Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = dipeptidyl peptidase IV inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2313 KB  
Article
Combined Treatment with Evogliptin and Temozolomide Alters miRNA Expression but Shows Limited Additive Effect on Glioma
by Seung Yoon Song, Keun Soo Lee, Jung Eun Lee, Juwon Ahn, Jaejoon Lim and Seung Ho Yang
Int. J. Mol. Sci. 2025, 26(19), 9508; https://doi.org/10.3390/ijms26199508 - 28 Sep 2025
Viewed by 650
Abstract
Dipeptidyl-peptidase IV (DPP4) inhibitors have shown potential anti-tumor properties. This study investigates the therapeutic potential of evogliptin, a DPP4 inhibitor, both as a single agent and in combination with temozolomide (TMZ), in glioma models. In vitro studies were performed using U87 and U373 [...] Read more.
Dipeptidyl-peptidase IV (DPP4) inhibitors have shown potential anti-tumor properties. This study investigates the therapeutic potential of evogliptin, a DPP4 inhibitor, both as a single agent and in combination with temozolomide (TMZ), in glioma models. In vitro studies were performed using U87 and U373 glioma cell lines exposed to different concentrations of TMZ (250, 500 μM) and evogliptin (250, 500 ng/mL), either alone or together, for 24, 48, and 72 h. Cell viability was determined with the MTT assay. In vivo effectiveness was tested in a xenograft mouse model treated with intraperitoneal injections of evogliptin (60 mg/k g/day), TMZ (15 mg/kg/day), or their combination over 3 weeks. The combination of TMZ and evogliptin markedly reduced cell viability compared to single-agent treatments. DPP4 mRNA levels decreased more substantially with combination therapy. miRNA expression profiling with Affymetrix arrays indicated that certain miRNAs, such as miR-4440 and miR-6780b-5p, were upregulated after treatment with evogliptin or the combination regimen, whereas others were downregulated. These miRNAs could play a role in limiting glioma growth through DPP4 regulation. In the animal model, evogliptin alone did not provide a survival advantage. Analysis of TCGA data showed that glioma patients with decreased DPP4 expression had improved survival rates. The co-administration of evogliptin and temozolomide resulted in distinct miRNA profile changes. Nevertheless, both in vitro and in vivo, the added cytotoxicity from the combination was minimal. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

22 pages, 1038 KB  
Review
Bioactivities Derived from Dry-Cured Ham Peptides: A Review
by Noelia Hernández Correas, Andrea M. Liceaga, Adela Abellán, Beatriz Muñoz-Rosique and Luis Tejada
Antioxidants 2025, 14(8), 1011; https://doi.org/10.3390/antiox14081011 - 18 Aug 2025
Viewed by 1357
Abstract
Dry-cured ham is a traditional food in the Mediterranean diet, which, in addition to its sensory qualities, is a natural source of bioactive peptides generated during the curing process through the action of endogenous enzymes on muscle and sarcoplasmic proteins. These low-molecular-weight peptides [...] Read more.
Dry-cured ham is a traditional food in the Mediterranean diet, which, in addition to its sensory qualities, is a natural source of bioactive peptides generated during the curing process through the action of endogenous enzymes on muscle and sarcoplasmic proteins. These low-molecular-weight peptides have attracted growing interest due to their multiple bioactivities, including antihypertensive, antioxidant, antimicrobial, antidiabetic, and anti-inflammatory effects described in vitro, in vivo, and in preliminary human studies. The identification of specific sequences, such as AAPLAP, KPVAAP, and KAAAAP (ACE inhibitors), SNAAC and GKFNV (antioxidants), RHGYM (antimicrobial), and AEEEYPDL and LGVGG (dipeptidyl peptidase-IV and α-glucosidase inhibitors), has been possible thanks to the use of peptidomics techniques, tandem mass spectrometry, and bioinformatics tools that allow their activity to be characterized, their digestive stability to be predicted, and their bioavailability to be evaluated. This review article summarizes current knowledge on the bioactivities of peptides derived from dry-cured ham, advances in their functional characterization, and challenges associated with their application in functional foods and nutraceuticals, with the aim of providing a comprehensive overview of their potential in health promotion and chronic disease prevention. Full article
(This article belongs to the Special Issue Antioxidant Peptides)
Show Figures

Figure 1

19 pages, 628 KB  
Review
Bradykinin-Mediated Angioedema Induced by Drugs
by Chiara Suffritti, Samantha Chan, Anne Lise Ferrara, Eralda Lekli, Francesco Palestra, Gülseren Tuncay, Stefania Loffredo and Maria Bova
J. Clin. Med. 2025, 14(16), 5712; https://doi.org/10.3390/jcm14165712 - 12 Aug 2025
Cited by 3 | Viewed by 3164
Abstract
Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) are among the most widespread drugs for the prevention of cardiovascular mortality and morbidity. Nevertheless, they are known to cause bradykinin (BK)-mediated angioedema (AE), a paroxysmal, localized, self-limiting, and potentially fatal swelling of [...] Read more.
Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) are among the most widespread drugs for the prevention of cardiovascular mortality and morbidity. Nevertheless, they are known to cause bradykinin (BK)-mediated angioedema (AE), a paroxysmal, localized, self-limiting, and potentially fatal swelling of the subcutaneous and/or submucosal tissue, due to a temporary increase in vascular permeability. Unlike hereditary angioedema (HAE), which can be mediated similarly by BK, no diagnostic tools, guidelines, or drugs have yet been approved for the diagnosis and treatment of acute non-allergic drug-induced AE. Besides ACEIs and ARBs, inhibitors of dipeptidyl peptidase-IV, neprilysin inhibitors, and tissue plasminogen activators are known to cause AE as an adverse effect. Currently, there are insufficient data on the prevention of AE caused by pharmacological therapies. In addition, the molecular mechanisms underlying BK-mediated AE caused by drugs, which are discussed here, are not fully explained. Specific approved drugs and a structured diagnostic workflow are unmet needs and are required for the management of this kind of AE. The aim of this review is to provide physicians with accurate knowledge of potentially life-threatening drug reactions so that they can be better understood and managed. Full article
(This article belongs to the Section Vascular Medicine)
Show Figures

Figure 1

13 pages, 1672 KB  
Article
In Vitro Assessment of the Bioaccessibility and Hypoglycemic Properties of Essential Amino Acids Blend: Implication for Diabetes Management
by Lorenza d’Adduzio, Melissa Fanzaga, Maria Silvia Musco, Marta Sindaco, Paolo D’Incecco, Giovanna Boschin, Carlotta Bollati and Carmen Lammi
Nutrients 2025, 17(16), 2606; https://doi.org/10.3390/nu17162606 - 11 Aug 2025
Viewed by 1334
Abstract
Background/Objectives: Essential amino acid (EAA) supplementation is often employed in sportive and clinical nutrition due to EAAs’ role in muscle mass maintenance and growth. EAAs are also involved in insulin and glucagone regulation in diabetes management, but only few reports investigate their possible [...] Read more.
Background/Objectives: Essential amino acid (EAA) supplementation is often employed in sportive and clinical nutrition due to EAAs’ role in muscle mass maintenance and growth. EAAs are also involved in insulin and glucagone regulation in diabetes management, but only few reports investigate their possible implication as dipeptidyl peptidase-IV (DPP-IV) inhibitors and their effect on the stability and secretion of enteroendocrine hormones. A blend of EAAs (called GAF) available as a food supplement, in a specific qualitative and quantitative ratio, was investigated to address its in vitro bioaccessibility, its hypoglycemic properties in vitro and in situ on cellular models, and its safety on intestinal Caco-2 cells. Methods: GAF was subjected to the INFOGEST static digestion protocol, producing the iGAF sample. iGAf DPP-IV inhibitory properties were investigated both in vitro and in situ on Caco-2 cells. Then, STC-1 enteroendocrine cells were employed alone and in co-culture with Caco-2 cells to evaluate iGAF’s impact on glucagon-like peptide 1 (GLP-1) hormone secretion. Results: The study demonstrates that the present EAAs blend is stable and bioaccessible after simulated gastrointestinal digestion, and it is safe at the intestinal cellular level. It inhibits DPP-IV enzyme both in vitro and in situ and promotes GLP-1 secretion by enteroendocrine cells. Conclusions: The sample demonstrated safety at the intestinal level and showed hypoglycemic properties by acting on a dual synergic mechanism that involves DPP-IV enzyme inhibition and GLP-1 hormone stimulation. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

23 pages, 2412 KB  
Article
DPPPRED-IV: An Ensembled QSAR-Based Web Server for the Prediction of Dipeptidyl Peptidase 4 Inhibitors
by Laureano E. Carpio, Marta Olivares, Rita Ortega-Vallbona, Eva Serrano-Candelas, Yolanda Sanz and Rafael Gozalbes
Int. J. Mol. Sci. 2025, 26(12), 5579; https://doi.org/10.3390/ijms26125579 - 11 Jun 2025
Viewed by 1431
Abstract
Type 2 diabetes mellitus (T2DM) is a complex and prevalent metabolic disorder, and dipeptidyl peptidase 4 (DPP4) inhibitors have proven effective, yet the identification of novel inhibitors remains challenging due to the vastness of chemical space. In this study, we developed DPPPRED-IV, a [...] Read more.
Type 2 diabetes mellitus (T2DM) is a complex and prevalent metabolic disorder, and dipeptidyl peptidase 4 (DPP4) inhibitors have proven effective, yet the identification of novel inhibitors remains challenging due to the vastness of chemical space. In this study, we developed DPPPRED-IV, a web-based ensembled system integrating both binary classification and continuous regression Quantitative Structure Activity Relationships (QSAR) models to predict human DPP4 inhibitory activity. A curated dataset of 4 676 ChEMBL compounds was subjected to genetic algorithm descriptor selection and multiple machine learning algorithms; classification models were combined via a soft voting ensemble, while regression models estimated IC50 values. All models underwent external 10-fold cross-validation and applicability domain analysis. The final models were integrated into a user-friendly web server, allowing predictions from SMILES inputs. Experimental testing of 29 MolPort compounds at 1.5 µM confirmed that 14 predicted actives exhibited significant inhibition, supporting the tool’s performance in early-stage screening. DPPPRED IV is freely available within the ChemoPredictionSuite and offers a resource to accelerate decision making, reduce costs and minimize animal use in T2DM drug discovery. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: "Enzyme Inhibition")
Show Figures

Figure 1

14 pages, 677 KB  
Article
Renal and Safety Outcomes of SGLT2 Inhibitors in Patients with Type 2 Diabetes: A Nationwide Observational Cohort Study
by Junhyuk Chang, Chungsoo Kim, Heejung Choi, Rae Woong Park and Sukhyang Lee
J. Clin. Med. 2025, 14(10), 3349; https://doi.org/10.3390/jcm14103349 - 12 May 2025
Viewed by 1944
Abstract
Background/Objectives: Evidence on the renal benefits and safety of sodium–glucose cotransporter 2 inhibitors (SGLT2i) in the Asia region is still lacking. This study aimed to evaluate the renal and safety outcomes of SGLT2is compared with dipeptidyl peptidase-4 inhibitors (DPP4i) using real-world data. [...] Read more.
Background/Objectives: Evidence on the renal benefits and safety of sodium–glucose cotransporter 2 inhibitors (SGLT2i) in the Asia region is still lacking. This study aimed to evaluate the renal and safety outcomes of SGLT2is compared with dipeptidyl peptidase-4 inhibitors (DPP4i) using real-world data. Methods: A retrospective cohort study was conducted using the nationwide claims data in Republic of Korea. We evaluated kidney outcomes (any new-onset kidney events, acute kidney injury (AKI), chronic kidney disease (CKD), and kidney failure) as primary outcomes and safety outcomes (infection, hemodynamic adverse events, and fracture). Propensity score matching was used to adjust confounders, and the hazard ratios were calculated using the Cox proportional hazards model. Results: The study included 13,649 patients in the SGLT2i group and 35,043 in the DPP4i group after the matching. The SGLT2i group had a lower risk of kidney diseases, AKI, and CKD (HR 0.88 [0.61–0.74]) than the DPP4i group. For secondary outcomes, the risk of genital infection was higher (HR 2.38 [2.12–2.68]), and the risk of hyperkalemia was lower in the SGLT2i group than in the DPP4i group (HRs 0.49 [0.36–0.67]). Conclusions: The SGLT2 inhibitors had a lower risk of new-onset kidney outcomes and CKD than the DPP4 inhibitors. A high incidence of genital infection and a low incidence of hyperkalemia were shown in the SGLT2 inhibitor. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Graphical abstract

15 pages, 3850 KB  
Article
3-(3-Azabicyclo[2, 2, 1]heptan-2-yl)-1,2,4-oxadiazoles as Novel Potent DPP-4 Inhibitors to Treat T2DM
by Tatiana V. Zinevich, Ivan O. Maslov, Olga G. Kirichenko, Sergey V. Shorshnev, Maxim A. Gureev, Fedor M. Dolgushin, Yuri B. Porozov and Vladimir M. Trukhan
Pharmaceuticals 2025, 18(5), 642; https://doi.org/10.3390/ph18050642 - 28 Apr 2025
Cited by 1 | Viewed by 1759
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease with global implications, necessitating effective management strategies. Dipeptidyl peptidase IV (DPP-4) inhibitors have shown promise as potent agents for T2DM treatment. Methods: This study combines chemical synthesis, molecular modelling, and [...] Read more.
Background: Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease with global implications, necessitating effective management strategies. Dipeptidyl peptidase IV (DPP-4) inhibitors have shown promise as potent agents for T2DM treatment. Methods: This study combines chemical synthesis, molecular modelling, and inhibitory activity assays to characterise the structure–activity relationship of novel isomeric 1,2,4-oxadiazole-substituted derivatives of the 2-azabicyclo[2.2.1]heptane scaffold acylated with (R)-3-amino-4-(2,4,5-trifluorophenyl)butanoic acid. Results: In this article, we demonstrate the efficacy of new compounds as robust inhibitors of DPP-4. The attempts to further modify neogliptin (our lead compound described previously) resulted in a more potent DPP-4 inhibitor 9a (IC50 = 4.3 nM), which did not mediate any substantial inhibition of DPP-8 and DPP-9. Conclusions: This study demonstrates that pseudo peptides incorporating (R)-3-amino-4-(2,4,5-trifluorophenyl)butanoic acid, a 2-aza-bicyclo[2.2.1]heptane moiety, and 1,2,4-oxadiazole substituents act as potent and selective DPP-4 inhibitors. By the stereochemical refinement of oxadiazole derivatives of neogliptin, we discovered compound 9a, a strong candidate for further development in T2DM treatment. Full article
Show Figures

Figure 1

17 pages, 650 KB  
Review
Therapeutic Effects of GLP-1 Receptor Agonists and DPP-4 Inhibitors in Neuropathic Pain: Mechanisms and Clinical Implications
by Yaswanth Kuthati, Venkata Naga Goutham Davuluri and Chih-Shung Wong
Biomolecules 2025, 15(5), 622; https://doi.org/10.3390/biom15050622 - 26 Apr 2025
Cited by 10 | Viewed by 7630
Abstract
Glucagon-like peptide-1 (GLP-1) is a peptide hormone secreted by the small intestine upon food intake. GLP-1 enhances insulin secretion, suppresses glucagon release, and promotes satiety, resulting in reduced food consumption and subsequent weight loss. Endogenous GLP-1 has a very short half-life and is [...] Read more.
Glucagon-like peptide-1 (GLP-1) is a peptide hormone secreted by the small intestine upon food intake. GLP-1 enhances insulin secretion, suppresses glucagon release, and promotes satiety, resulting in reduced food consumption and subsequent weight loss. Endogenous GLP-1 has a very short half-life and is rapidly degraded by the enzyme dipeptidyl-peptidase-IV (DPP-4). To address this limitation, GLP-1 receptor agonists (GLP-1RAs) and DPP-4 inhibitors (DPP-4is) were developed and have demonstrated potency in clinical practice. In recent years, GLP-1RA and DPP4-i therapies are known to have pleiotropic effects, such as a reduction in oxidative stress, autophagy regulation, metabolic reprogramming, enhancement of anti-inflammatory signaling, regulation of gene expression, and being neuroprotective. These effects imply a therapeutic perspective for GLP-1RA and DPP-4i therapies in neuropathic pain treatment. Preclinical and clinical studies increasingly support the hypothesis that these therapies may alleviate neuropathic pain by targeting multiple mechanisms that induce neuropathic pain, such as inflammation, oxidative stress, and mitochondrial dysfunction. This review explores the mechanisms by which GLP-1RAs and DPP-4is alleviate neuropathic pain. It also highlights current advancements in incretin research, focusing on the therapeutic effects of GLP-1RAs and DPP-4-is for neuropathic pain. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

14 pages, 1653 KB  
Article
Detection of Bioactive Peptides’ Signature in Podolica Cow’s Milk
by Rosario De Fazio, Antonella Di Francesco, Pierluigi Aldo Di Ciccio, Vincenzo Cunsolo, Domenico Britti, Carmine Lomagistro, Paola Roncada and Cristian Piras
Foods 2025, 14(5), 877; https://doi.org/10.3390/foods14050877 - 4 Mar 2025
Viewed by 1527
Abstract
The aim of this study was to identify and characterize the bioactive peptide profile of Podolica cow’s milk. This dairy product is known for its nutritional properties related to the presence of peculiar lipids and is a typical breed traditionally reared in southern [...] Read more.
The aim of this study was to identify and characterize the bioactive peptide profile of Podolica cow’s milk. This dairy product is known for its nutritional properties related to the presence of peculiar lipids and is a typical breed traditionally reared in southern Italy. Using top-down peptidomics, we identified 2213 peptides in milk samples from four different farms, with 19 matching bioactive sequences. Bioactivities include dipeptidyl peptidase-IV (DPP-IV) inhibition, angiotensin-converting enzyme (ACE) inhibition, antioxidant activity, enhanced calcium uptake, and other peptides with potential antimicrobial effects. DPP-IV-inhibitory peptides (e.g., LDQWLCEKL and VGINYWLAHK) suggest potential for type 2 diabetes management, while ACE inhibitors (such as YLGY and FFVAPFPEVFGK) could support cardiovascular health by reducing hypertension. Antimicrobial peptides such as SDIPNPIGSENSEK and VLNENLLR showed broad spectrum of activity against various harmful microorganisms, positioning Podolica milk as a promising source for natural antimicrobial agents. Additionally, peptides with osteoanabolic, antianxiety, and immunomodulatory properties further highlight the multifaceted health benefits associated with this type of milk. Our findings underline the functional richness of Podolica milk peptides with various bioactivity properties, which could enhance the value of derived dairy products and contribute to sustainable agricultural practices. Future research will aim to explore these bioactivity properties in vivo, establishing a foundation for functional foods and supplements based on Podolica milk. Full article
Show Figures

Figure 1

36 pages, 10433 KB  
Review
Synthetic Approaches to Novel DPP-IV Inhibitors—A Literature Review
by Valentin Petrov, Teodora Aleksandrova and Aleksandar Pashev
Molecules 2025, 30(5), 1043; https://doi.org/10.3390/molecules30051043 - 25 Feb 2025
Cited by 3 | Viewed by 5241
Abstract
Dipeptidyl peptidase IV (DPP-IV) is a serine protease whose inhibition has been an object of considerable interest in the context of developing novel treatments for type 2 diabetes mellitus. The development of novel DPP-IV inhibitors from natural or synthetic origin has seen a [...] Read more.
Dipeptidyl peptidase IV (DPP-IV) is a serine protease whose inhibition has been an object of considerable interest in the context of developing novel treatments for type 2 diabetes mellitus. The development of novel DPP-IV inhibitors from natural or synthetic origin has seen a growing scientific interest in recent years, especially during the SARS-CoV-2 pandemic, when DPP-IV inhibitors were found to be of beneficial therapeutic value for COVID-19 patients. The present manuscript aims to summarize the most recent information on the synthesis of different DPP-IV inhibitors, emphasizing the various heterocyclic scaffolds that can be found in them. Special attention is devoted to DPP-IV inhibitors that are currently in clinical trials. Different synthetic approaches for the construction of DPP-IV inhibitors are discussed, as well as the most recent developments in the field. Full article
(This article belongs to the Special Issue Heterocyclic Compounds for Drug Design and Drug Discovery)
Show Figures

Figure 1

15 pages, 4010 KB  
Article
Exploring the Antidiabetic and Antihypertensive Potential of Peptides Derived from Bitter Melon Seed Hydrolysate
by Wei-Ting Hung, Christoper Caesar Yudho Sutopo, Tunjung Mahatmanto, Mei-Li Wu and Jue-Liang Hsu
Biomedicines 2024, 12(11), 2452; https://doi.org/10.3390/biomedicines12112452 - 25 Oct 2024
Cited by 10 | Viewed by 3637
Abstract
Background/Objectives: Type 2 diabetes (T2D) has become a critical global health issue, with an increasing prevalence that contributes to significant morbidity and mortality. Inhibiting dipeptidyl peptidase-IV (DPP4) is a promising strategy for managing T2D. This study aimed to explore the DPP4 inhibitory peptide [...] Read more.
Background/Objectives: Type 2 diabetes (T2D) has become a critical global health issue, with an increasing prevalence that contributes to significant morbidity and mortality. Inhibiting dipeptidyl peptidase-IV (DPP4) is a promising strategy for managing T2D. This study aimed to explore the DPP4 inhibitory peptide derived from bitter melon seed protein (BMSP) hydrolysate. Methods: Reversed-phase high-performance liquid chromatography (RP-HPLC) was utilized to fractionate the hydrolysate. Peptide in the highest activity fraction was analyzed using liquid chromatography-mass spectrometry (LC-MS/MS). Peptide synthetic was used for further characterizations, such as bioactivity exploration, inhibition mechanism, molecular docking, and peptide stability against in vitro simulated gastrointestinal (SGI) digestion. Results: The BMSP hydrolysate was digested with gastrointestinal proteases (GP) and assessed for DPP4 inhibitory activity, yielding an IC50 of 1448 ± 105 μg/mL. Following RP-HPLC fractionation, MPHW (MW4) and VPSGAPF (VF7) were identified from fraction F8 with DPP4 IC50 values of 128.0 ± 1.3 µM and 150.6 ± 3.4 µM, respectively. Additionally, MW4 exhibited potential antihypertensive effects through ACE inhibition with an IC50 of 172.2 ± 10.6 µM. The inhibitory kinetics and molecular docking simulations indicated that both MW4 and VF7 were competitive inhibitors of DPP4, while MW4 was also a competitive inhibitor of ACE. Importantly, both peptides remained stable during simulated gastrointestinal digestion, suggesting their resistance to human digestive processes and their capacity to maintain biological activity. Conclusions: The findings suggest that BMSP-GP hydrolysate may have potential in terms of the development of health foods or therapeutic agents. However, in vivo studies are also essential for further confirmation of efficacy. Full article
(This article belongs to the Special Issue Peptides and Amino Acids in Drug Development: Here and Now)
Show Figures

Figure 1

16 pages, 3014 KB  
Article
Purification and Identification of Novel Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Bighead Carp (Hypophthalmichthys nobilis)
by Hanzhi Zheng, Leyan Zhao, Yushuo Xie and Yuqing Tan
Foods 2024, 13(17), 2644; https://doi.org/10.3390/foods13172644 - 23 Aug 2024
Cited by 5 | Viewed by 1967
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitors are widely used in treating type 2 diabetes due to their ability to lower blood glucose levels. However, synthetic versions often lead to gastrointestinal side effects. This study explores DPP-IV inhibitory properties in peptides from bighead carp skin. [...] Read more.
Dipeptidyl peptidase IV (DPP-IV) inhibitors are widely used in treating type 2 diabetes due to their ability to lower blood glucose levels. However, synthetic versions often lead to gastrointestinal side effects. This study explores DPP-IV inhibitory properties in peptides from bighead carp skin. Collagen was prepared, hydrolyzed into collagen peptides, and then fractionated for DPP-IV inhibitory activity examination. The most effective fractions were identified, and their peptide sequences were determined. Molecular docking analysis identified nine peptides with potential inhibitory activity, four of which (VYP, FVA, PPGF, PGLVG) were synthesized and tested in vitro. PPGF exhibited the highest potency with an IC50 of 4.63 nM, competitively binding to key DPP-IV sites, including ARG125, VAL711, TYR666, and TYR662. Other peptides showed varying effectiveness, with IC50 values of 398.87 nM (VYP), 402.02 nM (FVA), and 110.20 nM (PGLVG). These findings highlight bighead carp skin peptides as potent DPP-IV inhibitors with hypoglycemic potential, suggesting a novel avenue for diabetes management using natural peptides. Moreover, this research underscores the utilization of bighead carp by-products, contributing to environmental sustainability. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

15 pages, 3005 KB  
Article
Computational Screening for the Dipeptidyl Peptidase-IV Inhibitory Peptides from Putative Hemp Seed Hydrolyzed Peptidome as a Potential Antidiabetic Agent
by Arisa Thongtak, Kulpariya Yutisayanuwat, Nathaphat Harnkit, Tipanart Noikaew and Pramote Chumnanpuen
Int. J. Mol. Sci. 2024, 25(11), 5730; https://doi.org/10.3390/ijms25115730 - 24 May 2024
Cited by 5 | Viewed by 2747
Abstract
Dipeptidyl peptidase-IV (DPPIV) inhibitory peptides are a class of antihyperglycemic drugs used in the treatment of type 2 diabetes mellitus, a metabolic disorder resulting from reduced levels of the incretin hormone GLP-1. Given that DPPIV degrades incretin, a key regulator of blood sugar [...] Read more.
Dipeptidyl peptidase-IV (DPPIV) inhibitory peptides are a class of antihyperglycemic drugs used in the treatment of type 2 diabetes mellitus, a metabolic disorder resulting from reduced levels of the incretin hormone GLP-1. Given that DPPIV degrades incretin, a key regulator of blood sugar levels, various antidiabetic medications that inhibit DPPIV, such as vildagliptin, sitagliptin, and linagliptin, are employed. However, the potential side effects of these drugs remain a matter of debate. Therefore, we aimed to investigate food-derived peptides from Cannabis sativa (hemp) seeds. Our developed bioinformatics pipeline was used to identify the putative hydrolyzed peptidome of three highly abundant proteins: albumin, edestin, and vicilin. These proteins were subjected to in silico digestion by different proteases (trypsin, chymotrypsin, and pepsin) and then screened for DPPIV inhibitory peptides using IDPPIV-SCM. To assess potential adverse effects, several prediction tools, namely, TOXINpred, AllerCatPro, and HemoPred, were employed to evaluate toxicity, allergenicity, and hemolytic effects, respectively. COPID was used to determine the amino acid composition. Molecular docking was performed using GalaxyPepDock and HPEPDOCK, 3D visualizations were conducted using the UCSF Chimera program, and MD simulations were carried out with AMBER20 MD software. Based on the predictive outcomes, FNVDTE from edestin and EAQPST from vicilin emerged as promising candidates for DPPIV inhibitors. We anticipate that our findings may pave the way for the development of alternative DPPIV inhibitors. Full article
Show Figures

Figure 1

8 pages, 1315 KB  
Short Note
2S-(1RS-benzyloxy-hex-5-enyl)-2,3-dihydro-1,4-benzodioxine
by Angelica Artasensi and Laura Fumagalli
Molbank 2024, 2024(2), M1812; https://doi.org/10.3390/M1812 - 24 Apr 2024
Viewed by 2590
Abstract
In medicinal chemistry, the precise configuration of molecules is a crucial determinant of their pharmacological properties. Hence, the introduction of a new chiral center during the synthetic pathway involves the assignment of configuration. Herein we assign, by means of molecular modeling 1H [...] Read more.
In medicinal chemistry, the precise configuration of molecules is a crucial determinant of their pharmacological properties. Hence, the introduction of a new chiral center during the synthetic pathway involves the assignment of configuration. Herein we assign, by means of molecular modeling 1H and 2D Nuclear Overhauser Effect NMR techniques, the configuration of the two diastereomers 2S-(1R-benzyloxy-hex-5-enyl)-2,3-dihydro-1,4-benzodioxine and 2S-(1S-benzyloxy-hex-5-enyl)-2,3-dihydro-1,4-benzodioxine, which are useful to synthetize analogs of the potent and highly selective dipeptidyl peptidase IV and carbonic anhydrase inhibitor recently published. Full article
Show Figures

Figure 1

15 pages, 2348 KB  
Communication
Prostaglandin Transporter and Dipeptidyl Peptidase-4 as New Pharmacological Targets in the Prevention of Acute Kidney Injury in Diabetes: An In Vitro Study
by Beatriz Gallego-Tamayo, Ángela Santos-Aparicio, Julia Yago-Ibáñez, Laura Muñoz-Moreno, Francisco Javier Lucio-Cazaña and Ana B. Fernández-Martínez
Int. J. Mol. Sci. 2024, 25(6), 3345; https://doi.org/10.3390/ijms25063345 - 15 Mar 2024
Cited by 3 | Viewed by 2037
Abstract
The probability of acute kidney injury (AKI) is higher in septic diabetic patients, which is associated with, among other factors, proximal tubular cell (PTC) injury induced by the hypoxic/hyperglycemic/inflammatory microenvironment that surrounds PTCs in these patients. Here, we exposed human PTCs (HK-2 cells) [...] Read more.
The probability of acute kidney injury (AKI) is higher in septic diabetic patients, which is associated with, among other factors, proximal tubular cell (PTC) injury induced by the hypoxic/hyperglycemic/inflammatory microenvironment that surrounds PTCs in these patients. Here, we exposed human PTCs (HK-2 cells) to 1% O2/25 mM glucose/inflammatory cytokines with the aim of studying the role of prostaglandin uptake transporter (PGT) and dipeptidyl peptidase-4 (DPP-4, a target of anti-hyperglycemic agents) as pharmacological targets to prevent AKI in septic diabetic patients. Our model reproduced two pathologically relevant mechanisms: (i) pro-inflammatory PTC activation, as demonstrated by the increased secretion of chemokines IL-8 and MCP-1 and the enhanced expression of DPP-4, intercellular leukocyte adhesion molecule-1 and cyclo-oxygenase-2 (COX-2), the latter resulting in a PGT-dependent increase in intracellular prostaglandin E2 (iPGE2); and (ii) epithelial monolayer injury and the consequent disturbance of paracellular permeability, which was related to cell detachment from collagen IV and the alteration of the cell cytoskeleton. Most of these changes were prevented by the antagonism of PGE2 receptors or the inhibition of COX-2, PGT or DPP-4, and further studies suggested that a COX-2/iPGE2/DPP-4 pathway mediates the pathogenic effects of the hypoxic/hyperglycemic/inflammatory conditions on PTCs. Therefore, inhibitors of PGT or DPP-4 ought to undergo testing as a novel therapeutic avenue to prevent proximal tubular damage in diabetic patients at risk of AKI. Full article
(This article belongs to the Special Issue Molecular Pathology, Diagnostics and Therapeutics of Nephropathy 3.0)
Show Figures

Figure 1

Back to TopTop