Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,309)

Search Parameters:
Keywords = diode light

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2873 KB  
Article
Resource-Constrained Edge AI Solution for Real-Time Pest and Disease Detection in Chili Pepper Fields
by Hoyoung Chung, Jin-Hwi Kim, Junseong Ahn, Yoona Chung, Eunchan Kim and Wookjae Heo
Agriculture 2026, 16(2), 223; https://doi.org/10.3390/agriculture16020223 - 15 Jan 2026
Viewed by 101
Abstract
This paper presents a low-cost, fully on-premise Edge Artificial Intelligence (AI) system designed to support real-time pest and disease detection in open-field chili pepper cultivation. The proposed architecture integrates AI-Thinker ESP32-CAM module (ESP32-CAM) image acquisition nodes (“Sticks”) with a Raspberry Pi 5–based edge [...] Read more.
This paper presents a low-cost, fully on-premise Edge Artificial Intelligence (AI) system designed to support real-time pest and disease detection in open-field chili pepper cultivation. The proposed architecture integrates AI-Thinker ESP32-CAM module (ESP32-CAM) image acquisition nodes (“Sticks”) with a Raspberry Pi 5–based edge server (“Module”), forming a plug-and-play Internet of Things (IoT) pipeline that enables autonomous operation upon simple power-up, making it suitable for aging farmers and resource-limited environments. A Leaf-First 2-Stage vision model was developed by combining YOLOv8n-based leaf detection with a lightweight ResNet-18 classifier to improve the diagnostic accuracy for small lesions commonly occurring in dense pepper foliage. To address network instability, which is a major challenge in open-field agriculture, the system adopted a dual-protocol communication design using Hyper Text Transfer Protocol (HTTP) for Joint Photographic Experts Group (JPEG) transmission and Message Queuing Telemetry Transport (MQTT) for event-driven feedback, enhanced by Redis-based asynchronous buffering and state recovery. Deployment-oriented experiments under controlled conditions demonstrated an average end-to-end latency of 0.86 s from image capture to Light Emitting Diode (LED) alert, validating the system’s suitability for real-time decision support in crop management. Compared to heavier models (e.g., YOLOv11 and ResNet-50), the lightweight architecture reduced the computational cost by more than 60%, with minimal loss in detection accuracy. This study highlights the practical feasibility of resource-constrained Edge AI systems for open-field smart farming by emphasizing system-level integration, robustness, and real-time operability, and provides a deployment-oriented framework for future extension to other crops. Full article
(This article belongs to the Special Issue Smart Sensor-Based Systems for Crop Monitoring)
Show Figures

Figure 1

16 pages, 2384 KB  
Article
Advanced Performance of Photoluminescent Organic Light-Emitting Diodes Enabled by Natural Dye Emitters Considering a Circular Economy Strategy
by Vasyl G. Kravets, Vasyl Petruk, Serhii Kvaterniuk and Roman Petruk
Optics 2026, 7(1), 8; https://doi.org/10.3390/opt7010008 - 15 Jan 2026
Viewed by 127
Abstract
Organic optoelectronic devices receive appreciable attention due to their low cost, ecology, mechanical flexibility, band-gap engineering, brightness, and solution process ability over a broad area. In this study, we designed and studied organic light-emitting diodes (OLEDs) consisting of an assembly of natural dyes, [...] Read more.
Organic optoelectronic devices receive appreciable attention due to their low cost, ecology, mechanical flexibility, band-gap engineering, brightness, and solution process ability over a broad area. In this study, we designed and studied organic light-emitting diodes (OLEDs) consisting of an assembly of natural dyes, extracted from noble fir leaves (evergreen) and blue hydrangea flowers mixed with poly-methyl methacrylate (PMMA) as light emitters. We experimentally demonstrate the effective conversion of blue light emitted by an inorganic laser/photodiode into longer-wavelength red and green tunable photoluminescence due to the excitation of natural dye–PMMA nanostructures. UV-visible absorption and photoluminescence spectroscopy, ellipsometry, and Fourier transform infrared methods, together with optical microscopy, were performed for confirming and characterizing the properties of light-emitting diodes based on natural dyes. We highlighted the optical and physical properties of two different natural dyes and demonstrated how such characteristics can be exploited to make efficient LED devices. A strong pure red emission with a narrow full-width at half maximum (FWHM) of 23 nm in the noble fir dye–PMMA layer and a green emission with a FWHM of 45 nm in blue hydrangea dye–PMMA layer were observed. It was revealed that adding monolayer MoS2 to the nanostructures can significantly enhance the photoluminescence of the natural dye due to a strong correlation between the emission bands of the inorganic–organic emitters and back mirror reflection of the excitation blue light from the monolayer. Based on the investigation of two natural dyes, we demonstrated viable pathways for scalable manufacturing of efficient hybrid OLEDs consisting of assembly of natural-dye polymers through low-cost, purely ecological, and convenient processes. Full article
(This article belongs to the Section Engineering Optics)
Show Figures

Figure 1

19 pages, 4334 KB  
Article
Investigation of a PID-Based Dynamic Illuminance Control System for Intelligent Neonatal Jaundice Phototherapy Using a Blue Light LED Array
by Man Xie, Hongjie Zheng, Mei Liu, Xing Wen, Yile Fan and Bing-Yuh Lu
Sensors 2026, 26(2), 528; https://doi.org/10.3390/s26020528 - 13 Jan 2026
Viewed by 140
Abstract
Newborns are unable to reliably express changes in their physical condition due to their physiological immaturity and limited capacity for communication; therefore, continuous and systematic monitoring during phototherapy is essential to ensure timely detection of adverse responses and maintenance of therapeutic safety. This [...] Read more.
Newborns are unable to reliably express changes in their physical condition due to their physiological immaturity and limited capacity for communication; therefore, continuous and systematic monitoring during phototherapy is essential to ensure timely detection of adverse responses and maintenance of therapeutic safety. This study extends our prior work, which introduced an indirect method for measuring light intensity to improve precision in monitoring newborn skin illumination. Light-emitting diode (LED) phototherapy has attracted considerable attention as an effective treatment for neonatal jaundice (NNJ). This study introduces an three-dimensional configuration of blue LEDs. An Arduino Mega 2560 microcontroller with pulse-width modulation (PWM) technology was employed to independently regulate the intensity of LED strips, enabling precise control of light output. The strips were mounted on an arc-shaped structure that can be adjusted mechanically and electronically through pre-programmed instructions embedded in the microcontroller. The results demonstrate that blue light at a wavelength of 460 ± 10 nm aligns with the peak absorption spectrum of bilirubin, thereby optimizing the efficacy of phototherapy for NNJ. Both observed absorption peaks were within the therapeutically effective range. Computer simulations confirmed that stable output contours can be achieved using rapid electronic scanning with a PID control algorithm to dynamically adjust the duty cycle. Experimental data showed that LED radiation output was largely linear. This supports the use of linear control algorithms and confirms the platform’s feasibility for future research. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

14 pages, 10595 KB  
Article
Light Sources in Hyperspectral Imaging Simultaneously Influence Object Detection Performance and Vase Life of Cut Roses
by Yong-Tae Kim, Ji Yeong Ham and Byung-Chun In
Plants 2026, 15(2), 215; https://doi.org/10.3390/plants15020215 - 9 Jan 2026
Viewed by 177
Abstract
Hyperspectral imaging (HSI) is a noncontact camera-based technique that enables deep learning models to learn various plant conditions by detecting light reflectance under illumination. In this study, we investigated the effects of four light sources—halogen (HAL), incandescent (INC), fluorescent (FLU), and light-emitting diodes [...] Read more.
Hyperspectral imaging (HSI) is a noncontact camera-based technique that enables deep learning models to learn various plant conditions by detecting light reflectance under illumination. In this study, we investigated the effects of four light sources—halogen (HAL), incandescent (INC), fluorescent (FLU), and light-emitting diodes (LED)—on the quality of spectral images and the vase life (VL) of cut roses, which are vulnerable to abiotic stresses. Cut roses ‘All For Love’ and ‘White Beauty’ were used to compare cultivar-specific visible reflectance characteristics associated with contrasting petal pigmentation. HSI was performed at four time points, yielding 640 images per light source from 40 cut roses. The results revealed that the light source strongly affected both the image quality (mAP@0.5 60–80%) and VL (0–3 d) of cut roses. The HAL lamp produced high-quality spectral images across wavelengths (WL) ranging from 480 to 900 nm and yielded the highest object detection performance (ODP), reaching mAP@0.5 of 85% in ‘All For Love’ and 83% in ‘White Beauty’ with the YOLOv11x models. However, it increased petal temperature by 2.7–3 °C, thereby stimulating leaf transpiration and consequently shortening the VL of the flowers by 1–2.5 d. In contrast, INC produced unclear images with low spectral signals throughout the WL and consequently resulted in lower ODP, with mAP@0.5 of 74% and 69% in ‘All For Love’ and ‘White Beauty’, respectively. The INC only slightly increased petal temperature (1.2–1.3 °C) and shortened the VL by 1 d in the both cultivars. Although FLU and LED had only minor effects on petal temperature and VL, these illuminations generated transient spectral peaks in the WL range of 480–620 nm, resulting in decreased ODP (mAP@0.5 60–75%). Our results revealed that HAL provided reliable, high-quality spectral image data and high object detection accuracy, but simultaneously had negative effects on flower quality. Our findings suggest an alternative two-phase approach for illumination applications that uses HAL during the initial exploration of spectra corresponding to specific symptoms of interest, followed by LED for routine plant monitoring. Optimizing illumination in HSI will improve the accuracy of deep learning-based prediction and thereby contribute to the development of an automated quality sorting system that is urgently required in the cut flower industry. Full article
(This article belongs to the Special Issue Application of Optical and Imaging Systems to Plants)
Show Figures

Figure 1

11 pages, 1282 KB  
Article
Photo–Hall Effect Characteristics of InAs/GaAs Quantum Dot Photoconductors with Sub-Bandgap Photoexcitation
by Osamu Wada, Takahiro Kitada, Yasuo Minami, Yukihiro Harada, Toshiyuki Kaizu and Takashi Kita
Photonics 2026, 13(1), 59; https://doi.org/10.3390/photonics13010059 - 8 Jan 2026
Viewed by 187
Abstract
The photoconductive properties of an InAs/GaAs quantum dot (QD) superlattice have been characterized using photo–Hall measurements under sub-bandgap illumination. The multi-stacked InAs/GaAs QD structure was grown using molecular beam epitaxy and photo–Hall effect measurements were performed under illumination using light-emitting diodes with three [...] Read more.
The photoconductive properties of an InAs/GaAs quantum dot (QD) superlattice have been characterized using photo–Hall measurements under sub-bandgap illumination. The multi-stacked InAs/GaAs QD structure was grown using molecular beam epitaxy and photo–Hall effect measurements were performed under illumination using light-emitting diodes with three different emission wavelengths: 940 nm, 1300 nm, and 1550 nm. The results have shown that the sign reversal occurs in the Hall coefficient (RH) as the illumination wavelength changes: RH is negative at 940 nm and 1300 nm, and positive at 1550 nm. The photocurrent at 940 nm illumination is ascribed to the electron hole pair generation in QDs, whereas the photocurrent at 1550 nm is dominated by the hole current generated through the midgap states in the structure. A simplified rate equation model involving two-step photoexcitation through the midgap states has revealed that the dominant photocarriers and the Hall coefficient can change depending on the photoexcitation power. The steady-state photocurrent behavior including the observed sign reversal in the Hall coefficient has been interpreted by the proposed model. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

51 pages, 12092 KB  
Review
Smart Delayed Fluorescent AIEgens for Organic Light-Emitting Diodes: Mechanism and Adjustable Performance
by Changhao Yan and Juechen Ni
Molecules 2026, 31(2), 203; https://doi.org/10.3390/molecules31020203 - 6 Jan 2026
Viewed by 429
Abstract
Organic light-emitting diodes (OLEDs) have attracted remarkable interest in display and lighting. To effectively address triplet exciton harvesting and enhance external quantum efficiency (EQE), delayed fluorescence AIEgens have gained significant prominence. The primary luminescence mechanism involves the efficient harvesting of triplet excitons via [...] Read more.
Organic light-emitting diodes (OLEDs) have attracted remarkable interest in display and lighting. To effectively address triplet exciton harvesting and enhance external quantum efficiency (EQE), delayed fluorescence AIEgens have gained significant prominence. The primary luminescence mechanism involves the efficient harvesting of triplet excitons via reverse intersystem crossing (RISC) channels, categorized into three types: thermally activated delayed fluorescence (TADF), hybridized local and charge transfer (HLCT), and triplet–triplet annihilation (TTA). In this review, we summarize the recent development of doped and non-doped delayed fluorescent AIEgens-based OLEDs. This review mainly discusses the molecular design strategies and photophysical properties of delayed fluorescent AIEgens and the electroluminescent properties of OLEDs as emitting layers. Finally, the challenges and prospects of delayed fluorescent AIEgens for the fabrication of OLEDs are also briefly discussed. Full article
(This article belongs to the Special Issue Design and Synthesis of Organic Materials for OLED Applications)
Show Figures

Graphical abstract

20 pages, 3051 KB  
Article
Five-Year Follow-Up of Photobiomodulation in Parkinson’s Disease: A Case Series Exploring Clinical Stability and Microbiome Modulation
by Brian Bicknell, Ann Liebert, Craig McLachlan and Hosen Kiat
J. Clin. Med. 2026, 15(1), 368; https://doi.org/10.3390/jcm15010368 - 4 Jan 2026
Viewed by 425
Abstract
Background: Parkinson’s disease (PD) involves progressive neurodegeneration with clinical or subclinical disturbance of the gut–brain axis, including altered gastrointestinal motility and enteric nervous system involvement. Clinical studies have reported gut microbiome alterations in PD, with shifts in taxa associated with inflammatory signalling [...] Read more.
Background: Parkinson’s disease (PD) involves progressive neurodegeneration with clinical or subclinical disturbance of the gut–brain axis, including altered gastrointestinal motility and enteric nervous system involvement. Clinical studies have reported gut microbiome alterations in PD, with shifts in taxa associated with inflammatory signalling and short-chain fatty acid (SCFA) metabolism. Photobiomodulation (PBM), a non-invasive light therapy, has been investigated as a potential adjunctive treatment for PD, with proposed effects on neural, metabolic, and immune pathways. We previously reported the five-year clinical outcomes in a PBM-treated Parkinson’s disease case series. Here we report the five-year gut microbiome outcomes based on longitudinal samples collected from the same participants. This was an exploratory, open-label longitudinal study without a control group. Objective: Our objective was to assess whether long-term PBM was associated with changes in gut microbiome diversity and composition in the same Parkinson’s disease cohort as previously assessed for changes in Parkinson’s symptoms. Methods: Six participants from the earlier PBM proof-of-concept study who had been diagnosed with idiopathic PD and who had continued treatment (transcranial light emitting diode [LED] plus abdominal and neck laser) for five years had their faecal samples analysed by 16S rDNA sequencing to assess microbiome diversity and taxonomic composition. Results: Microbiome analysis revealed significantly reduced evenness (α-diversity) and significant shifts in β-diversity over five years, as assessed by Permutational Multivariate Analysis of Variance (PERMANOVA). At the phylum level, Pseudomonadota and Methanobacteriota decreased in four of the six participants. Both of these phyla are often increased in the Parkinson’s microbiome compared with the microbiomes of healthy controls. Family-level changes included increased acetate-producing Bifidobacteriaceae (five of the six participants); decreased pro-inflammatory, lipopolysaccharide (LPS)-producing Enterobacteriaceae (two of the three participants who have this bacterial family present); and decreased LPS- and H2S-producing Desulfovibrionaceae (five of six). At the genus level, Faecalibacterium, a key butyrate producer, increased in four of the six participants, potentially leading to more SCFA availability, although other SCFA-producing bacteria were decreased. This was accompanied by reductions in pro-inflammatory LPS and H2S-producing genera that are often increased in the Parkinson’s microbiome. Conclusions: This five-year case series represents the longest follow-up of microbiome changes in Parkinson’s disease, although the interpretation of results is limited by very small numbers, the lack of a control group, and the inability to control for lifestyle influences such as dietary changes. While causal relationships cannot be inferred, the parallel changes in improvements in mobility and non-motor Parkinson’s symptoms observed in this cohort, raises the hypothesis that PBM may interact with the gut–brain axis via the microbiome. Controlled studies incorporating functional multi-omics are needed to clarify potential mechanistic links between microbial function, host metabolism, and clinical outcomes. Full article
(This article belongs to the Special Issue Innovations in Parkinson’s Disease)
Show Figures

Graphical abstract

20 pages, 5179 KB  
Article
P–N Nanoporous Silicon Fabrication Using Photoelectrochemical Etching and Ultrasonic Vibration and Liquid-Phase Bonding for Optoelectronic Applications
by Chao-Ching Chiang and Philip Nathaniel Immanuel
Micromachines 2026, 17(1), 73; https://doi.org/10.3390/mi17010073 - 4 Jan 2026
Viewed by 472
Abstract
We systematically investigated the optical properties of P-N nanoporous silicon (NPS) diodes fabricated using photoelectrochemical etching and ultrasonic vibration (PEEU), followed by liquid-phase bonding and thermal treatment. Ultrasonic vibration during etching promoted uniform pore formation by enhancing reactant diffusion and suppressing hydrogen bubble [...] Read more.
We systematically investigated the optical properties of P-N nanoporous silicon (NPS) diodes fabricated using photoelectrochemical etching and ultrasonic vibration (PEEU), followed by liquid-phase bonding and thermal treatment. Ultrasonic vibration during etching promoted uniform pore formation by enhancing reactant diffusion and suppressing hydrogen bubble accumulation, while laser-induced photocarriers improved etching selectivity, facilitating the formation of NPS with pronounced quantum confinement. The fabricated NPS devices exhibited significantly enhanced photoluminescence (PL) and electroluminescence (EL) properties, with an average external quantum efficiency of 7.3% at a bias of 10 V. Subsequent liquid-phase bonding and thermal annealing further enhanced structural stability and interface quality, resulting in an 180% increase in PL intensity. These results demonstrate that the combination of PEEU with liquid-phase bonding and thermal annealing yields a versatile approach to tailor the optical and electrical properties of P–N porous silicon nanostructures for high-performance light-emitting diodes and quantum-confined silicon photonics, highlighting the critical role of process-induced nanostructures and thermal modifications in device performance. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Electronic and Optoelectronic Devices)
Show Figures

Figure 1

30 pages, 11904 KB  
Article
Optical Degradation and Lifetime Assessment of 260–265 nm AlGaN-Based UVC LEDs Under Varying Drive-Current Regimes for Disinfection Systems
by Łukasz Gryko, Sebastian Skłodowski and Urszula Joanna Błaszczak
Appl. Sci. 2026, 16(1), 483; https://doi.org/10.3390/app16010483 - 3 Jan 2026
Viewed by 280
Abstract
This investigation examines the optical degradation of 260 nm and 265 nm UVC LEDs subjected to varying drive current conditions, simulating real-world deployment in consumer and professional disinfection systems. The primary aim was to assess lifetime trends and degradation behaviour based exclusively on [...] Read more.
This investigation examines the optical degradation of 260 nm and 265 nm UVC LEDs subjected to varying drive current conditions, simulating real-world deployment in consumer and professional disinfection systems. The primary aim was to assess lifetime trends and degradation behaviour based exclusively on radiometric and spectral data. A total of 24 devices (12 per wavelength group) were operated for 2000 h under a broad range of thermally stabilised current levels, from low-standby to maximum-rated operation. The results demonstrated distinct current-dependent ageing characteristics, wherein, for the tested device sets and operating conditions, 260 nm LEDs exhibited faster optical power degradation than the investigated 265 nm LEDs under nominal drive conditions. Notably, a moderate current derating of approximately 20% resulted in a more than fourfold increase in L70 lifetime and over a threefold extension in the number of effective disinfection cycles. Despite a stable spectral power distribution throughout ageing, significant statistical variation in lifetime metrics (L90, L80, L70, L50) was observed even among identically operated devices, underscoring the need for population-level reliability qualification. Optical lifetime estimates based on empirical model fitting indicated that the Ruschel logarithmic function most accurately captured the long-term degradation trends for the analysed datasets. These findings provide practical guidance for the design of durable and efficient UVC LED systems within the investigated device class and operating regimes, supporting sustained germicidal performance and long-term operational reliability across diverse use cases. Full article
Show Figures

Figure 1

17 pages, 2958 KB  
Article
Thermally Stable and Energy Efficient Newly Synthesized Bipolar Emitters for Yellow and Green OLED Devices
by Anil Kumar, Sushanta Lenka, Kapil Patidar, Chih-An Tung, Ming Yu Luo, Raminta Beresneviciute, Gintare Krucaite, Daiva Tavgeniene, Dovydas Blazevicius, Bernadeta Blazeviciute, Jwo-Huei Jou and Saulius Grigalevicius
Molecules 2026, 31(1), 158; https://doi.org/10.3390/molecules31010158 - 1 Jan 2026
Viewed by 272
Abstract
Organic light-emitting diodes (OLEDs) have emerged as a leading high-resolution display and lighting technology, as well as for photo-therapeutic applications, due to their light weight, flexibility, and excellent color rendering. However, achieving long-term thermal stability and high energy efficiency remains a principal issue [...] Read more.
Organic light-emitting diodes (OLEDs) have emerged as a leading high-resolution display and lighting technology, as well as for photo-therapeutic applications, due to their light weight, flexibility, and excellent color rendering. However, achieving long-term thermal stability and high energy efficiency remains a principal issue for their widespread adoption. Strong thermal robustness in OLED emitter materials is a critical parameter for achieving long device lifetimes, stable film morphology, reliable high-temperature processing, and sustained interface integrity in high-performance hosts. Bipolar emitters RB14 (N-(9-ethylcarbazole-3-yl)-4-(diphenylamino)phenyl-9H-carbazole-9-yl-1,8-naphthalimide), RB18 (N-phenyl-4-(diphenylamino)phenyl-9H-carbazole-9-yl-1,8-naphthalimide), and RB22 (N-phenyl-3-(2-methoxypyridin-3-yl)-9H-carbazole-9-yl-1,8-naphthalimide) were newly synthesized. RB18 is a yellow bipolar OLED emitter that has a glass transition temperature (Tg) of 162 °C and thermal durability (Td) of 431 °C, which is the highest reported value for naphthalimide-based bipolar emitter derivatives for yellow OLEDs. Meanwhile, RB14 and RB22 are green OLED emitters that have glass transition temperatures (Tg) of 133 °C and 167 °C, and thermal durabilities (Td) of 336 °C and 400 °C, respectively. We have fabricated OLED devices using these bipolar emitters dispersed in CBP host matrix, and we have found that the maximum EQEs (%) for RB14, RB18, and RB22 emitter-based devices are 7.93%, 3.40%, and 4.02%, respectively. For confirmation of thermal stability, we also used UV-visible spectroscopy measurements at variable temperatures on annealed spin-coated glass films of these emitter materials and found that RB22 is the most thermally stable emitter among these materials. Full article
Show Figures

Figure 1

11 pages, 5555 KB  
Article
Dynamics of Ferroelastic Domain Walls Associated with the Dielectric Relaxation in CsPbCl3 Single Crystals
by Zijun Yu, Chen Zou and Dexin Yang
Nanomaterials 2026, 16(1), 57; https://doi.org/10.3390/nano16010057 - 31 Dec 2025
Viewed by 260
Abstract
Cesium lead chloride (CsPbCl3) is a stable, wide-bandgap perovskite with significant potential for ultraviolet (UV) photodetection and blue light-emitting diodes (LEDs). However, the dynamical mechanisms of ferroelastic domain walls associated with the dielectric relaxations in a single-crystal have rarely been reported. [...] Read more.
Cesium lead chloride (CsPbCl3) is a stable, wide-bandgap perovskite with significant potential for ultraviolet (UV) photodetection and blue light-emitting diodes (LEDs). However, the dynamical mechanisms of ferroelastic domain walls associated with the dielectric relaxations in a single-crystal have rarely been reported. In this work, we observed reversible phase transitions from cubic to tetragonal, and further to orthorhombic symmetry, accompanied by the formation and evolution of strip-like ferroelastic domain walls, using in situ X-ray diffraction (XRD), differential scanning calorimetry (DSC), polarized optical microscopy (POM), and dielectric measurements. Notably, the dielectric studies revealed low temperature (~170–180 K) frequency-dependent loss peaks that we attribute to the pinning of polarized domain walls by chloride vacancies. We also found that the formation or disappearance of ferroelastic domain walls near the octahedral tilting transition temperatures leads to pronounced anomalies in the dielectric permittivity. These findings clarify the intrinsic phase behavior of CsPbCl3 single crystals and underscore the significant contribution of ferroelastic domain walls to its dielectric response, providing insights for optimizing its optoelectronic performance. Full article
Show Figures

Graphical abstract

15 pages, 8095 KB  
Article
Synergistic Surface Modification of Bromocarboxylic Acid-Oleylamine Dual Ligands for Highly Stable and Luminescent CsPbBr3 Perovskite Nanocrystals
by Wenjun Chen, Rui Zhang, Xiaobo Hu, Jingsheng Ma, Duna Su, Chuanli Wu, Yanqiao Xu and Xiuxun Han
Molecules 2026, 31(1), 127; https://doi.org/10.3390/molecules31010127 - 29 Dec 2025
Viewed by 208
Abstract
The poor stability of CsPbBr3 perovskite nanocrystals (PNCs) caused by weak and dynamic ligand coordination severely limits their commercial applications. Herein, a dual-ligand synergistic modification strategy based on bromocarboxylic acids (BCAs) and oleylamine (OAm) was developed to mediate the surface structures and [...] Read more.
The poor stability of CsPbBr3 perovskite nanocrystals (PNCs) caused by weak and dynamic ligand coordination severely limits their commercial applications. Herein, a dual-ligand synergistic modification strategy based on bromocarboxylic acids (BCAs) and oleylamine (OAm) was developed to mediate the surface structures and luminescent dynamics of CsPbBr3 PNCs. The results reveal that carboxylate groups of BCA ligands modulate crystal growth, while its terminal Br atom forms a strong coordination with exposed Pb2+ on the PNCs surface, which can effectively passivate lead- and bromine-related defects. The synergistic protection of OAm ligands enhances the stability of PNCs via amino-halide electrostatic interactions and steric hindrance effects. Notably, based on the relatively dense surface coating of 4-bromobutyric acid (BBA) and OAm dual-ligands, the prepared CsPbBr3 PNCs exhibit a high photoluminescence quantum yield (PLQY) of 85.2 ± 2.4% and remarkable storage stability, retaining 90.2 ± 1.7% of their initial PL intensity after being stored for 63 days under ambient conditions. Furthermore, a prototype white light-emitting diode (WLED) fabricated with these PNCs displays a wide color gamut covering 122.1% of the NTSC standard and a luminous efficacy of 64.6 lm/W. This work provides a facile and feasible ligand engineering strategy to obtain highly stable and emissive PNCs. Full article
(This article belongs to the Special Issue Nanochemistry in Asia)
Show Figures

Graphical abstract

20 pages, 2024 KB  
Review
Research Progress of Hyperfluorescent Organic Electroluminescent Devices
by Yaxin Li, Jiaqi Wang, Chaoteng Pan, Xin Jiang, He Dong, Jin Wang and Gang Zhang
Micromachines 2026, 17(1), 40; https://doi.org/10.3390/mi17010040 - 29 Dec 2025
Viewed by 413
Abstract
Organic light-emitting diodes (OLEDs) have the advantages of high efficiency and high color purity, which gives them great potential and application prospects in the field of display technology, and thus they have been of wide interest for scholars and industry. Due to their [...] Read more.
Organic light-emitting diodes (OLEDs) have the advantages of high efficiency and high color purity, which gives them great potential and application prospects in the field of display technology, and thus they have been of wide interest for scholars and industry. Due to their nature, when using the first generation of fluorescent materials, only 25% of the excitons are used, while the rest are wasted, meaning the device efficiency does not exceed 25%. The second generation of phosphorescent materials solves this problem by utilizing 25% singlet excitons while utilizing 75% triplet excitons, achieving 100% internal quantum efficiency. Therefore, a third generation of materials, namely Thermally Activated Delayed Fluorescence (TADF) materials, has been developed, and these are able to use the small singlet–triplet energy gap to allow excitons on the triplet state to upconvert back to the single state, which improves the utilization of triplet excitons. These TADF materials can also reach 100% maximum internal quantum efficiency, but they have many problems, such as low color purity and serious efficiency roll-off. Therefore, researchers have designed hyperfluorescent materials, which possess high efficiency, high color purity, and a long lifetime, showing tremendous potential and application prospects in the field of display technology. This report takes hyperfluorescent OLEDs as the entry point and the molecular design and luminescence mechanism of hyperfluorescent materials are reviewed, considering blue, green, red, and white light. Full article
(This article belongs to the Special Issue Advanced Optoelectronic Materials/Devices and Their Applications)
Show Figures

Figure 1

13 pages, 1856 KB  
Article
White Organic Light-Emitting Diodes from Single-Component Nonconjugated Polymers by Combining Monomer Emission with Electromer Emission
by Chao Zheng, Mingze Li, Zhiwen Xu, Yaxuan Pan, Qi Zhou, Yujie Fu, Dongyue Cui, Huanhuan Li, Ye Tao and Runfeng Chen
Molecules 2026, 31(1), 101; https://doi.org/10.3390/molecules31010101 - 26 Dec 2025
Viewed by 352
Abstract
White organic light-emitting diodes (OLEDs) offer a promising solution for next-generation lighting technologies and their ability to emit white light through various mechanisms make them an attractive option for illumination and display applications. Here, we design and prepare a series of N, [...] Read more.
White organic light-emitting diodes (OLEDs) offer a promising solution for next-generation lighting technologies and their ability to emit white light through various mechanisms make them an attractive option for illumination and display applications. Here, we design and prepare a series of N,N-difluorenevinylaniline-based small molecules and polymer, and realize white OLEDs based on these luminescent materials with combined blue monomer emission and orange electromer emission upon electronic excitation in the solution-processed devices. Impressively, the single-component nonconjugated polymer exhibits the best device performance, because the nonconjugated structure favors good solubility of the polymers, while the conjugated starburst unit functions as highly luminescent fluorophore in both single molecular and aggregated structures for the blue and orange emissions, respectively. Specifically, the non-doped solution-processed OLEDs achieve warm white electroluminescence with a maximum luminance of 1806 cd/m2 and a maximum external quantum efficiency of 2.63%. And, the OLEDs based on the monomer also exhibit white electroluminescence with Commission Internationale de L’Eclairage coordinates of (0.30, 0.32). These results highlight a promising strategy for the material design and preparation of single-component nonconjugated polymers with rich emissive behaviors in solid states towards efficient and solution-processable white OLEDs. Full article
(This article belongs to the Special Issue Insight into Organic Semiconductor Materials)
Show Figures

Graphical abstract

35 pages, 4880 KB  
Review
Perovskite Nanocrystals, Quantum Dots, and Two-Dimensional Structures: Synthesis, Optoelectronics, Quantum Technologies, and Biomedical Imaging
by Kamran Ullah, Anwar Ul Haq, Sergii Golovynskyi, Tarak Hidouri, Junle Qu and Iuliia Golovynska
Nanomaterials 2026, 16(1), 30; https://doi.org/10.3390/nano16010030 - 25 Dec 2025
Viewed by 667
Abstract
Perovskite crystals, nanocrystals, quantum dots (QDs), and two-dimensional (2D) materials are at the forefront of optoelectronics and quantum optics, offering groundbreaking potential for a wide range of applications, including photovoltaics, light-emitting devices, and quantum information technologies. Perovskite materials, with their remarkable, tunable bandgaps, [...] Read more.
Perovskite crystals, nanocrystals, quantum dots (QDs), and two-dimensional (2D) materials are at the forefront of optoelectronics and quantum optics, offering groundbreaking potential for a wide range of applications, including photovoltaics, light-emitting devices, and quantum information technologies. Perovskite materials, with their remarkable, tunable bandgaps, high absorption coefficients, and efficient charge transport, have revolutionized the field of light-emitting diodes, photodetectors, and solar cells. QDs, owing to their size-dependent quantum confinement and high photoluminescence quantum yields, are crucial for applications in display technologies, imaging, and quantum computing. The synthesis of QDs from perovskite-based materials yields a significant enhancement in the performance of optoelectronics devices. Furthermore, 2D perovskites have recently exhibited extraordinary carrier mobility, strong light–matter interactions, and mechanical flexibility, making them highly attractive for next-generation optoelectronic applications. Additionally, this review discusses the synergistic potential of hybrid material architectures, where perovskite crystals, QDs, and 2D materials are combined to enhance optoelectronic performance and their role in quantum optics. By analyzing the effects of material structure, surface modifications, and fabrication techniques, this review provides a valuable resource for harnessing the transformative potential of these advanced materials in modern optoelectronic applications. Full article
(This article belongs to the Special Issue Luminescence Properties and Bio-Applications of Nanomaterials)
Show Figures

Figure 1

Back to TopTop