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Abstract: The hydrolysate of bitter gourd seed protein, digested by the combined gastrointestinal
proteases (BGSP-GPs), exhibited the most potent inhibition on angiotensin-I-converting enzyme (ACE)
with an IC50 value of 48.1 ± 2.0 µg/mL. Using two independent bioassay-guided fractionations,
fraction F5 from reversed-phase chromatography and fraction S1 from strong cation exchange
chromatography exhibited the highest ACE inhibitory (ACEI) activity. Three identical peptides were
simultaneously detected from both fractions and, based on the in silico appraisal, APLVSW (AW6)
was predicted as a promising ACEI peptide. Their dipeptidyl peptidase-IV (DPP4) inhibitory (DPP4I)
activity was also explored. The IC50 values of AW6 against ACE and DPP4 were calculated to be
9.6 ± 0.3 and 145.4 ± 4.4 µM, respectively. The inhibitory kinetics and intermolecular interaction
studies suggested that AW6 is an ACE competitive inhibitor and a DPP4 non-competitive inhibitor.
The quantities of AW6 in BGSP-GP hydrolysate, fractions F5 and S1, were also analyzed using liquid
chromatography–tandem mass spectrometry. Notably, AW6 could resist hydrolysis in the human
gastrointestinal tract according to the result of the simulated gastrointestinal digestion. To the best of
our knowledge, this is the first discovery and characterization of a dual-function (ACEI and DPP4I
activities) peptide derived from bitter gourd seed protein.

Keywords: bitter gourd seeds; ACE inhibitory peptide; DPP4 inhibitory peptide; in silico analysis;
LC-MS/MS

1. Introduction

In a mammal’s blood pressure regulation system, the angiotensin-I-converting en-
zyme (ACE) cleaves angiotensin I (Ang-I) into the vasoconstrictor angiotensin II (Ang-II),
reducing vasodilation and diuretic effects by altering bradykinin into an inactive form.
Simultaneously, ACE2, a homologue of ACE, counteracts the vasoconstrictor effects by
converting Ang-II into Ang 1–7 (a vasodilator). ACE2 also transforms Ang-I into Ang 1–9,
and ACE hydrolyzes Ang 1–9 into Ang 1–7, resulting in a vasodilation effect [1]. However,
Ang 1–7 has a short half-life of only half an hour in the human body, and its concentration
peaks in plasma one hour after intracutaneous injection [2]. Hitherto, the inhibition of
ACE has been a pharmaceutical approach for hypertension management. Motivated by the
discovery of the first ACE inhibitory (ACEI) drug derived from a Brazilian snake venom
peptide (captopril) [3], and the development of commercialized milk drinks containing
antihypertensive peptides (such as Ameal S™ by Calpis Co., Ltd., Tokyo, Japan and Evo-
lus™ by Valio Ltd., Helsinki, Finland) [4], there has been a growing interest in exploring
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ACEI peptides derived from natural protein sources. For instance, ACEI peptides derived
from natural protein sources such as scorpion venom [5], calf thymus [6], Saccharomyces
cerevisiae [7], animal products (meat, fish, blood, milk, dairy products, and egg) [8], as well
as plants (seeds, pulses, mushrooms, and vegetables) [9] have been reported recently.

Hypertension patients show a 2–3 times higher risk of developing diabetes compared
to patients without hypertension [10]. Additionally, the number of youths (those under
20 years old) in the United States with type 2 diabetes is projected to increase by 69%
from 2017 to 2060 [11]. To date, various therapeutics for type 2 diabetes have been pro-
posed, including the inhibition of dipeptidyl peptidase-IV (DPP4). DPP4 rapidly converts
glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) into
an inactive form, causing a deficiency in insulin secretion commonly found in type 2 di-
abetes patients. Inhibiting DPP4 may extend the half-life of incretins and prolong their
insulinotropic effect [12]. Researchers have emphasized the potential of peptides derived
from food proteins as natural DPP4 inhibitors that may have complementary or additive
effects in managing type 2 diabetes. For instance, some natural DPP4 inhibitory (DPP4I)
peptides derived from plant or animal proteins, such as dark tea [13], largemouth bass [14],
and various vegetables (soy, pea, potato, quinoa, chickpea, lentil, and lupine) [15], have
been reported. Diabetes can lead to complications in hypertensive patients, and hyperten-
sion can lead to complications in diabetes patients [16]. Therefore, a natural peptide with
both ACE and DPP4 inhibitory activity might be beneficial in slowing down the impact of
these complications.

Bitter gourd is a common vegetable and herb plant in Asia, particularly Taiwan. It
has also been recorded as a therapeutic herb that dates back over 2000 years in Chinese
materia medica, the Shennong Ben Cao Jing. Bitter gourd (Momordica charantia) seeds
are a by-product of the bitter gourd food-processing industry, yet they contain relatively
high amounts of protein [17]. Previous studies on bitter melon have revealed a wide
range of biological activities, e.g., antioxidant, antimycotic, antihyperglycemic, antiobesity,
stomachic, anticancer, hypotensive, and anticholesterol activities [18]. Bitter gourd fruit
pulp extract has demonstrated hypoglycemic activity in type 2 diabetic patients [19]. In our
previous study, bitter gourd seed protein hydrolysate and its derived peptide exhibited
ACEI activity and significantly lowered the systolic blood pressure of spontaneously
hypertensive rates [20]. However, there has been limited exploration of ACEI peptides
with DPP4I activity derived from bitter gourd seed protein derivatives.

In this study, ACEI peptides from bitter gourd hydrolysate were screened indepen-
dently using two liquid chromatography phases: reversed-phase high-performance liquid
chromatography (RP-HPLC) and strong cation exchange (SCX) chromatography. The pep-
tides from the most active fractions in both RP-HPLC and SCX separations were identified
through high-resolution mass spectrometry (HR-MS/MS) analysis. Identical peptides that
were concurrently found in the most active fractions of RP-HPLC and SCX separations
were considered ACEI peptide candidates. BIOPEP and PeptideRanker databases were
used to appraise the biological activity of ACEI peptide candidates, while the ToxinPred
database was employed to predict their toxicity. The ACEI peptide candidate with the
highest biological activity score, determined by both BIOPEP and PeptideRanker, was
synthesized for further biological activity confirmation and characterization. The IC50 and
its inhibition mechanism toward ACE were confirmed. The IC50 against DPP4 and its
inhibition mechanism were also determined to explore the potency of this peptide. The
molecular-level interaction of an active peptide with ACE and DPP4 was rationalized
via molecular docking simulation. Furthermore, the resistance of the peptide toward the
simulation of gastrointestinal protease digestion was evaluated, and the quantity of active
peptide in hydrolysate and the fractions (RP-HPLC and SCX) were calculated using the
multiple reaction monitoring (MRM) mode in a liquid chromatography–tandem mass
spectrometry (LC-MS/MS) analysis. The discovery of an ACEI peptide with DPP4I activity
derived from the bitter gourd seed protein holds promise for enhancing hypertension
management in patients with type 2 diabetes. Additionally, this discovery has the potential
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to increase the value of bitter gourd seeds as a natural source of bioactive peptides. To the
best of our knowledge, this study represents the first exploration of an ACEI peptide with
DPP4I activity derived from bitter gourd seed protein.

2. Results and Discussion
2.1. ACE Inhibitory Assay of Bitter Gourd Seed Protein (BGSP) Hydrolysate

The ACE inhibitory (ACEI) activities of bitter gourd seed protein (BGSP) hydrolysates
under 3 kDa were investigated. Although all the BGSP hydrolysates showed potent ACEI
inhibitory activity (Figure 1A), the hydrolysate from gastrointestinal protease (GP) digestion
exhibited superior ACEI activity compared to others (pepsin, trypsin, and α-chymotrypsin).
Previous studies implied that several aspects, such as the protein substrate, specificity of
protease, hydrolysis conditions, and hydrolysis degree, influenced the biological activi-
ties of hydrolysates [21]. The BGSP hydrolysate was monitored using UV–Vis RP-HPLC
(λ = 214 nm) at a concentration of 50 µg/µL, and the HPLC chromatogram of the BGSP hy-
drolysate generated by GP (BGSP-GP) showed more intense peaks of short-chain peptides
(under 3 kDa) than others (Supplementary Material Figure S1). Likewise, the BGSP-GP
hydrolysate exhibited the highest hydrolysis degree (~20%) compared to the other BGSP
hydrolysates (Supplementary Material Figure S2). This result indicates that gastrointesti-
nal protease (GP) digestion could generate more short-chain peptides from BGSP and
significantly influence their biological activity more than other proteases. Using several
concentrations (0.02–033 µg/µL) of BGSP-GP hydrolysate on a logarithmic scale, the half-
maximal ACEI concentration (ACEI IC50) was calculated by non-linear regression to give a
value of 48.1 ± 2.0 µg/mL (Figure 1B). Compared with the ACEI IC50 value of Momordica
cochinchinensis seed protein GP hydrolysate (70 ± 4 µg/mL) reported previously [22], the
BGSP-GP hydrolysate exhibited stronger ACEI activity.
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BGSP hydrolysates generated by pepsin, trypsin, α-chymotrypsin, and gastrointestinal protease (GP)
as testing samples. Different letters mean significant differences among testing samples (p < 0.05).
(B) The half-maximal ACE inhibitory concentration of BGSP-GP hydrolysate.

2.2. Bioassay-Guided Fractionation of BGSP-GP Hydrolysate

Bioassay-guided fractionation is crucial for effectively screening the active peptide
from the peptide mixtures. Reversed-phase (RP) chromatography is extensively used for
separating peptides from protein hydrolysates [23], and a C18 column is preferable for
separating peptides (under 5 kDa) resulting from the protease digestion of proteins [24]. The
BGSP hydrolysate (under 3 kDa) digested by gastrointestinal protease (GP) was separated
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using a UV–Vis HPLC equipped with a C18 column. As shown in Figure 2A, the fractions
were collected every five minutes into 12 fractions (F1–F12), and the fraction F5 from
RP-HPLC fractionation exhibited the most potent ACEI activity (77 ± 1%) among other
fractions. The active peptide with ACEI activity could not be easily recognized in the BGSP-
GP hydrolysate fraction F5. This is because several peptides were observed after identifying
peptides using LC-MS/MS analysis. Strong cation exchange chromatography (SCX) has
been widely used to fractionate proteins or peptides. Hence, to increase the certainty of
recognizing the ACEI peptide, bioassay-guided SCX liquid chromatography was conducted
individually to fractionate the peptide mixture from the BGSP-GP hydrolysate. The BGSP-
GP hydrolysate S1 fraction from SCX fractionation showed significantly potent ACEI
activity (57 ± 2%) compared to other SCX fractions (Figure 2B).
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2.3. Peptide Identification and In Silico Analysis of ACEI Peptide Candidates

The peptide mixtures in the most active fraction from RP-HPLC (fraction F5) and
SCX (fraction S1) fractionations were analyzed using liquid chromatography–tandem
high-resolution mass spectrometry (LC-HR-MS/MS). Then, automated de novo peptide
sequencing and database matching were performed in PEAK X+ version 10.5 software



Pharmaceuticals 2023, 16, 1629 5 of 17

to interpret the MS and MS/MS peptide spectra for peptide identification. Forty-four
peptide sequences from RP-HPLC fraction F5 and eighteen from SCX fraction S1 were
identified, as shown in Supplementary Materials Tables S1 and S2, respectively. Three
identical peptides were observed from both the F5 and S1 fractions: APLVSW (AW6),
EPTTSDVVVAGEFDQGSGSMR (ER21), and ATISLENSW (AW9). Computational analyses
using the BIOPEP and PeptideRanker databases were performed to predict the biological
activity of these ACEI peptide candidates. The toxicity of these peptides was also predicted
using ToxinPred, and all the peptides were appraised as non-toxic (Table 1). APLVSW
(AW6) scored highest in the BIOPEP and PeptideRanker biological activity appraisals. Also,
AW6 is simultaneously recognized in the F5 fraction from RP-HPLC and the S1 fraction
from SCX, making it conceivably the major peptide credited for potent ACEI activity. To
confirm the ACEI activity and its identity, AW6 was chemically synthesized. The synthetic
AW6’s purity of 99% was verified using RP-HPLC (Supplementary Material Figure S3).
Additionally, Figure 3 displays very similar retention times of synthetic AW6 (tR 16.62 min),
SCX fraction S1 (tR 16.63 min), and RP-HPLC fraction F5 (tR 16.64 min) with identical MS
ion spectra (m/z 672.4), implying additional confirmation of this peptide candidate.

Table 1. In silico prediction of the ACEI peptide candidates from BGSP-GP hydrolysate fraction F5
(from RP-HPLC fractionation) and fraction S1 (from SCX fractionation).

Peptide Sequence Peptide Length ToxinPred * BIOPEP (B) PeptideRanker

APLVSW 6 Non-Toxin 0.00122 0.516023
EPTTSDVVVAGEFDQGSGSMR 21 Non-Toxin 0.00006 0.172646

ATISLENSW 9 Non-Toxin - 0.191382

* BIOPEP (B): calculation of potential ACE inhibitory activity property of a protein (µM-1).
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2.4. AW6 Half-Maximal ACE and DPP4 Inhibitory Concentration

The 50% inhibitory concentration (IC50) is the most common and empirical indicator
to measure the efficacy of a substance [25,26]. A non-linear interpolation was generated by
seven logarithmic concentrations of synthetic AW6 versus their ACEI activities to determine
the 50% ACE inhibitory concentration of AW6 (ACEI IC50). The ACEI IC50 of AW6 was
determined to be 9.6 ± 0.3 µM, as shown in Figure 4. The ACEI IC50 of AW6 seems
comparable to other ACEI peptides derived from BGSP thermolysin hydrolysate (VY7,
IC50 = 8.6 µM, VG8, IC50 = 13.3 µM) [20] and showed favorable inhibition compared to
sicklepod seeds (FK6, IC50 = 16.8 µM) [27], barley (FF6, GF8, NF6, AM6, IC50 value range
from 28.2–200 µM) [28], and rice bran (YK3, IC50 = 76 µM) [29], as previously reported. The
half-maximal DPP4 inhibitory concentration (DPP4I IC50) of AW6 was also determined by
a non-linear interpolation. Using seven logarithmic concentrations of AW6 versus their
DPP4I activities, the AW6 DPP4I IC50 value is estimated to be 145.4 ± 4.4 µM, as shown in
Figure 5. Referring to the DPP4 inhibitory IC50 value derived from other plant seeds, such as
napin of rapeseed (IS5, EL8, PF5, KP6, IC50 value range from 52.2–162.7 µM) [30], soybean
glycinin (IA7, IC50 = 106 µM), and lupin seed β-conglutin (LD9, IC50 = 228 µM) [31], AW6
derived from BGSP-GP hydrolysate showed comparable DPP4 inhibitory activity. It is
suggested that peptides with N-terminal Ala, Gly, Ile, Pro, Met, Glu, and Val, and the
presence of Pro or Ala at the second position of the N-terminal, are preferred for inhibiting
DPP4 [32]. Moreover, peptides containing aliphatic and hydrophobic amino acids (Ala, Val,
Leu, Ile, Met, and Pro) with C-terminal aromatic side chain peptides (Tyr, Phe, and Trp)
showed a strong influence on inhibiting ACE [4]. AW6 (APLVSW) has aliphatic residues at
its N-terminus, a proline at the second position, several hydrophobic residues in the middle,
and an aromatic tryptophan at the C-terminus. These specific features might facilitate
significant contributions to ACE and DPP4 inhibitory activity.
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2.5. Inhibitory Mechanism of AW6 toward ACE and DPP4

The double-reciprocal plot (the Lineweaver–Burk plot) is constructed to elucidate the
inhibitory mechanism of AW6 toward ACE and DPP4 based on the Michaelis–Menten
constant (Km) and maximum velocity (Vmax) as the X- and Y-axis intercept of the primary
plot, respectively. As shown in Figure 6, the Lineweaver–Burk plot suggested that AW6
inhibits ACE as a competitive inhibitor because of the stable Vmax and increased Km
value. The unaffected Vmax values and increased Km in the absence or presence of AW6
indicated that AW6 could compete with the analogue substrate for binding to the ACE
active site. Meanwhile, the inhibitory mechanism study of AW6 toward DPP4 through
the Lineweaver–Burk plot indicated that AW6 was acting as a non-competitive inhibitor
on DPP4 (Figure 7). The Km value is unchanged by an increase in AW6 concentration.
However, the Vmax value decreases, which may have illustrated that the inhibitor had
a lack of impact on the affinities of the DPP4 substrate. Therefore, this peptide could be
predicted as a competitive ACE inhibitor by forming interactions with the ACE active site
and a non-competitive DPP4 inhibitor by interacting with a vital group other than the
active sites of DPP4.
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2.6. Intermolecular Interaction Study of AW6 toward ACE and DPP4 Using Molecular
Docking Simulation

The intermolecular interactions between the inhibitory peptide (AW6) and target
enzymes (ACE and DPP4) were interpreted using the molecular docking simulation. The
rationalization of intermolecular interaction between AW6 and human tACE (PDB code:
1O86) resulted in the lowest binding CDOCKER energy of −99.65 kJ/mol, as shown in
Figure 8. The active catalytic site of ACE comprises the S1 pocket (Tyr523, Glu384, and
Ala354), the S1′ pocket (Glu162), the S2′ pocket (Tyr520, Lys511, His353, and Gln281), and a
Zn2+ as the cofactor coordinated with His383, His387, and Glu411 [33]. As summarized in
Supplementary Material Table S3, AW6 formed four hydrogen bonds, one ionic interaction,
and one π–π interaction with the residues of the ACE catalytic site. Also, AW6 formed
interactions with two ACE non-catalytic sites, which may have given it more force to
interact with ACE: Glu142 (two hydrogen bonds and one ionic interaction) and Asn70 (one
hydrogen bond). Compared with the ACE–lisinopril binding, which is also considered
an ACE active site, AW6 did not form interactions with two residues from the S1 pocket
(Ala354 and Glu384) and two residues from the S1′ pocket (Glu162 and Gln281). Still, these
interactions are consistent with the results of the inhibition mechanism study regarding
the interaction of AW6 with ACE active site residues, indicating that AW6 inhibits ACE
through a competitive mechanism. Meanwhile, the molecular docking simulation of
AW6 and human DPP4 (PDB code: 1WCY) resulted in the lowest CDOCKER energy of
−63.81 kJ/mol (Figure 9). Diprotin A (a competitive inhibitor and low-turnover substrate
of DPP4) interacts with the S1 pocket (Tyr547 and Tyr631), the S2 pocket (Glu205, Glu206,
and Tyr662), and the S1′ pocket (Arg125) of the DPP4 catalytic pocket [34,35]. Compared
to the interaction of diprotin A and DPP4 (as shown in Table S4 of the Supplementary
Materials), AW6 interacted with DPP4 residues other than the catalytic sites (Ser59, Ile407,
Arg471, and Glu408), consistent with the inhibition mechanism study that showed that
AW6 is a non-competitive DPP4 inhibitor. Hence, the molecular docking study of AW6
with ACE and DPP4 presented additional affirmation that AW6 is a competitive inhibitor
of ACE and a non-competitive DPP4 inhibitor.
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Figure 8. (A) Molecular docking study of AW6 and ACE (PDB code = 1O86) in 3D visualization. The
red, transparent sphere represents the catalytic site of ACE. The green molecule is the lisinopril origi-
nating from the ACE–lisinopril complex (PDB code = 1O86), and the APLVSW (AW6) is visualized
using a stick form with CPK atom color style. (B) The 2D visualization of intermolecular interaction
between AW6 and ACE. The green and blue dashed lines indicate S2′ and S1 ACE active pockets that
formed interactions with AW6, respectively.
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2.7. In Vitro Simulated Gastrointestinal (SGI) Digestion Stability of AW6

In vitro ACEI activity of peptides is sometimes inconsistent with their in vivo anti-
hypertensive activity, which is based on their stability toward gastrointestinal protease
enzymes and brush-border membrane peptidases in the digestive system [36], and bio-
logically active peptide products are usually administered orally. Thus, investigating the
alterations in peptide activity caused by gastrointestinal digestion is crucial. AW6 was de-
rived using gastrointestinal protease digestion. Theoretically, the same proteolytic enzyme
will not cleave it. To emulate AW6 stability during human gastrointestinal digestion, AW6
was mixed with pepsin for 1.5 h at 37 ◦C (pH 2.0), continued by α-chymotrypsin and trypsin
(pH 8.0) digestion for 3 h. The stability of AW6 was observed using LC-MS (Figure 10). As
expected, the AW6 was not hydrolyzed during the simulation of gastrointestinal digestion.
The leucine in the antepenultimate N-terminal of AW6 was not cleft by gastrointestinal
protease (pepsin or α-chymotrypsin), which may be due to the presence of the N-terminal
penultimate proline residue that could improve the SGI digestion resistance of AW6 [37].
Also, AW6 features a low molecular weight (<3 kDa) and usually shows more resistance
during SGI digestion than peptides with a higher molecular weight [38]. Therefore, the
resistance of AW6 during SGI digestion suggests that AW6 is a promising biologically
active peptide candidate for developing functional foods and therapeutic agents with ACE
and DPP4 inhibitory activity.

2.8. Quantification of AW6 in BGSP-GP Hydrolysate, Fraction F5 (RP-HPLC), and Fraction
S1 (SCX)

The quantity of AW6 in the BGSP-GP hydrolysate, fraction F5, and fraction S1 are fur-
ther important factors for industrial applicability and production quality control. AW6 was
quantified using multiple reaction monitoring (MRM) analysis in a triple-stage quadrupole
(TSQ) mass analyzer. The standard solution of synthetic AW6 (10 ng/µL) was infused
into the TSQ mass analyzer in MRM mode to give an optimum precursor–product ion
transition m/z 672.4→282.2 under 34 volts of collision-induced dissociation energy. A
linear regression model (y = 0.7774x + 48207; R2 = 0.9993) was obtained from the standard
calibration curve of AW6 (0.5 pM–20 µM), as shown in Supplementary Material Figure S5.
The amounts of AW6 per milligram in the BGSP-GP hydrolysate, fraction F5, and fraction
S1 were calculated at about 1.8 ± 0.2, 9.8 ± 0.3, and 2.5 ± 0.2 µg, respectively (Table 2). The
amount of AW6 in either fraction F5 or S1 is significantly increased compared to the BGSP-
GP hydrolysate. Although the fraction F5 from RP-HPLC fractionation showed higher AW6
content than the fraction S1 from SCX fractionation, SCX fractionation still showed relatively
fair purification efficiency to purify AW6 at about 1.4-fold compared to the hydrolysate.
In comparison to other ACEI peptide content in the hydrolysate, 1 mg of BGSP-GP hy-
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drolysate contains 1.8 µg APLVSW (AW6), which is higher than FPHAPWK (147 ng) in
Cassia obstusifolia seed hydrolysate [27] and HLPLPLL (19.9 pg) in milk hydrolysate [39],
but slightly lower than DHSTAVW (3 µg) in garlic hydrolysate [40]. Likewise, compared to
other DPP4I peptides, APLVSW (AW6) content in 1 mg of hydrolysate is somewhat higher
than IP (1.2 µg) and LP (1.7 µg) in rice bran hydrolysate [41].
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Table 2. The amount of AW6 per milligram of testing sample.

AW6 (µg) Purification Fold

GP-BGSP hydrolysate 1.8 ± 0.2 a 1.0
RP-HPLC fraction F5 9.8 ± 0.3 c 5.4

SCX fraction S1 2.5 ± 0.2 b 1.4
The different superscript letters represent a significant difference (p < 0.05) in AW6 quantity in the fractions
compared to the GP-BGSP hydrolysate.

3. Materials and Methods
3.1. Materials

Bitter gourd seeds were collected in Pingtung County, Taiwan. Trichloroacetic acid,
boric acid, sodium lauryl sulfate, sodium hydroxide, sodium chloride, hydrogen chloride,
dimethyl ketone, dimethylformamide, ethyl ether, acetonitrile, formic acid, and methyl
alcohol were purchased from J. T. Baker (Phillipsburg, NJ, USA). Pepsin from hog stom-
ach, trypsin from bovine pancreas, α-chymotrypsin from bovine pancreas, angiotensin-I-
converting enzyme (ACE) from rabbit lungs, recombinant human dipeptidyl peptidase-IV
(DPP4), hippuryl-histidine-leucine, GP-pNA, captopril, linagliptin, trifluoroacetic acid,
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diisopropylethylamine, ferulic acid, hippuric acid, and p-nitroanilide were obtained from
Sigma-Aldrich Co. (Saint Louis, MO, USA). Wang resin and HBTU were acquired from
Creo Salus (Louisville, KY, USA). Fmoc-amino acids and OxymaPure were purchased from
CEM Co. (Matthew, NC, USA). A PURELAB® water purifier (Lane End, High Wycombe,
UK) was utilized to generate deionized water, and all other chemicals used in this study
were analytical or HPLC grade.

3.2. Bitter Gourd Seed Protein (BGSP) Extraction

Briefly, 50 g of bitter gourd seed (BGS) was ground and mixed with 500 mL of 1%
SDS solution. A digital ultrasonic homogenizer from Branson Ultrasonic (Terra Universal
Inc., Fullerton, CA, USA) was set with a 30% duty cycle for 10 min with a pulse of 10 s on
and off to disrupt the cell membranes of BGS. The supernatant was collected by 4000 rpm
centrifugation for 15 min. Then, 20% trichloroacetic acid in cold acetone was added at a
1:1 (v/v) ratio, and the mixture was incubated for at least 12 h at a mean temperature of
−20 ◦C. The precipitated protein was lyophilized (~21.9 g) and stored in a dehumidifying
cabinet at room temperature.

3.3. Bitter Gourd Seed Protein Hydrolysate Preparation

Bitter gourd seed protein (BGSP) was separately hydrolyzed using α-chymotrypsin,
pepsin, trypsin, and gastrointestinal protease. α-chymotrypsin, pepsin, and trypsin were
individually added to BGSP with an enzyme-to-protein ratio of 1:50 (w/w). The hydrol-
ysis conditions for trypsin and α-chymotrypsin were maintained at pH 8.0 using 25 mM
NH4HCO3, while pepsin was conditioned at pH 2.0 using 35 mM sodium chloride buffer
at 37 ◦C for 16 h. The gastrointestinal protease (GP) digestion was initialized using pepsin
digestion with an enzyme-to-protein ratio of 1:50 (w/w) in 35 mM sodium chloride solu-
tion at pH 2.0, 37 ◦C for 16 h. Before α-chymotrypsin and trypsin were added with an
enzyme-to-protein ratio of 1:100 (w/w), the pH was adjusted to 8.0 using 10 N NaOH. The
hydrolysis was continued for 16 h at 37 ◦C. The enzymatic hydrolysis, after 32 h of reaction,
was terminated by boiling for 10 min. The hydrolysates were centrifuged at 12,000 rpm
for 15 min at 4 ◦C. The supernatant was filtered through a 3 kDa MWCO ultrafiltration
membrane, and the salt residues from the hydrolysis reaction buffer were removed using an
HYPERSEP retain PEP C18 cartridge (Thermo Fisher Scientific, San Jose, CA, USA). The de-
salted BGSP hydrolysates (under 3 kDa) were lyophilized and stored at room temperature
in a dehumidifying cabinet.

3.4. Hydrolysis Degree Analysis of BGSP Hydrolysate

The hydrolysis degree (HD) of BGSP hydrolysates was determined using the 2,4,6-
trinitrobenzensulfonic acid (TNBS) assay and carried out in a 96-well microplate as de-
scribed by Sutopo C. C. Y. et al. [42], with a few adjustments. BGSP hydrolysate (5 µg/µL)
was premixed with 1% SDS solution in a 1:10 ratio (v/v). Then, the mixture (15 µL) was
transferred to a 96-well microplate. Then, 45 µL of 212.5 µM sodium phosphate (pH 8.2)
and 45 µL of TNBS (0.05%) were added immediately. The reaction was maintained at 50 ◦C
with shaking at 70 rpm in a dark environment for an hour. Then, 90 µL of 0.1 M hydrochlo-
ride acid was added to terminate the reaction. The absorbance was monitored using a
PowerWave XS (Biotek®, Winooski, VT, USA) 96-well microplate reader at a wavelength of
340 nm. A calibration curve of L-leucine (0.2–2 mM) was generated to quantify the primary
amines of amino acids liberated at a certain digestion time. The HD was calculated as
follows:

HD =
ht

htot
× 100%, (1)

The ht is the amount of liberated amino acids after a certain digestion time, and htot is
the total amino acid amount of BGSP hydrolysates. The htot was calculated to be 45.5 mM
by the following: htot = BGSP hydrolysate (5 µg/µL)/amino acid average molecular weight
(110 g/mol).
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3.5. Determination of Angiotensin-I-Converting Enzyme Inhibitory (ACEI) Activity and Its
Half-Maximal Inhibitory Concentration

The ACEI activity was studied according to Cushman and Cheung [43], with a few
modifications. First, 10 µL of the testing sample was premixed with 30 µL of hippuryl–
histidine–leucine (HHL) and incubated at 37 ◦C for 5 min. Then, 20 µL of ACE (0.05 mU/µL)
was added. Afterward, the reaction was held statically at 37 ◦C for 30 min and continued
with shaking at 200 rpm for another 30 min. Then, 60 µL of 1 N hydrogen chloride was
used to quench the reaction, and 10 µL of 0.25 µg/µL ferulic acid was mixed for an internal
standard. The testing sample, HHL, ferulic acid, captopril, and ACE were dissolved in
ACE buffer (0.76 M boric acid, 0.2 M sodium hydroxide, and 0.3 M sodium chloride, pH
8.3). The area under the curve of hippuric acid (HA) was observed using UV–Vis RP-HPLC
at a wavelength of 228 nm, 1 mL/min steady flow rate, and 15 min of isocratic elution (26%
ACN with 0.1% TFA in deionized water). The inhibitory activity of ACE was determined
using the following equation:

ACE inhibitory activity (%) =

[
1−

(
HA(inhibitor)

HA(no inhibitor)

)]
× 100%, (2)

The HA(inhibitor) and HA(no inhibitor) were the areas under the curve of the hippuric
acid acquired in the presence and absence of an inhibitor. The half-maximal inhibitory
concentration of ACE inhibition (ACEI IC50) was calculated using a non-linear interpolation
constructed with a minimum of six logarithmic concentrations of the testing sample.

3.6. Determination of Dipeptidyl Peptidase-IV Inhibitory (DPP4I) Activity and Its Half-Maximal
Inhibitory Concentration

The DPP4 inhibitory activity was determined as described by Nong, N. T. P. et al. [44],
with a few modifications. The testing samples, GP-pNA, linagliptin, and DPP4 were
dissolved in 0.1 M Tris-HCl buffer, pH 8.0. Briefly, 25 µL of the testing sample was premixed
with 25 µL of 1.6 mM GP-pNA and incubated at 37 ◦C for 10 min. Then, 50 µL of DPP4
(0.5 U/µL) was added. The reaction was continued for 60 min at 37 ◦C. The enzymatic
reaction was quenched by adding 100 µL of 1 M sodium acetate, pH 4.0. The absorbance of
pNA, as a product of the DPP4 and GP-pNA reactions, was monitored using a PowerWave
XS (Biotek®, Winooski, VT, USA) 96-well microplate reader at a wavelength of 405nm.
DPP4 inhibitory activity was calculated by the following equation:

DPP4 inhibitory activity (%) =

[
1−

(
pNA(inhibitor)

pNA (no inhibitor)

)]
× 100%, (3)

The pNA(inhibitor) and pNA(no inhibitor) were the absorbances of the pNA (λ = 405 nm)
acquired in the presence and absence of an inhibitor, respectively. The half-maximal
inhibitory concentration of DPP4 inhibition (DPP4I IC50) value was calculated using a
non-linear interpolation for at least six logarithmic concentrations of the inhibitor.

3.7. Two Orthogonal Bioassay-Guided Fractionations of BGSP-GP

The peptides in the BGSP-GP hydrolysate were fractionated individually using reversed-
phase high-performance liquid chromatography (RP-HPLC) and strong cation exchange
(SCX) chromatography as described by Pujiastuti D. Y. et al. [45], with a few modifications.
The RP-HPLC fractionation was performed using a UV–Vis HPLC (Chromaster™, Hitachi
Co., Tokyo, Japan) system assembled with a Kinetex C18 column (Phenomenex Inc., Tor-
rance, CA, USA, 4.6 mm × 250 mm, 5 µm). At a constant flow rate of 1 mL/min and a
wavelength of 214 nm, the elution gradient was programmed as follows: a linear gradient
of 14–35% B from 0–55 min and an isocratic elution of 35% B from 55–60 min. Solution A
(5% ACN + 0.1% TFA) and solution B (95% ACN + 0.1% TFA) were used as the mobile
phase. The RP-HPLC fractionation separated BGSP-GP hydrolysate into 12 fractions by col-
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lecting the eluate every 5 min. Meanwhile, the BGSP-GP hydrolysate was also fractionated
using SCX chromatography. Self-packed SP Sepharose® beads (Sigma-Aldrich, Saint Louis,
MO, USA) were transferred into a micro-spin column (Pierce™, Thermo Fisher Scientific,
Rockford, IL, USA) coupled with a peristaltic pump (LSP01-1A, LongerPump®, Heibei,
China). The flow rate of SCX elution was programmed at 40 µL/min. The mobile phase
comprised solution A (5% ACN and 0.2% FA) and solution B (5% ACN, 0.5 M sodium
chloride, and 0.2% FA). The step elution of SCX fractionation was set as follows: 0% B (S1),
5% B (S2), 10% B (S3), 15% B (S4), 20% B (S5), 30% B (S6), 40% B (S7), 60% B (S8), 80% B
(S9), and 100% B (S10). All the fractions were desalted using a HYPERSEP retain PEP C18
cartridge (Thermo Fisher Scientific, San Jose, CA, USA), freeze-dried, and the ACEI activity
of each fraction was evaluated. Furthermore, the peptide sequences were identified using
LC-MS/MS analysis from the most active RP-HPLC and SCX fractions.

3.8. Identification of Peptide Using LC-MS/MS Analysis Coupled with De Novo Peptide
Sequencing and Database-Assisted Matching

Peptides in RP-HPLC fraction F5 and SCX fraction S1 were identified using a Q
Exactive Plus Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Scientific Inc.,
Waltham, MA, USA) coupled with Dionex’s UltiMate 3000 RSLC nano system (Sunnyvale,
CA, USA) and a nanoViper™ C18 (75 µm × 150 mm, 2 µm, 100 Å, PepMap™, Thermo
Scientific Inc., Waltham, MA, USA) column. The liquid chromatography system was
operated at a constant 0.25 mL/min flow rate. The elution gradient was programmed
as follows: 0–5.5 min isocratic elution of 1% B, 5.5–45 min linear gradient elution from
1–30% B, 45–48 min linear gradient elution from 30–60% B, 48–50 min linear gradient
elution from 60–80% B, and 50–60 min isocratic elution of 80% B, respectively. The mobile
phase comprised solution A (0.1% FA in H2O) and solution B (0.1% FA in ACN). The
high-resolution mass spectrometer (HRMS) was set in data-dependent acquisition (DDA)
and positive ionization mode. Spray voltage 3.0 kV, sheath gas 40 arb, aux gas 5 arb,
sweep gas 0 arb, capillary temperature 320 ◦C, s-lens RF 50, and heater temperature
300 ◦C were applied. The high-resolution mass spectrometer (HRMS) was operated in
data-dependent acquisition (DDA) mode. The MS scan mass range window was opened
at m/z 200–2000 with a resolution of 60,000. The MS2 fragmentation using 27% higher
energy collision dissociation (HCD) was based on the 10th most abundant ions from the
MS scan with a resolution of 30,000. The MS and MS2 spectra were analyzed using PEAKS
X+ (Bioinformatics Solution Inc., Waterloo, ON, Canada). The Momordica charantia protein
database from the NCBI protein database (https://www.ncbi.nlm.nih.gov, accessed on
7 May 2023) was imported. Peptide de novo sequencing and database matching were
performed simultaneously in the PEAKS X+ software to acquire the peptide sequence. To
add supporting confirmation of the identified peptide, the synthetic peptide, fraction F5
from HPLC, and fraction S1 from SCX were monitored for their retention time (tR) and MS
spectra using an LCQ DECA XP MAX ion trap (Thermo Scientific Inc., USA) coupled with
a Surveyor HPLC system (Thermo Scientific Inc., Waltham, MA, USA).

3.9. In Silico Analysis Prediction of Peptide Toxicity and Biological Activity

The biological potentialities of identified peptides were predicted using the Pep-
tideRanker (http://distilldeep.ucd.ie/PeptideRanker/, accessed on 3 June 2023) [46] and
BIOPEP-UWM (https://biochemia.uwm.edu.pl/biopep-uwm/, accessed on 3 June 2023) [47]
databases. The toxicity prediction was carried out using the ToxinPred (http://crdd.osdd.
net/raghava/toxinpred/, accessed on 3 June 2023) [48] database.

3.10. Synthetic APLVSW (AW6) Preparation and Purification

APLVSW (AW6) was synthesized in a peptide synthesizer by CEM Discover (CEM Co.,
Matthews, NC, USA) using Wang resin for the solid support, as described in our previous
report [27]. The synthesis of AW6 was initiated from the C-terminal (Trp6) toward the
N-terminal (Ala1) amino acid. The AW6 was released from Wang resin by adding TFA.

https://www.ncbi.nlm.nih.gov
http://distilldeep.ucd.ie/PeptideRanker/
https://biochemia.uwm.edu.pl/biopep-uwm/
http://crdd.osdd.net/raghava/toxinpred/
http://crdd.osdd.net/raghava/toxinpred/
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Cold ether (−20 ◦C) precipitation and centrifugation at 10,000 rpm for 10 min were applied
to extract AW6 from the peptide–TFA solution. Afterward, AW6 was purified using the
same RP-HPLC system described in Section 3.7. At a constant flow rate of 1 mL/min under
a wavelength of 214 nm, the elution gradient was programmed as follows: 0–5 min an
isocratic gradient of 5% B, 5–20 min a linear gradient from 5–80% B, 20–25 min an isocratic
gradient of 80% B, and 25–30 min an isocratic gradient of 5%. Solution A (5% ACN + 0.1%
TFA) and solution B (95% ACN + 0.1% TFA) were used as the mobile phase. The peptide
sequence was verified using an ion trap LC-MS/MS system.

3.11. Investigation of APLVSW (AW6) Inhibition Mechanism toward ACE and DPP4

The inhibition mechanism of AW6 towards ACE and DPP4 was investigated using
the ACEI and DPP4I assays described above. The Lineweaver–Burk plot, also known
as a double-reciprocal plot, was utilized to determine the Michaelis–Menten constant
(Km) and maximum velocity (Vmax) as the X- and Y-axis intercepts of the primary plot,
respectively. The Lineweaver–Burk plot consists of 1/substrate concentrations (1/S) on
the X-axis versus 1/reaction velocity (1/V) on the Y-axis. The determination of the AW6
inhibition mechanism towards ACE was based on the production rates of hippuric acid
(HA) in the absence and presence of AW6 (0, 10, and 15 µM) using five concentrations
of HHL (0.3125, 0.625, 1.25, 2.5, and 5 mM) to generate the Lineweaver–Burk plot. The
HA content in the reaction mixtures was quantified using the linear regression of the
HA calibration curve. To construct the HA calibration curve, 0.08–2 mM HA solutions
were used. At the same time, using five concentrations of GP-pNA (0.2, 0.4, 0.8, 1.6, and
3.2 mM) and three concentrations of AW6 (0, 0.15, and 0.2 mM), the pNA production rate
was determined to evaluate the AW6 inhibition mechanism toward DPP4. Several pNA
solutions (20–1000 µM) were prepared to generate the standard calibration curve of pNA.
The pNA calibration curve was used to quantify the concentration of pNA in the testing
mixtures.

3.12. Molecular Level Interaction Study of AW6 toward ACE and DPP4 through Simulation of
Molecular Docking

Discovery Studio 3.0 software (Accelrys Software, UK) was utilized to rationalize the
molecular-level interaction of AW6 toward ACE and DPP4. The crystal structures of human
ACE–lisinopril (PDB Code = 1O86) and human DPP4–diprotin A (PDB Code = 1WCY)
were obtained from the Protein Data Bank (https://www.rcsb.org/, accessed on 7 May
2023) and used as receptor targets. AW6, as a ligand, was prepared using Discovery Studio
3.0 software. Before the molecular docking simulation, all the ligands, water molecules,
and inhibitors attached to the receptor except the enzyme cofactors were eliminated. The
CHARMm force field (an integrated dynamic energy minimization and calculation pro-
gram) was applied to the ligand and receptor. Blind docking simulation of AW6 toward
ACE (pdb.1O86) was conducted with an SBD site sphere of 36.5 Å at the coordinates x: 39.26,
y: 37.78, and z: 50.47. Meanwhile, the blind docking of AW6 toward DPP4 (pdb.1WCY)
was carried out with an SBD site sphere of 32.7 Å at the coordinates x: 107.78, y: 57.5, and z:
42.12. The molecular docking simulation was executed in triplicate, and the best pose of
receptor–AW6 was determined based on their CDOCKER energy score.

3.13. AW6 Stability toward Gastrointestinal Protease Digestion

The resistance of AW6 towards simulated gastrointestinal (SGI) digestion was eval-
uated using 1 mg/mL of AW6 in 35 mM sodium chloride buffer (pH 2.0), initiated by
adding pepsin at an enzyme-to-peptide ratio of 2% (w/w). The hydrolysis reaction was
conditioned at 37 ◦C for 1.5 h. Afterward, the pH was adjusted to 7.5 using 10 N NaOH.
Then, α-chymotrypsin and trypsin were added at an enzyme-to-peptide ratio of 1:100
(w/w). The hydrolysis reaction was maintained for an additional three hours at 37 ◦C, and
the stability of AW6 against SGI was evaluated using LC-MS analysis.

https://www.rcsb.org/
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3.14. Multiple-Reaction Monitoring (MRM) Analysis of AW6 in Hydrolysate and Fractions

To quantify AW6 content in 1 mg of the testing samples, a TSQ Quantum Access Max
(Thermo Scientific Inc., Waltham, MA, USA) is integrated with a heated-electrospray ion-
ization (H-ESI) interface and coupled with a liquid chromatography system (Prominence
UFLC, Shimadzu, Japan) equipped with a C18 column (Syncronis™, 150 × 2.1 mm, 5 µm,
Thermo Scientific). The ionization was set to positive (+) mode with the following parame-
ters: H-ESI temperature 300 ◦C, spray voltage 3500 V, sheath gas pressure 40 arb, aux gas
pressure 5 arb, capillary temperature 320 ◦C, and tube lens offset 124 V. The MS scanning
window was opened in a range of m/z 100–1000, and the MRM mode for the transition of
m/z 672.4→282.2 with a collision-induced dissociation (CID) energy of 34 V was selected
for the MS2 detection. The liquid chromatography separation at a 0.35 mL/min flow rate
was carried out as follows: an isocratic elution of 5% solution B for 0–5 min; a linear gradi-
ent elution from 5% to 80% solution B for 5–20 min; an isocratic elution of 80% solution B
for 20–25 min; and an isocratic elution of 5% solution B for 25–30 min, respectively. The
mobile phase comprised solutions A (0.1% FA in H2O) and B (0.1% FA in ACN).

3.15. Statistical Analysis

The results were processed using GraphPad Prism 9.0 (GraphPad Software, Inc., La
Jolla, CA, USA) and presented as the mean ± standard deviation from triplicate analyses.
The data were analyzed using a one-way ANOVA with Duncan’s multiple range test
(p < 0.05) post hoc procedure using SPSS 25.0 software (IBM, SPSS Inc., Chicago, IL, USA).

4. Conclusions

A potential ACEI peptide (APLVSW) with DPP4I activity was identified from BGSP-
GP hydrolysate and screened using two orthogonal bioassay-guided fractionations coupled
with in silico analysis. The ACEI and DPP4I IC50 values of APLVSW (AW6) were de-
termined to be 9.6 ± 0.3 and 145.4 ± 4.4 µM, respectively. According to the molecular
docking simulation and inhibition mechanism study, AW6 is a competitive ACEI and a
non-competitive DPP4I peptide. The quantities of AW6 in 1 mg of BGSP-GP hydrolysate,
fraction F5, and fraction S1 were 1.8 ± 0.2, 9.8 ± 0.3, and 2.5 ± 0.2 µg, respectively. Further-
more, AW6 is stable against SGI digestion, which indicates that AW6 might be resistant to
the human gastrointestinal tract. This finding suggests that AW6 is promising as a potential
ACEI peptide with DPP4I activity that could be beneficial for developing food supplements
or therapeutic agents. However, further in vivo and clinical studies are indispensable for
verifying the efficacy and bioavailability of this peptide.
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