Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (339)

Search Parameters:
Keywords = direct air cooling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2458 KiB  
Review
Vapor Compression Refrigeration System for Aircrafts: Current Status, Large-Temperature-Range Challenges and Emerging Auto-Cascade Refrigeration Technologies
by Hainan Zhang, Qinghao Wu, Shuo Feng, Sujun Dong and Zanjun Gao
Aerospace 2025, 12(8), 681; https://doi.org/10.3390/aerospace12080681 - 30 Jul 2025
Viewed by 303
Abstract
Modern aircraft increasingly utilizes highly integrated electronic equipment, driving continuously increasing heat dissipation demands. Vapor compression refrigeration systems demonstrate stronger alignment with future aircraft thermal management trends, leveraging their superior volumetric cooling capacity, high energy efficiency, and independence from engine bleed air. This [...] Read more.
Modern aircraft increasingly utilizes highly integrated electronic equipment, driving continuously increasing heat dissipation demands. Vapor compression refrigeration systems demonstrate stronger alignment with future aircraft thermal management trends, leveraging their superior volumetric cooling capacity, high energy efficiency, and independence from engine bleed air. This paper reviews global research progress on aircraft vapor compression refrigeration systems, covering performance optimization, dynamic characteristics, control strategies, fault detection, and international development histories and typical applications. Analysis identifies emerging challenges under large-temperature-range cooling requirements, with comparative assessment establishing zeotropic mixture auto-cascade vapor compression refrigeration systems as the optimal forward-looking solution. Finally, recognizing current research gaps, we propose future research directions for onboard auto-cascade vapor compression refrigeration systems: optimizing refrigerant mixtures for flight conditions, achieving efficient gas-liquid separation during variable overloads and attitude conditions, and developing model predictive control with intelligent optimization to ensure reliability. Full article
(This article belongs to the Special Issue Aerospace Human–Machine and Environmental Control Engineering)
Show Figures

Figure 1

13 pages, 3081 KiB  
Review
Surface Air-Cooled Oil Coolers (SACOCs) in Turbofan Engines: A Comprehensive Review of Design, Performance, and Optimization
by Wiktor Hoffmann and Magda Joachimiak
Energies 2025, 18(15), 4052; https://doi.org/10.3390/en18154052 - 30 Jul 2025
Viewed by 266
Abstract
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This [...] Read more.
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This review explores SACOC design principles, integration challenges, aerodynamic impacts, and performance trade-offs. Emphasis is placed on the balance between thermal efficiency and aerodynamic penalties such as pressure drop and flow distortion. Experimental techniques, including wind tunnel testing, are discussed alongside numerical methods, and Conjugate Heat Transfer modeling. Presented studies mostly demonstrate the impact of fin geometry and placement on both heat transfer and drag. Optimization strategies and Additive Manufacturing techniques are also covered. SACOCs are positioned to play a central role in future propulsion systems, especially in ultra-high bypass ratio and hybrid-electric architectures, where traditional cooling strategies are insufficient. This review highlights current advancements, identifies limitations, and outlines research directions to enhance SACOC efficiency in aerospace applications. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

15 pages, 9440 KiB  
Proceeding Paper
Mold Flow Analysis and Method of Injection Molding Technology of Safety Belt Outlet Cover
by Hao Jia, Yang Yang, Yi Li, Chengsi Shu and Jie You
Eng. Proc. 2025, 98(1), 42; https://doi.org/10.3390/engproc2025098042 - 30 Jul 2025
Viewed by 167
Abstract
We have improved the efficiency of the protection of occupants of cars by effectively reducing the injury and mortality rate caused by accidents when using safety belts. To ensure the protection efficiency of the safety belt outlet cover, we tested and adjusted the [...] Read more.
We have improved the efficiency of the protection of occupants of cars by effectively reducing the injury and mortality rate caused by accidents when using safety belts. To ensure the protection efficiency of the safety belt outlet cover, we tested and adjusted the following parameters: the filling time, flow-front temperature and switching pressure, injection position pressure, locking force, shear rate, shear force, air hole, melting mark, material flow freezing-layer factor, volume shrinkage rate during jacking out, coolant temperature and flow rate in the cooling stage, part temperature, mold temperature difference, deflection stage, warping deformation analysis, differential cooling, differential shrinkage, and directional effect. Full article
Show Figures

Figure 1

16 pages, 3079 KiB  
Article
Optimized Solar-Powered Evaporative-Cooled UFAD System for Sustainable Thermal Comfort: A Case Study in Riyadh, KSA
by Mohamad Kanaan, Semaan Amine and Mohamed Hmadi
Thermo 2025, 5(3), 26; https://doi.org/10.3390/thermo5030026 - 30 Jul 2025
Viewed by 333
Abstract
Evaporative cooling (EC) offers an energy-efficient alternative to direct expansion (DX) cooling but suffers from high water consumption. This limitation can be mitigated by pre-cooling incoming fresh air using cooler exhaust air via energy recovery. This study presents and optimizes a solar-driven EC [...] Read more.
Evaporative cooling (EC) offers an energy-efficient alternative to direct expansion (DX) cooling but suffers from high water consumption. This limitation can be mitigated by pre-cooling incoming fresh air using cooler exhaust air via energy recovery. This study presents and optimizes a solar-driven EC system integrated with underfloor air distribution (UFAD) to enhance thermal comfort and minimize water use in a temporary office in Riyadh’s arid climate. A 3D CFD model was developed and validated against published data to simulate indoor airflow, providing data for thermal comfort evaluation using the predicted mean vote model in cases with and without energy recovery. A year-round hourly energy analysis revealed that the solar-driven EC-UFAD system reduces grid power consumption by 93.5% compared to DX-based UFAD under identical conditions. Energy recovery further cuts annual EC water usage by up to 31.3%. Operational costs decreased by 84% without recovery and 87% with recovery versus DX-UFAD. Full article
Show Figures

Figure 1

35 pages, 3995 KiB  
Review
Recent Advancements in Latent Thermal Energy Storage and Their Applications for HVAC Systems in Commercial and Residential Buildings in Europe—Analysis of Different EU Countries’ Scenarios
by Belayneh Semahegn Ayalew and Rafał Andrzejczyk
Energies 2025, 18(15), 4000; https://doi.org/10.3390/en18154000 - 27 Jul 2025
Viewed by 626
Abstract
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) [...] Read more.
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) has emerged as a promising strategy to enhance HVAC efficiency. This review systematically examines the role of latent thermal energy storage using phase change materials (PCMs) in optimizing HVAC performance to align with EU climate targets, including the Energy Performance of Buildings Directive (EPBD) and the Energy Efficiency Directive (EED). By analyzing advancements in PCM-enhanced HVAC systems across residential and commercial sectors, this study identifies critical pathways for reducing energy demand, enhancing grid flexibility, and accelerating the transition to nearly zero-energy buildings (NZEBs). The review categorizes PCM technologies into organic, inorganic, and eutectic systems, evaluating their integration into thermal storage tanks, airside free cooling units, heat pumps, and building envelopes. Empirical data from case studies demonstrate consistent energy savings of 10–30% and peak load reductions of 20–50%, with Mediterranean climates achieving superior cooling load management through paraffin-based PCMs (melting range: 18–28 °C) compared to continental regions. Policy-driven initiatives, such as Germany’s renewable integration mandates for public buildings, are shown to amplify PCM adoption rates by 40% compared to regions lacking regulatory incentives. Despite these benefits, barriers persist, including fragmented EU standards, life cycle cost uncertainties, and insufficient training. This work bridges critical gaps between PCM research and EU policy implementation, offering a roadmap for scalable deployment. By contextualizing technical improvement within regulatory and economic landscapes, the review provides strategic recommendations to achieve the EU’s 2030 emissions reduction targets and 2050 climate neutrality goals. Full article
Show Figures

Figure 1

29 pages, 4447 KiB  
Article
Cooling Systems for High-Speed Machines—Review and Design Considerations
by Matthew Meier and Elias G. Strangas
Energies 2025, 18(15), 3954; https://doi.org/10.3390/en18153954 - 24 Jul 2025
Viewed by 493
Abstract
High-speed machines are attractive to many industries due to their small size and light weight, but present unique cooling challenges due to their increased loss and reduced surface area. Cooling system advancements are central to the development of faster, smaller machines, and as [...] Read more.
High-speed machines are attractive to many industries due to their small size and light weight, but present unique cooling challenges due to their increased loss and reduced surface area. Cooling system advancements are central to the development of faster, smaller machines, and as such, are constantly evolving. This paper presents a review of classical and state-of-the-art cooling systems. Each cooling method—air cooling, indirect liquid cooling, and direct liquid cooling—has potential use in cooling high-speed machines, but each comes with unique considerations, which are discussed. An example design process highlights the interdependence of the electromagnetic and thermal design choices, illustrating the necessity of integrating the electromagnetic and thermal designs in a holistic approach. Full article
(This article belongs to the Special Issue Advances in Permanent Magnet Synchronous Generator)
Show Figures

Figure 1

18 pages, 6767 KiB  
Article
Study on Air-Cooled Structure of Direct-Drive Outer-Rotor Permanent Magnet Synchronous Generator for Wind Power Generation
by Xudong Yang, Ke Li, Yiguang Chen, Haiying Lv and Jingjuan Du
Appl. Sci. 2025, 15(14), 8008; https://doi.org/10.3390/app15148008 - 18 Jul 2025
Viewed by 245
Abstract
Direct-drive permanent magnet synchronous generators (DD-PMSGs) have been widely adopted in wind power generation systems owing to their distinctive advantages, including direct-drive operation, high power density, and superior energy conversion efficiency. However, the high power density of the generator inevitably leads to heat [...] Read more.
Direct-drive permanent magnet synchronous generators (DD-PMSGs) have been widely adopted in wind power generation systems owing to their distinctive advantages, including direct-drive operation, high power density, and superior energy conversion efficiency. However, the high power density of the generator inevitably leads to heat generation issues, which affect the reliability of the generator. To address the thermal issues in the 4.5 MW direct-drive permanent magnet synchronous generator (DD-PMSG), this paper proposes a novel forced air-cooling ventilation system. Through comprehensive computational fluid dynamics (CFD) simulations and fundamental thermodynamic analysis, the cooling performance is systematically evaluated to determine the optimal width of the stator ventilation ducts. Furthermore, based on the temperature distribution of the stator and rotor, three optimization schemes for non-uniform core segments are proposed. By comparing the ventilation cooling performance under three structural schemes, the optimal structural scheme is provided for the generator. Finally, the feasibility of the heat dissipation scheme and the accuracy of the simulation calculations are verified by fabricating a prototype and setting up an experimental platform. The above conclusions and research results can provide some reference for the design of the core ventilation ducts structure of subsequent wind turbines. Full article
Show Figures

Figure 1

24 pages, 11312 KiB  
Article
Effect of Thermomechanical Processing on Porosity Evolution and Mechanical Properties of L-PBF AISI 316L Stainless Steel
by Patrik Petroušek, Róbert Kočiško, Andrea Kasperkevičová, Dávid Csík and Róbert Džunda
Metals 2025, 15(7), 789; https://doi.org/10.3390/met15070789 - 12 Jul 2025
Viewed by 325
Abstract
Thermomechanical processing has a significant impact on the porosity and mechanical properties of AISI 316L stainless steel produced by laser powder bed fusion (L-PBF). This work evaluated the effect of three heat treatment conditions: as-built (HT0), annealed at 650 °C for 3 h [...] Read more.
Thermomechanical processing has a significant impact on the porosity and mechanical properties of AISI 316L stainless steel produced by laser powder bed fusion (L-PBF). This work evaluated the effect of three heat treatment conditions: as-built (HT0), annealed at 650 °C for 3 h with air cooling (HT1), and annealed at 1050 °C for 1 h followed by water quenching (HT2), combined with cold and hot rolling at different strain levels. The most pronounced improvement was observed after 20% hot rolling followed by water quenching (HR + WQ), which reduced porosity to 0.05% and yielded the most spherical pores, with a circularity factor (fcircle) of 0.90 and an aspect ratio (AsR) of 1.57. At elevated temperatures, the matrix becomes more pliable, which promotes pore closure and helps reduce stress concentrations. On the other hand, applying heat treatment without causing deformation resulted in the pores growing and increasing porosity in the build direction. The fractography supported these findings, showing a transition from brittle to more ductile fracture surfaces. Heat treatment combined with plastic deformation effectively reduced internal defects and improved both structural integrity and strength. Full article
(This article belongs to the Special Issue Metal Forming and Additive Manufacturing)
Show Figures

Figure 1

42 pages, 4568 KiB  
Review
Comprehensive Review on Evaporative Cooling and Desiccant Dehumidification Technologies for Agricultural Greenhouses
by Fakhar Abbas, Muhammad Sultan, Muhammad Wakil Shahzad, Muhammad Farooq, Hafiz M. U. Raza, Muhammad Hamid Mahmood, Uzair Sajjad and Zhaoli Zhang
AgriEngineering 2025, 7(7), 222; https://doi.org/10.3390/agriengineering7070222 - 8 Jul 2025
Viewed by 1397
Abstract
Greenhouses are crucial for maintaining an ideal temperature and humidity level for plant growth; however, attaining ideal levels remains a challenge. Energy-efficient and sustainable alternatives are needed because traditional temperature/humidity control practices and vapor compression air conditioning systems depend on climate conditions and [...] Read more.
Greenhouses are crucial for maintaining an ideal temperature and humidity level for plant growth; however, attaining ideal levels remains a challenge. Energy-efficient and sustainable alternatives are needed because traditional temperature/humidity control practices and vapor compression air conditioning systems depend on climate conditions and harmful refrigerants. Advanced alternative technologies like evaporative cooling and desiccant dehumidification have emerged that maintain the ideal greenhouse temperature and humidity while using the least amount of energy. This study reviews direct evaporative cooling, indirect evaporative cooling, and Maisotsenko-cycle evaporative cooling (MEC) systems and solid and liquid desiccant dehumidification systems. In addition, integrated desiccant and evaporative cooling systems and hybrid systems are reviewed in this study. The results show that the MEC system effectively reduces the ambient temperature up to the ideal range while maintaining the humidity ratio, and both dehumidification systems effectively reduce the humidity level and improve evaporative cooling efficiency. The integrated systems and hybrid systems have the ability to increase energy efficiency and controlled climatic stability in greenhouses. Regular maintenance, initial system cost, economic feasibility, and system scalability are significant challenges to implement these advanced temperature and humidity control systems for greenhouses. These findings will assist agricultural practitioners, engineers, and researchers in seeking alternate efficient cooling methods for greenhouse applications. Future research directions are suggested to manufacture high-efficiency, low-energy consumption, and efficient greenhouse temperature control systems while considering the present challenges. Full article
Show Figures

Figure 1

25 pages, 5272 KiB  
Review
Research Progress of Heat Damage Prevention and Control Technology in Deep Mine
by Yujie Xu, Liu Chen, Jin Zhang and Haiwei Ji
Sustainability 2025, 17(13), 6200; https://doi.org/10.3390/su17136200 - 6 Jul 2025
Viewed by 345
Abstract
As mine mining extends to greater depths, the challenge of heat damage in high-temperature and high-humidity deep mines has emerged as a significant obstacle to the safe mining of deep mines. This paper reviews the causes of mine heat damage, evaluates heat damage [...] Read more.
As mine mining extends to greater depths, the challenge of heat damage in high-temperature and high-humidity deep mines has emerged as a significant obstacle to the safe mining of deep mines. This paper reviews the causes of mine heat damage, evaluates heat damage mechanisms, and explores deep mine cooling technologies. Traditional deep mine cooling technologies employ mechanical refrigeration to cool air. While these technologies can mitigate heat damage, they are associated with issues including high energy consumption, insufficient dehumidification, and significant cold loss. To address the high energy consumption and fully utilize geothermal resources, heat pump technology and combined cooling, heating, and power technology are employed to recover waste heat from deep mines, thereby achieving efficient mine cooling and energy utilization. To enhance the effectiveness of air dehumidification, the integration of deep dehumidification with mine cooling technology addresses the high humidity ratio in mine working faces. To enhance the refrigeration capacity of the system, liquid-phase-change refrigeration technology is employed to boost the refrigeration capacity. For the future development of deep mine cooling technology, this paper identifies four key directions: the integration of diverse technologies, collaboration cooling and geothermal mining, deep dehumidification and cooling, and intelligent control. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

27 pages, 2653 KiB  
Article
Temporal and Machine Learning-Based Principal Component and Clustering Analysis of VOCs and Their Role in Urban Air Pollution and Ozone Formation
by Balendra V. S. Chauhan, Maureen J. Berg, Ajit Sharma, Kirsty L. Smallbone and Kevin P. Wyche
Atmosphere 2025, 16(6), 724; https://doi.org/10.3390/atmos16060724 - 15 Jun 2025
Viewed by 615
Abstract
This study investigates the temporal dynamics, sources, and photochemical behaviour of key volatile organic compounds (VOCs) along Marylebone Road, London (1 January 2015–1 January 2023), a heavily trafficked urban area. Hourly measurements of benzene, toluene, ethylbenzene, ethene, propene, isoprene, propane, and ethyne, alongside [...] Read more.
This study investigates the temporal dynamics, sources, and photochemical behaviour of key volatile organic compounds (VOCs) along Marylebone Road, London (1 January 2015–1 January 2023), a heavily trafficked urban area. Hourly measurements of benzene, toluene, ethylbenzene, ethene, propene, isoprene, propane, and ethyne, alongside ozone (O3) and meteorological data, were analysed using correlation matrices, regression, cross-correlation, diurnal/seasonal analysis, wind-sector analysis, PCA (Principal Component Analysis), and clustering. Strong inter-VOC correlations (e.g., benzene–ethylbenzene: r = 0.86, R2 = 0.75; ethene–propene: r = 0.68, R2 = 0.53) highlighted dominant vehicular sources. Diurnal peaks of benzene, toluene, and ethylbenzene aligned with rush hours, while O3 minima occurred in early mornings due to NO titration. VOCs peaked in winter under low mixing heights, whereas O3 was highest in summer. Wind-sector analysis revealed dominant VOC emissions from SSW (south-southwest)–WSW (west-southwest) directions; ethyne peaked from the E (east)/ENE (east-northeast). O3 concentrations were highest under SE (southeast)–SSE (south-southeast) flows. PCA showed 39.8% of variance linked to traffic-related VOCs (PC1) and 14.8% to biogenic/temperature-driven sources (PC2). K-means clustering (k = 3) identified three regimes: high VOCs/low O3 in stagnant, cool air; mixed conditions; and low VOCs/high O3 in warmer, aged air masses. Findings highlight complex VOC–O3 interactions and stress the need for source-specific mitigation strategies in urban air quality management. Full article
(This article belongs to the Special Issue Air Pollution: Emission Characteristics and Formation Mechanisms)
Show Figures

Figure 1

19 pages, 5661 KiB  
Article
Coupled Temperature–Flow Field and Microstructure Numerical Simulation of the Solidification Process for Cu-3Ti-0.2Fe Alloy
by Jiangwei Hu, Qingjuan Wang, Kuaishe Wang, Wen Wang, Fengming Qiang and Longxin Li
Materials 2025, 18(11), 2478; https://doi.org/10.3390/ma18112478 - 25 May 2025
Viewed by 475
Abstract
This work investigates the time-dependent changes in temperature, flow, and solidification microstructure under various cooling conditions. The mechanism of the effects of different pouring temperatures on the morphology and evolution of the solidification microstructure is explored. During gradual cooling, the temperature distribution remained [...] Read more.
This work investigates the time-dependent changes in temperature, flow, and solidification microstructure under various cooling conditions. The mechanism of the effects of different pouring temperatures on the morphology and evolution of the solidification microstructure is explored. During gradual cooling, the temperature distribution remained consistent and the solid–liquid interface extended to its furthest extent. In contrast, water cooling generated the most pronounced temperature gradient at the solidification front, which was conducive to the development of columnar grains. Specifically, the maximum solidification rates at the center of the casting under the water-cooled copper mold, copper mold, and ceramic mold conditions were 2.71 mm/s, 1.45 mm/s, and 0.95 mm/s, respectively, with water cooling achieving the fastest rate. In the early stages of solidification, the flow velocity at the casting center was relatively high, and during slow cooling, the molten material tended to flow toward the surface. When air cooling was applied, the molten material at the center migrated outward, while under water cooling, the fluid moved in an upward direction. At a heat transfer coefficient of 100 W/(m2·K), the alloy primarily formed equiaxed grains; however, at 5000 W/(m2·K), the proportion of columnar grains increased significantly, and the average grain area expanded from 3.664 × 10−6 m2 to 4.441 × 10−6 m2. Additionally, as the pouring temperature increased from 1100 °C to 1200 °C, the number of grains decreased, while the average radius grew from 1.665 × 10−3 m to 1.820 × 10−3 m, resulting in a reduced fraction of equiaxed grains. This study provides valuable theoretical insights for optimizing the solidification process of this particular alloy. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

24 pages, 4239 KiB  
Article
Thermodynamic and Exergetic Evaluation of a Newly Designed CSP Driven Cooling-Desalination Cogeneration System
by Hassan F. Elattar, Abdul Khaliq, Bassam S. Aljohani, Abdullah M. A. Alsharif and Hassanein A. Refaey
Processes 2025, 13(5), 1589; https://doi.org/10.3390/pr13051589 - 20 May 2025
Viewed by 541
Abstract
This investigation attempts to develop a tower solar collector-based system designed for the cogeneration of cooling and desalination. The traditional organic Rankine cycle (ORC) integrated with the ejector refrigeration cycle generates limited power and cooling at a single temperature. Acknowledging their [...] Read more.
This investigation attempts to develop a tower solar collector-based system designed for the cogeneration of cooling and desalination. The traditional organic Rankine cycle (ORC) integrated with the ejector refrigeration cycle generates limited power and cooling at a single temperature. Acknowledging their limitations, our present study uses an organic flash cycle (OFC) supported by solar heat combined with the two-phase ejector cycle and the reverse osmosis (RO) desalination unit. Since the OFC turbine is fed with two extra streams of fluid, therefore, it provides greater power to run the compressor of the ejector and pumps of the RO unit, resulting in the production of cooling at two different temperatures (refrigeration and air conditioning) and a higher mass flow rate of fresh water. A mathematical model is employed to assess the impact of coil curvature ratio, Rib height, and direct normal irradiation (DNI) on the temperature of the collector’s oil outlet. ANSYS-FLUENT conducts numerical simulations through computational fluid dynamics (CFD) analysis. The results indicate an ultimate increase in oil outlet temperature of 45% as the DNI increased from 450 to 1000 W/m2 at a curvature ratio of 0.095 when employing the 1st Rib. Further, a steady-state energy and exergy analysis is conducted to evaluate the performance of the proposed cogeneration, with different design parameters like DNI, coil curvature ratio, rib height, and OFC turbine inlet pressure. The energetic and exergetic efficiencies of the cogeneration system at DNI of 800 W/m2 are obtained as 16.67% and 6.08%, respectively. Exergetic assessment of the overall system shows that 29.57% is the exergy produced as cooling exergy, and the exergy accompanied by freshwater, 68.13%, is the exergy destroyed, and 2.3% is the exergy loss. The solar collector exhibits the maximum exergy destruction, followed by the ejector and RO pumps. Integrating multiple technologies into a system with solar input enhances efficiency, energy sustainability, and environmental benefits. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 4199 KiB  
Article
Energy, Exergic and Economic Analyses of a Novel Hybrid Solar–Gas System for Producing Electrical Power and Cooling
by Qun Ge, Xiaoman Cao, Fumin Guo, Jianpeng Li, Cheng Wang and Gang Wang
Energies 2025, 18(10), 2480; https://doi.org/10.3390/en18102480 - 12 May 2025
Viewed by 308
Abstract
This paper aims to evaluate the feasibility and performances of a novel hybrid solar–gas system, which provides electric power and cooling. By using Ebsilon (V15.0) software, the operation, advanced exergic and economic analyses of this hybrid system are conducted. The analysis results show [...] Read more.
This paper aims to evaluate the feasibility and performances of a novel hybrid solar–gas system, which provides electric power and cooling. By using Ebsilon (V15.0) software, the operation, advanced exergic and economic analyses of this hybrid system are conducted. The analysis results show that the total electric power and energy efficiency of the hybrid system are 96.0 MW and 45.8%. The solar energy system contributes an electric power of 9.0 MW. The maximum cooling load is 69.66 MW. The exergic loss and exergic efficiency of the whole hybrid system are 119.1 MW and 44.6%. The combustion chamber (CC) has the maximum exergic loss (56.5 MW). The exergic loss and exergic efficiency of the solar direct steam generator (SDSG) are 28.5 MW and 36.2%. For the air compressor (AC), CC, heat recovery steam generator (HRSG) and refrigeration system (CSS), a considerable part of the exergic loss is exogenous. The avoidable exergic loss of the CC is 11.69 MW. For the SDSG, there is almost no avoidable exergic loss. Economic analysis shows that for the hybrid system, the levelized cost of energy is 0.08125 USD/kWh, and the dynamic recycling cycle is 5.8 years, revealing certain economic feasibility. The results of this paper will contribute to the future research and development of solar–gas hybrid utilization technology to a certain extent. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 10908 KiB  
Article
Experimental and Numerical Study of the Heat Dissipation of the Electronic Module in an Air Conditioner Outdoor Unit
by Yi Peng, Su Du, Qingfeng Bie, Dechang Wang, Qinglu Song and Sai Zhou
Energies 2025, 18(10), 2439; https://doi.org/10.3390/en18102439 - 9 May 2025
Viewed by 479
Abstract
Effective thermal management of electronic modules is crucial to the reliable operation of variable frequency air conditioners. For this reason, two types of plate-finned heat sinks of electronic modules were selected. The experiments utilized ceramic heating plates to simulate chip heating, conducted in [...] Read more.
Effective thermal management of electronic modules is crucial to the reliable operation of variable frequency air conditioners. For this reason, two types of plate-finned heat sinks of electronic modules were selected. The experiments utilized ceramic heating plates to simulate chip heating, conducted in an enthalpy difference laboratory with controlled environments. Four installation cases were analyzed to evaluate the impact of heat sink orientation, airflow direction, and structural layout. The results showed that when multiple chips were arranged on the same heat dissipation substrate, the heat dissipation process of the chips would be coupled with each other, and the rational layout of the chips played an important role in heat dissipation. In the case of cooling air impacting the jet, the heat dissipation performance of the heat sink was significantly improved, and the heat transfer coefficient of the heat sink was as high as 316.5 W·m−2·°C−1, representing a 6.9% improvement over conventional designs (case I: 296.1 W·m⁻2·°C⁻1). The maximum temperature of the chips could be reduced by 11.1%, which is 10.1 °C lower. This study will provide a reference for the optimization design of the heat sink of the electric control module in inverter air conditioners. Full article
Show Figures

Figure 1

Back to TopTop