molecules-logo

Journal Browser

Journal Browser

Nanochemistry in Asia

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Nanochemistry".

Deadline for manuscript submissions: 30 April 2026 | Viewed by 661

Special Issue Editors


E-Mail Website
Guest Editor
Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
Interests: catalytic oxidation; oxi-upcycling of plastics; photodeposition
Special Issues, Collections and Topics in MDPI journals
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Interests: nanocatalyst design; single atom; CO2 reduction; water splitting
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

It is our immense pleasure to announce this Special Issue entitled “Nanochemistry in Asia”, guest-edited by Dr. Lei Huang and Dr. Feng Hu.

This Special Issue will showcase a high-quality, cohesive collection of original research articles and comprehensive review papers from leading scientists across Asian countries to highlight cutting-edge advancements and innovations in designing nanoscale materials for transformative applications across diverse fields of medicine and healthcare, electronics, environmental sustainability, optics, and energy.

This Special Issue is a forum for the exchange of research findings and innovative ideas in the field.

We warmly invite you to contribute your work and participate in this exciting initiative to advance the frontiers of nanochemistry.

Dr. Lei Huang
Dr. Feng Hu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanochemistry
  • nanomaterials
  • nanomedicine
  • nanotoxicity
  • nanocatalysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 8095 KB  
Article
Synergistic Surface Modification of Bromocarboxylic Acid-Oleylamine Dual Ligands for Highly Stable and Luminescent CsPbBr3 Perovskite Nanocrystals
by Wenjun Chen, Rui Zhang, Xiaobo Hu, Jingsheng Ma, Duna Su, Chuanli Wu, Yanqiao Xu and Xiuxun Han
Molecules 2026, 31(1), 127; https://doi.org/10.3390/molecules31010127 - 29 Dec 2025
Viewed by 251
Abstract
The poor stability of CsPbBr3 perovskite nanocrystals (PNCs) caused by weak and dynamic ligand coordination severely limits their commercial applications. Herein, a dual-ligand synergistic modification strategy based on bromocarboxylic acids (BCAs) and oleylamine (OAm) was developed to mediate the surface structures and [...] Read more.
The poor stability of CsPbBr3 perovskite nanocrystals (PNCs) caused by weak and dynamic ligand coordination severely limits their commercial applications. Herein, a dual-ligand synergistic modification strategy based on bromocarboxylic acids (BCAs) and oleylamine (OAm) was developed to mediate the surface structures and luminescent dynamics of CsPbBr3 PNCs. The results reveal that carboxylate groups of BCA ligands modulate crystal growth, while its terminal Br atom forms a strong coordination with exposed Pb2+ on the PNCs surface, which can effectively passivate lead- and bromine-related defects. The synergistic protection of OAm ligands enhances the stability of PNCs via amino-halide electrostatic interactions and steric hindrance effects. Notably, based on the relatively dense surface coating of 4-bromobutyric acid (BBA) and OAm dual-ligands, the prepared CsPbBr3 PNCs exhibit a high photoluminescence quantum yield (PLQY) of 85.2 ± 2.4% and remarkable storage stability, retaining 90.2 ± 1.7% of their initial PL intensity after being stored for 63 days under ambient conditions. Furthermore, a prototype white light-emitting diode (WLED) fabricated with these PNCs displays a wide color gamut covering 122.1% of the NTSC standard and a luminous efficacy of 64.6 lm/W. This work provides a facile and feasible ligand engineering strategy to obtain highly stable and emissive PNCs. Full article
(This article belongs to the Special Issue Nanochemistry in Asia)
Show Figures

Graphical abstract

Review

Jump to: Research

44 pages, 18955 KB  
Review
A Review of Gas-Sensitive Materials for Lithium-Ion Battery Thermal Runaway Monitoring
by Jian Zhang, Zhili Li and Lei Huang
Molecules 2026, 31(2), 347; https://doi.org/10.3390/molecules31020347 - 19 Jan 2026
Viewed by 204
Abstract
Lithium-ion batteries (LIBs) face the safety hazard of thermal runaway (TR). Gas-sensing-based monitoring is one of the viable warning approaches for batteries during operation, and TR warning using semiconductor gas sensors has garnered widespread attention. This review presents a comprehensive analysis of the [...] Read more.
Lithium-ion batteries (LIBs) face the safety hazard of thermal runaway (TR). Gas-sensing-based monitoring is one of the viable warning approaches for batteries during operation, and TR warning using semiconductor gas sensors has garnered widespread attention. This review presents a comprehensive analysis of the latest advances in this field. It details the gas release characteristics during the TR failure process and identifies H2, electrolyte vapor, CO, CO2, and CH4 as effective TR warning markers. The core of this review lies in an in-depth critical analysis of gas-sensing materials designed for these target gases, systematically summarizing the design, performance, and application research of semiconductor gas-sensing materials for each aforementioned gas in battery monitoring. We further summarize the current challenges of this technology and provide an outlook on future development directions of gas-sensing materials, including improved selectivity, integration, and intelligent advancement. This review aims to provide a roadmap that directs the rational design of next-generation sensing materials and fast-tracks the implementation of gas-sensing technology for enhanced battery safety. Full article
(This article belongs to the Special Issue Nanochemistry in Asia)
Show Figures

Graphical abstract

Back to TopTop