Advanced Performance of Photoluminescent Organic Light-Emitting Diodes Enabled by Natural Dye Emitters Considering a Circular Economy Strategy
Abstract
1. Introduction
2. Experimental Methods
2.1. Preparation of Samples
2.2. Optical Microscopy Images
2.3. Photoluminescence Spectroscopy
2.4. Reflection/Absorption Spectroscopy
2.5. Ellipsometric Measurements
2.6. Fourier Transform Infrared Spectroscopy
3. Results and Discussion
3.1. Photoluminescence Spectra
3.2. Absorption Spectra
3.3. FTIR Spectroscopy
3.4. PL Performance Based on Natural Dyes Excited by Blue GaN Photodiode
3.5. A Circular Economy Strategy for Photoluminescent Hybrid LEDs Based on Natural Dyes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, C.W.; Van Slyke, S.A. Organic Luminescent Diodes. Appl. Phys. Lett. 1987, 51, 913. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, S.; Jiang, J.; Lv, Z.; Luo, J.; Shi, Y.; Lu, Z.; Wang, X. Organic Cocrystal Alloys: From Three Primary Colors to Continuously Tunable Emission and Applications on Optical Waveguides and Displays. Small 2024, 20, 2400313. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, S.; Xie, Z.; Huang, K.; Yan, K.; Zhao, Y.; Redshaw, C.; Feng, X.; Tang, B.Z. Molecular Engineering toward Broad Color-Tunable Emission of Pyrene-Based Aggregation-Induced Emission Luminogens. Adv. Opt. Mater. 2024, 12, 2400301. [Google Scholar] [CrossRef]
- Jou, J.H.; Kumar, S.; Agrawal, A.; Li, T.H.; Sahoo, S. Approaches for fabricating high efficiency organic light emitting diodes. J. Mater. Chem. C 2015, 3, 2974–3002. [Google Scholar] [CrossRef]
- Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M.P. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 2017, 46, 915–1016. [Google Scholar] [CrossRef] [PubMed]
- Okoročenkova, J.; Filgas, J.; Khan, N.M.; Slavíček, P.; Klán, P. Thermal Truncation of Heptamethine Cyanine Dyes. J. Am. Chem. Soc. 2024, 146, 19768–19781. [Google Scholar] [CrossRef]
- Song, J.; Lee, H.; Jeong, E.G.; Choi, K.C.; Yoo, S. Organic Light-Emitting Diodes: Pushing Toward the Limits and Beyond. Adv. Mater. 2020, 32, 1907539. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Chaudhari, A.; Kumar, S.; Kushwaha, S.; Mandal, S. Comparative study of natural and synthetic dyes in DSSCs: An experimental and computational approach. Physica B 2024, 685, 415978. [Google Scholar] [CrossRef]
- Islam, A.; Shah, S.H.U.; Haider, Z.; Imran, M.; Amin, A.; Haider, S.K.; Li, M.D. Biological interfacial materials for organic light-emitting diodes. Micromachines 2023, 14, 1171. [Google Scholar] [CrossRef]
- Chaithra, R.; Harshitha, D.; Renuka, C.G. Unlocking the Photoluminescence Potential of Tabebuia Rosea Dyes: A Novel Natural Source of Broadband Visible Spectral Fluorescence for OLED Technologies. J. Fluoresc. 2025, 35, 7959–7984. [Google Scholar] [CrossRef]
- Richhariya, G.; Kumar, A.; Tekasakul, P.; Gupta, B. Natural dyes for dye sensitized solar cell: A review. Renew. Sustain. Energy Rev. 2017, 69, 705–718. [Google Scholar] [CrossRef]
- Mondal, H.; Ray, S.K.; Chakrabarty, P.; Pal, S.; Gangopadhyay, G.; Das, S.; Das, S.; Basori, R. High-Performance Chlorophyll-b/Si Nanowire Heterostructure for Self-Biasing Bioinorganic Hybrid Photodetectors. ACS Appl. Nano Mater. 2021, 4, 5726–5736. [Google Scholar] [CrossRef]
- Swapna, M.S.; Raj, V.; Devi, H.V.S.; Sankararaman, S. Optical emission diagnosis of carbon nanoparticle-incorporated chlorophyll for sensing applications. Photochem. Photobiol. Sci. 2019, 18, 1382–1388. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-P.; Lin, R.Y.-Y.; Lin, L.-Y.; Li, C.-T.; Chu, T.-C.; Sun, S.-S.; Lin, J.T.; Ho, K.-C. Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Adv. 2015, 5, 23810–23825. [Google Scholar] [CrossRef]
- Schiller, H.; Dau, H. Preparation protocols for high-activity Photosystem II membrane particles of green algae and higher plants, pH dependence of oxygen evolution and comparison of the S2-state multiline signal by X-band EPR spectroscopy. J. Photochem. Photobiol. B Biol. 2000, 55, 138–144. [Google Scholar] [CrossRef]
- Beohar, M.; Verma, M.; Verma, A.; Gupta, V. Updates on Tropical Medicinal Plant Tinospora cordifolia as an Antimicrobial Shrub to Combat Respiratory Infections. Nat. Prod. J. 2015, 15, E020724231453. [Google Scholar] [CrossRef]
- Kravets, V.G. Photoluminescence and Raman spectra of SnOx nanostructures doped with Sm ions. Opt. Spectrosc. 2007, 103, 766–771. [Google Scholar] [CrossRef]
- Kravets, V.G. Using electron trapping materials for optical memory. Opt. Mater. 2001, 16, 369–375. [Google Scholar] [CrossRef]
- Yang, L.; Kruse, B. Revised Kubelka-Munk theory. I. Theory and application. J. Opt. Soc. Am. A 2004, 21, 1933–1941. [Google Scholar]
- Kubelka, P. New Contributions to the Optics of Intensely Light-Scattering Materials Part II: Nonhomogeneous Layers. J. Opt. Soc. Am. 1954, 44, 330. [Google Scholar] [CrossRef]
- Bennett, A.; Bogorad, L. Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol. 1973, 58, 419–435. [Google Scholar] [CrossRef]
- Azzam, R.M.A.; Bashara, N.M. Ellipsometry and Polarized Light; North-Holland: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Kravets, V.G.; Grigorenko, A.N. Water and seawater splitting with MgB2 plasmonic metal-based photocatalyst. Sci. Rep. 2025, 15, 1224. [Google Scholar] [CrossRef] [PubMed]
- Kravets, V.G.; Wu, F.; Yu, T.; Grigorenko, A.N. Metal-Dielectric-Graphene Hybrid Heterostructures with Enhanced Surface Plasmon Resonance Sensitivity Based on Amplitude and Phase Measurements. Plasmonics 2022, 17, 973–987. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics, 60th Anniversary Edition, 7th ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar] [CrossRef]
- Kravets, V.G.; Zhukov, A.A.; Holwill, M.; Novoselov, K.S.; Grigorenko, A.N. “Dead” Exciton Layer and Exciton Anisotropy of Bulk MoS2 Extracted from Optical Measurements. ACS Nano 2022, 16, 18637–18647. [Google Scholar] [CrossRef] [PubMed]
- Kravets, V.G.; Prorok, V.V.; Poperenko, L.V.; Shaykevich, I.A. Ellipsometry and optical spectroscopy of low-dimensional family TMDs. Semicond. Phys. Quantum Electron. Optoelectron. 2017, 20, 284–296. [Google Scholar] [CrossRef]
- Brouwer, A.M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213–2228. [Google Scholar] [CrossRef]
- Kaddour, S.; Zaimia, R.; Mastour, N.; Ridene, S.; Raouafi, N. Optical transmission enhancement of MoS2 nanosheets doped with magnetic materials Ni, Mn, and Cr. J. Opt. Photonics Res. 2025, 2, 164–171. [Google Scholar] [CrossRef]
- Björn, L.O. Photobiology: The Science of Light and Life; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Larkum, A.W.D.; Kühl, M. Chlorophyll d: The puzzle resolved. Trends Plant Sci. 2005, 10, 355–357. [Google Scholar] [CrossRef]
- Hussain, M.; Jalali, T.; Maftoon-Azad, L.; Osfouri, S. Performance Evaluation of Natural Dye-Sensitized Solar Cells: A Comparison of Density Functional Theory and Experimental Data on Chlorophyll, Anthocyanin, and Cocktail Dyes as Sensitizers. ACS Appl. Electron. Mater. 2024, 6, 1693–1709. [Google Scholar] [CrossRef]
- Fennel, F.; Lochbrunner, S. Long distance energy transfer in a polymer matrix doped with a perylene dye. Phys. Chem. Chem. Phys. 2011, 13, 3527. [Google Scholar] [CrossRef]
- Palta, J.P. Leaf Chlorophyll Content. Remote Sens. Rev. 1990, 5, 207–213. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, Y.; Ranjitkar, S.; Li, M.; Guo, Y.; Yan, X.; Wang, C.; Stepp, J.R.; Yang, L. Reusing wasteroot of Rubia wallichiana dyeing from Monpa of Tibet in China. Sci. Rep. 2021, 11, 14331. [Google Scholar] [CrossRef] [PubMed]
- Henari, F.Z.; Deen, G.R. Green Synthesis of Noble Metal Nanoparticles: Nonlinear Optics and Applications. J. Opt. Photonics Res. 2024, 00, 1–8. [Google Scholar] [CrossRef]
- Bhuyan, C.A.; Madapu, K.K.; Prabakar, K.; Das, A.; Polaki, S.R.; Sinha, S.K.; Dhara, S. A Novel Methodology of Using Nonsolvent in Achieving Ultraclean Transferred Monolayer MoS2. Adv. Mater. Interfaces 2022, 9, 2200030. [Google Scholar] [CrossRef]
- Finkbeiner, M. The International Standards as the Constitution of Life Cycle Assessment: The ISO 14040 Series and its Offspring. In Background and Future Prospects in Life Cycle Assessment; Klöpffer, W., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 85–106. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, K. Design for Circularity, Design for Adaptability, Design for Disassembly. In Circular Economy Design and Management in the Built Environment; Bragança, L., Griffiths, P., Askar, R., Salles, A., Ungureanu, V., Tsikaloudaki, K., Bajare, D., Zsembinszki, G., Cvetkovska, M., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 257–272. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kravets, V.G.; Petruk, V.; Kvaterniuk, S.; Petruk, R. Advanced Performance of Photoluminescent Organic Light-Emitting Diodes Enabled by Natural Dye Emitters Considering a Circular Economy Strategy. Optics 2026, 7, 8. https://doi.org/10.3390/opt7010008
Kravets VG, Petruk V, Kvaterniuk S, Petruk R. Advanced Performance of Photoluminescent Organic Light-Emitting Diodes Enabled by Natural Dye Emitters Considering a Circular Economy Strategy. Optics. 2026; 7(1):8. https://doi.org/10.3390/opt7010008
Chicago/Turabian StyleKravets, Vasyl G., Vasyl Petruk, Serhii Kvaterniuk, and Roman Petruk. 2026. "Advanced Performance of Photoluminescent Organic Light-Emitting Diodes Enabled by Natural Dye Emitters Considering a Circular Economy Strategy" Optics 7, no. 1: 8. https://doi.org/10.3390/opt7010008
APA StyleKravets, V. G., Petruk, V., Kvaterniuk, S., & Petruk, R. (2026). Advanced Performance of Photoluminescent Organic Light-Emitting Diodes Enabled by Natural Dye Emitters Considering a Circular Economy Strategy. Optics, 7(1), 8. https://doi.org/10.3390/opt7010008
