted the eddy interaction time in the new LPI model. Full article
(This article belongs to the Special Issue Numerical Simulation of Aerosol Microphysical Processes (2nd Edition))
Show Figures

Figure 1

18 pages, 12373 KiB  
Article
Physical Properties of Foamed Concrete Based on Plaster Mortar with Polystyrene Granulate and Synthetic Foaming Agent
by Monika Gwóźdź-Lasoń, Wacław Brachaczek, Marta Kadela and Alfred Kukiełka
Materials 2025, 18(9), 2115; https://doi.org/10.3390/ma18092115 - 5 May 2025
Cited by 1 | Viewed by 623
Abstract
According to EU directives, it is necessary to improve the energy consumption of buildings. Therefore, the aim of this study was to improve the physical properties of foamed concrete produced using plaster mortar. For this purpose, polystyrene granulate with a bulk density of [...] Read more.
According to EU directives, it is necessary to improve the energy consumption of buildings. Therefore, the aim of this study was to improve the physical properties of foamed concrete produced using plaster mortar. For this purpose, polystyrene granulate with a bulk density of 13 kg/m3 in amounts of 4, 7, and 10 g per 1 kg of plaster mortar and a foaming agent in amounts of 2, 4, and 6% of the cement mass were used. The density, thermal conductivity coefficient, compressive and flexural strengths, and water absorption coefficient due to capillary action were determined. Based on the obtained results, it can be concluded that the density, thermal conductivity coefficient, and water absorption coefficient due to capillary action decreased with an increase in the content of polystyrene granulate addition, which is a beneficial outcome. However, at the same time, a reduction in mechanical properties was demonstrated. With an increase in the content of the foaming agent, the density and thermal and mechanical properties decreased. The water absorption coefficient due to capillary action increased with the foaming agent content for samples with the addition of polystyrene granulate. However, the coefficient for all the tested samples was lower than that for the base sample. Full article
Show Figures

Figure 1

22 pages, 2259 KiB  
Review
Leading Techniques for Per- and Polyfluoroalkyl Substances (PFASs) Remediating in Water and Wastewater
by Zhenzhen Chen, Yaqian Zhao, Ting Wei and Cheng Shen
Water 2025, 17(9), 1319; https://doi.org/10.3390/w17091319 - 28 Apr 2025
Cited by 1 | Viewed by 1484
Abstract
Per- and polyfluoroalkyl substances (PFASs), a class of synthetic organic compounds since the 1940s, have become widespread and persistent environmental pollutants. Due to their high chemical stability, bioaccumulation potential, and extensive industrial and household applications, PFASs have drawn significant attention from researchers worldwide [...] Read more.
Per- and polyfluoroalkyl substances (PFASs), a class of synthetic organic compounds since the 1940s, have become widespread and persistent environmental pollutants. Due to their high chemical stability, bioaccumulation potential, and extensive industrial and household applications, PFASs have drawn significant attention from researchers worldwide in recent years, while PFASs have become a hot topic, and the publications are updated very quickly. Various remediation technologies, including adsorption, pyrolysis, biodegradation, and advanced oxidation, have been developed and treated as the leading techniques to mitigate PFAS contamination. Other alternative techniques are foam fractionation, constructed wetland, and piezoelectric ball milling. However, the effectiveness of these methods varies depending on their reaction mechanisms, operational conditions, and environmental factors. This review provides a comprehensive summary of the latest advancements in PFASs removal strategies, highlighting their advantages, limitations, and potential synergies. Furthermore, future research directions and technological developments are discussed to explore more efficient, sustainable, and cost-effective solutions for PFASs remediation. Full article
(This article belongs to the Special Issue Constructed Wetlands and Emerging Pollutants)
Show Figures

Figure 1

21 pages, 6572 KiB  
Article
Flexural Behavior of Lightweight Sandwich Panels with Rice Husk Bio-Aggregate Concrete Core and Sisal Fiber-Reinforced Foamed Cementitious Faces
by Daniele Oliveira Justo dos Santos, Paulo Roberto Lopes Lima and Romildo Dias Toledo Filho
Materials 2025, 18(8), 1850; https://doi.org/10.3390/ma18081850 - 17 Apr 2025
Cited by 1 | Viewed by 537
Abstract
The development of sustainable and energy-efficient construction materials is crucial for mitigating the growing environmental impact of the building sector. This study introduces a new lightweight sandwich panel, featuring a core made of lightweight concrete with rice husk bio-aggregate (RHB) and faces constructed [...] Read more.
The development of sustainable and energy-efficient construction materials is crucial for mitigating the growing environmental impact of the building sector. This study introduces a new lightweight sandwich panel, featuring a core made of lightweight concrete with rice husk bio-aggregate (RHB) and faces constructed from foamed cementitious composites. The innovative design aims to promote sustainability by utilizing agro-industrial waste while maintaining satisfactory mechanical performance. Composites were produced with 4% short sisal fibers and matrices containing 15%, 20%, and 30% foaming agent. These composites were evaluated for density, direct compression, and four-point bending. It was found that the mixture with 20% foam volume demonstrated the highest efficiency for use in the production of sandwich panels. Concrete mixtures containing 50%, 60%, and 70% rice husk bio-aggregates were tested for density and compressive strength and used in the production of lightweight sandwich panels with densities ranging from 670 to 1000 kg/m3. Mechanical evaluation under flexion and shear indicated that the presence of fibers inhibited crack propagation in the face, enabling the creation of lightweight sandwich panels with deflection-hardening behavior. On the other hand, the increase in RHB content led to a reduction in the ultimate stress on the face, the core shear ultimate stress, and the toughness of the sandwich panels. Full article
(This article belongs to the Special Issue Lightweight and High-Strength Sandwich Panel (2nd Edition))
Show Figures

Figure 1

18 pages, 3306 KiB  
Article
Synthesis of Geopolymer-Based Fenton-like Catalytic Tubular Membrane for Dye Wastewater Treatment
by Pei Xiao, Qing Yang, Xingfa Deng, Kunyu Chu and Xuemin Cui
Separations 2025, 12(4), 99; https://doi.org/10.3390/separations12040099 - 17 Apr 2025
Viewed by 572
Abstract
Membrane technology is widely used in various aspects of wastewater treatment; however, single membrane technology has a series of disadvantages, such as high selectivity, poor recycling performance, and susceptibility to contamination. In this study, a treatment method combining an advanced oxidation process and [...] Read more.
Membrane technology is widely used in various aspects of wastewater treatment; however, single membrane technology has a series of disadvantages, such as high selectivity, poor recycling performance, and susceptibility to contamination. In this study, a treatment method combining an advanced oxidation process and membrane separation technology was proposed, and a geopolymer-based Fenton-like catalytic tubular membrane (GFM) was prepared by using H2O2 as a blowing agent by the direct foaming method. It was shown that the optimum conditions for the preparation of the membrane were a water glass modulus of 1.8 M, the addition of foaming agent of 1 mL, and a thickness of the membrane of 6.5 mm, with a flux of 6942 L·m−2·h−1. Due to the characteristics of the tubular membrane, the possibility of adding hydrogen peroxide directly inside the membrane allows an optimal Fenton-like removal, which is better than outside the membrane, thus reducing the consumption of hydrogen peroxide. The tubular membrane has a multi-stage porous structure, high flux, and a high specific surface area (68.74 m2/g). The GFM/H2O2 Fenton-like system formed is capable of almost completely degrading all kinds of synthetic dyes under various stringent conditions, and the XRD, FTIR, and TG analyses and cycling tests showed that the GFM has excellent stability and a significant advantage in terms of reusability. Full article
(This article belongs to the Special Issue Application of Composite Materials in Wastewater Treatment)
Show Figures

Figure 1

Back to TopTop