Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,757)

Search Parameters:
Keywords = different gene expression analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4116 KiB  
Article
Taxonomic and Functional Profiling of Bacterial Communities in Leather Biodegradation: Insights into Metabolic Pathways and Diversity
by Manuela Bonilla-Espadas, Marcelo Bertazzo, Irene Lifante-Martinez, Mónica Camacho, Elena Orgilés-Calpena, Francisca Arán-Aís and María-José Bonete
Bacteria 2025, 4(3), 37; https://doi.org/10.3390/bacteria4030037 (registering DOI) - 1 Aug 2025
Abstract
Leather biodegradation is a complex microbial process with increasing relevance for sustainable waste management. In this study, we investigated bacterial communities responsible for the degradation of leather treated with different tanning agents (chrome, Zeolite, Biole®) using high-throughput 16S rRNA gene sequencing [...] Read more.
Leather biodegradation is a complex microbial process with increasing relevance for sustainable waste management. In this study, we investigated bacterial communities responsible for the degradation of leather treated with different tanning agents (chrome, Zeolite, Biole®) using high-throughput 16S rRNA gene sequencing and metatranscriptomic analysis. Proteobacteria, Bacteroidetes, and Patescibacteria emerged as the dominant phyla, while genera such as Acinetobacter, Pseudomonas, and Sphingopyxis were identified as key contributors to enzymatic activity and potential metal resistance. A total of 1302 enzymes were expressed across all the conditions, including 46 proteases, with endopeptidase La, endopeptidase Clp, and methionyl aminopeptidase being the most abundant. Collagen samples exhibited the highest functional diversity and total enzyme expression, whereas chrome-treated samples showed elevated protease activity, indicating selective pressure from heavy metals. Differential enzyme expression patterns were linked to both the microbial identity and tanning chemistry, revealing genus- and treatment-specific enzymatic signatures. These findings deepen our understanding of how tanning agents modulate the microbial structure and function and identify proteases with potential applications in the bioremediation and eco-innovation of leather waste processing. Full article
Show Figures

Figure 1

19 pages, 1549 KiB  
Article
Divergence in Coding Sequences and Expression Patterns Among the Functional Categories of Secretory Genes Between Two Aphid Species
by Atsbha Gebreslasie Gebrekidan, Yong Zhang and Julian Chen
Biology 2025, 14(8), 964; https://doi.org/10.3390/biology14080964 (registering DOI) - 1 Aug 2025
Abstract
Disparities in the functional classification of secretory genes among aphid taxa may be attributed to variations in coding sequences and gene expression profiles. However, the driving factors that regulate sequence evolution remain unclear. This study aimed to investigate the differences in coding sequences [...] Read more.
Disparities in the functional classification of secretory genes among aphid taxa may be attributed to variations in coding sequences and gene expression profiles. However, the driving factors that regulate sequence evolution remain unclear. This study aimed to investigate the differences in coding sequences and expression patterns of secretory genes between the rose grain aphid (Metopolophium dirhodum) and the pea aphid (Acrythosiphon pisum), with a particular focus on their roles in evolutionary adaptations and functional diversity. The study involved the rearing of aphids, RNA extraction, de novo transcriptome assembly, functional annotation, secretory protein prediction, and comparative analysis of coding sequences and expression patterns across various functional categories using bioinformatics tools. The results revealed that metabolic genes exhibited greater coding sequence divergence, indicating the influence of positive selection. Moreover, significant expression divergence was noted among functional categories, particularly in metabolic and genetic information processing genes, which exhibited higher variability. This study enhances our understanding of the molecular mechanisms that contribute to phenotypic and genetic diversity among aphid species. This study elucidates the relationship between variations in coding sequences and differences in gene expression among functional categories, thereby establishing a foundation for future studies on gene evolution in response to environmental pressures. Full article
Show Figures

Figure 1

25 pages, 2666 KiB  
Article
Hormonal Balance in Relation to Expression of Selected Genes Connected with Hormone Biosynthesis and Signalling—The Effect of Deacclimation Process in Oilseed Rape
by Magdalena Rys, Jan Bocianowski, Michał Dziurka, Barbara Jurczyk, Julia Stachurska, Piotr Waligórski and Anna Janeczko
Int. J. Mol. Sci. 2025, 26(15), 7408; https://doi.org/10.3390/ijms26157408 (registering DOI) - 1 Aug 2025
Abstract
Global climate change is causing increasing fluctuations in winter temperatures, including episodes of warm conditions above 9 °C. Such events disrupt cold acclimation in plants and can induce deacclimation, reducing frost tolerance and altering, among other things, hormonal regulation. This study investigated hormonal [...] Read more.
Global climate change is causing increasing fluctuations in winter temperatures, including episodes of warm conditions above 9 °C. Such events disrupt cold acclimation in plants and can induce deacclimation, reducing frost tolerance and altering, among other things, hormonal regulation. This study investigated hormonal and molecular changes associated with cold acclimation and deacclimation in oilseed rape (Brassica napus L.) cultivars Kuga and Thure. Plants were grown under different conditions: non-acclimated (17 °C for three weeks), cold-acclimated (4 °C for three weeks), and deacclimated (16/9 °C day/night for one week). Detailed hormone analysis included auxins, gibberellins, cytokinins, stress-related hormones, and the expression of hormone-related genes (BnABF2, BnAOS, BnARF1, BnARR6, BnICS1, BnRGA, and BnWRKY57). Hormone concentrations in leaves changed dynamically in response to deacclimation with increased amounts of growth-promoting hormones and decreased amounts of stress hormones. Additionally, alterations in gene expression during deacclimation, such as in BnABF2 and BnICS1, may function as protective mechanisms to help maintain or regain frost tolerance during reacclimation when temperatures decline again after the warm period. These findings improve the understanding of hormonal and molecular responses involved in the deacclimation of oilseed rape. Full article
(This article belongs to the Special Issue Plant Hormone Signaling)
Show Figures

Figure 1

24 pages, 3039 KiB  
Article
Plasmodium falciparum Subtilisin-like Domain-Containing Protein (PfSDP), a Cross-Stage Antigen, Elicits Short-Lived Antibody Response Following Natural Infection with Plasmodium falciparum
by Jonas A. Kengne-Ouafo, Collins M. Morang’a, Nancy K. Nyakoe, Daniel Dosoo, Richmond Tackie, Joe K. Mutungi, Saikou Y. Bah, Lucas N. Amenga-Etego, Britta Urban, Gordon A. Awandare, Bismarck Dinko and Yaw Aniweh
Cells 2025, 14(15), 1184; https://doi.org/10.3390/cells14151184 - 31 Jul 2025
Abstract
With the increasing detection of artemisinin resistance to front-line antimalarials in Africa and notwithstanding the planned roll-out of RTS’S and R21 in Africa, the search for new vaccines with high efficacy remains an imperative. Towards this endeavour, we performed in silico screening to [...] Read more.
With the increasing detection of artemisinin resistance to front-line antimalarials in Africa and notwithstanding the planned roll-out of RTS’S and R21 in Africa, the search for new vaccines with high efficacy remains an imperative. Towards this endeavour, we performed in silico screening to identify Plasmodium falciparum gametocyte stage genes that could be targets of protection or diagnosis. Through the analysis we identified a gene, Pf3D7_1105800, coding for a Plasmodium falciparum subtilisin-like domain-containing protein (PfSDP) and thus dubbed the gene Pfsdp. Genetic diversity assessment revealed the Pfsdp gene to be relatively conserved across continents with signs of directional selection. Using RT qPCR and Western blots, we observed that Pfsdp is expressed in all developmental stages of the parasite both at the transcript and protein level. Immunofluorescence assays found PfSDP protein co-localizing with PfMSP-1 and partially with Pfs48/45 at the asexual and sexual stages, respectively. Further, we demonstrated that anti-PfSDP peptide-specific antibodies inhibited erythrocyte invasion by 20–60% in a dose-dependent manner, suggesting that PfSDP protein might play a role in merozoite invasion. We also discovered that PfSDP protein is immunogenic in children from different endemic areas with antibody levels increasing from acute infection to day 7 post-treatment, followed by a gradual decay. The limited effect of antibodies on erythrocyte invasion could imply that it might be more involved in other processes in the development of the parasite. Full article
Show Figures

Figure 1

34 pages, 2838 KiB  
Article
Daily Profile of miRNAs in the Rat Colon and In Silico Analysis of Their Possible Relationship to Colorectal Cancer
by Iveta Herichová, Denisa Vanátová, Richard Reis, Katarína Stebelová, Lucia Olexová, Martina Morová, Adhideb Ghosh, Miroslav Baláž, Peter Štefánik and Lucia Kršková
Biomedicines 2025, 13(8), 1865; https://doi.org/10.3390/biomedicines13081865 - 31 Jul 2025
Abstract
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p [...] Read more.
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p in CRC progression was analyzed in DLD1 cell line and human CRC tissues. Results: Nearly 10% of mature miRNAs showed a daily rhythm in expression. A peak of miRNAs’ levels was in most cases observed during the first half of the D phase of the LD cycle. The highest amplitude was detected in expression of miR-150-5p and miR-142-3p. In the L phase of the LD cycle, the maximum in miR-30d-5p expression was detected. Gene ontology enrichment analysis revealed that genes interfering with miRNAs with peak expression during the D phase influence apoptosis, angiogenesis, the immune system, and EGF and TGF-beta signaling. Rhythm in miR-150-5p, miR-142-3p, and miR-30d-5p expression was confirmed by real-time PCR. Oncogenes bcl2 and myb and clock gene cry1 were identified as miR-150-5p targets. miR-150-5p administration promoted camptothecin-induced apoptosis. Expression of myb showed a rhythmic profile in DLD1 cells with inverted acrophase with respect to miR-150-5p. miR-150-5p was decreased in cancer compared to adjacent tissue in CRC patients. Decrease in miR-150-5p was age dependent. Older patients with lower expression of miR-150-5p and higher expression of cry1 showed worse survival in comparison with younger patients. Conclusions: miRNA signaling differs between the L and D phases of the LD cycle. miR-150-5p, targeting myb, bcl2, and cry1, can influence CRC progression in a phase-dependent manner. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

16 pages, 4253 KiB  
Article
Integrative Analysis of Iso-Seq and RNA-Seq Identifies Key Genes Related to Fatty Acid Biosynthesis and High-Altitude Stress Adaptation in Paeonia delavayi
by Qiongji He, Wenjue Yuan, Rui Wang, Wengao Yang, Guiqing He, Jinglong Cao, Yan Li, Lei Ye, Zhaoguang Li and Zhijiang Hou
Genes 2025, 16(8), 919; https://doi.org/10.3390/genes16080919 - 30 Jul 2025
Abstract
Background/Objectives: Paeonia delavayi, a high-altitude-adapted medicinal and oil-producing plant, exhibits broad elevational distribution. Understanding how environmental factors regulate its growth across altitudes is critical for optimizing cultivation and exploiting its economic potential. Methods: In this study, we conducted a comprehensive Iso-Seq and [...] Read more.
Background/Objectives: Paeonia delavayi, a high-altitude-adapted medicinal and oil-producing plant, exhibits broad elevational distribution. Understanding how environmental factors regulate its growth across altitudes is critical for optimizing cultivation and exploiting its economic potential. Methods: In this study, we conducted a comprehensive Iso-Seq and RNA-seq analysis to elucidate the transcriptional profile across diverse altitudes and three seed developmental stages. Results: Using Pacbio full-length cDNA sequencing, we identified 39,267 full-length transcripts, with 80.03% (31,426) achieving successful annotation. RNA-seq analysis uncovered 11,423 and 9565 differentially expressed genes (DEGs) in response to different altitude and developmental stages, respectively. KEGG analysis indicated that pathways linked to fatty acid metabolism were notably enriched during developmental stages. In contrast, pathways associated with amino acid and protein metabolism were significantly enriched under different altitudes. Furthermore, we identified 34 DEGs related to fatty acid biosynthesis, including genes encoding pivotal enzymes like biotin carboxylase, carboxyl transferase subunit alpha, malonyl-CoA-acyl carrier protein transacylase, 3-oxoacyl-ACP reductase, 3-hydroxyacyl-ACP dehydratase, and stearoyl-ACP desaturase enoyl-ACP reductase. Additionally, ten DEGs were pinpointed as potentially involved in high-altitude stress response. Conclusions: These findings provide insights into the molecular mechanisms of fatty acid biosynthesis and adaptation to high-altitude stress in peony seeds, providing a theoretical foundation for future breeding programs aimed at enhancing seed quality. Full article
(This article belongs to the Section Genes & Environments)
19 pages, 3826 KiB  
Article
Circular RNA circ_0001591 Contributes to Melanoma Cell Migration Through AXL and FRA1 Proteins by Targeting miR-20a-3p and miR-34a-5p
by Elisa Orlandi, Elisa De Tomi, Francesca Belpinati, Marta Menegazzi, Macarena Gomez-Lira, Maria Grazia Romanelli and Elisabetta Trabetti
Genes 2025, 16(8), 921; https://doi.org/10.3390/genes16080921 - 30 Jul 2025
Abstract
Background/Objectives: Different risk factors are involved in the initiation and progression of melanoma. In particular, genetic and epigenetic pathways are involved in all stages of melanoma and are exploited in therapeutic approaches. This study investigated the role of circular RNA circ_0001591 in melanoma [...] Read more.
Background/Objectives: Different risk factors are involved in the initiation and progression of melanoma. In particular, genetic and epigenetic pathways are involved in all stages of melanoma and are exploited in therapeutic approaches. This study investigated the role of circular RNA circ_0001591 in melanoma cell migration. Methods: Three different melanoma cell lines were transfected with siRNA targeting circ_0001591 and with mimic or inhibitor molecules for miR-20a-3p and miR-34a-5p. Gene and protein expression levels were analyzed by RT-qPCR and Western blot, respectively. Dual luciferase reporter assays were performed to confirm the direct interaction of miR-20a-3p and miR-34a-5p with circ_0001591, as well as with the 3’UTRs of AXL (for both miRNAs) and FOSL1 (miR-34a-5p only). Wound healing assays were conducted to assess cell migration velocity. Results: The silencing of circ_0001591 significantly reduces the migration ability of melanoma cell lines. This downregulation was associated with an increased expression of miR-20a-3p and miR-34a-5p. Dual luciferase reporter assays confirmed the direct binding of both miRNAs to circ_0001591, supporting its role as a molecular sponge. The same assays also verified that miR-20a-3p directly targets the 3’UTR of AXL, while miR-34a-5p binds the 3’UTRs of both AXL and FOSL1. Western blot analysis showed that the modulation of this axis affects the expression levels of the AXL and FRA1 oncoproteins. Conclusions: Our findings demonstrate that circ_0001591 promotes melanoma migration by sponging miR-20a-3p and miR-34a-5p, thereby indirectly modulating the expression of AXL and FRA1 oncoprotein. Further investigations of this new regulatory network are needed to better understand its role in melanoma progression and to support the development of targeted therapies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 2510 KiB  
Article
The Glutathione Peroxidase Gene Family in Chenopodium quinoa: Genome-Wide Identification, Classification, Gene Expression and Functional Analysis
by Jing Yang, Anna Xu, Kexin An, Lilong Wang, Taiping Luo, Xinyue Yu, Haibo Yin, Shanli Guo and Xia Zhang
Antioxidants 2025, 14(8), 940; https://doi.org/10.3390/antiox14080940 - 30 Jul 2025
Abstract
Glutathione peroxidase (GPX) is crucial in mediating plant responses to abiotic stresses. In this study, bioinformatics methods were used to identify the GPX gene family in quinoa. A total of 15 CqGPX genes were identified at the quinoa genome level and conducted preliminary [...] Read more.
Glutathione peroxidase (GPX) is crucial in mediating plant responses to abiotic stresses. In this study, bioinformatics methods were used to identify the GPX gene family in quinoa. A total of 15 CqGPX genes were identified at the quinoa genome level and conducted preliminary analysis on their protein characteristics, chromosome distribution, gene structure, conserved domain structure, cis-acting elements, and expression patterns. Phylogenetic analysis showed that the GPX genes of quinoa, Arabidopsis, soybean, rice, and maize were divided into three groups. Most of the CqGPXs had the three characteristic conserved motifs and other conserved sequences and amino acid residues. Six types of cis-acting elements were identified in the CqGPX gene promoter, with stress and hormone response-related cis-acting elements constituting the two main categories. Additionally, the expression patterns of CqGPX genes across various tissues and their responses to treatments with NaCl, PEG, CdCl2, and H2O2 were also investigated. The qRT-PCR results showed significant differences in the expression levels of the CqGPX genes under stress treatment at different time points. Consistently, the activity of glutathione peroxidase enzymes increased under stresses. Heterologous expression of CqGPX4 and CqGPX15 conferred stress tolerance to E. coli. This study will provide a reference for exploring the function of CqGPX genes. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Figure 1

26 pages, 4417 KiB  
Article
Transcriptome Analysis and Functional Characterization of the HvLRR_8-1 Gene Involved in Barley Resistance to Pyrenophora graminea
by Wenjuan Yang, Ming Guo, Yan Li, Qinglan Yang, Huaizhi Zhang, Chengdao Li, Juncheng Wang, Yaxiong Meng, Xiaole Ma, Baochun Li, Lirong Yao, Hong Zhang, Ke Yang, Xunwu Shang, Erjing Si and Huajun Wang
Plants 2025, 14(15), 2350; https://doi.org/10.3390/plants14152350 - 30 Jul 2025
Viewed by 28
Abstract
Barley leaf stripe, caused by Pyrenophora graminea (Pg), significantly reduces yields across various regions globally. Understanding the resistance mechanisms of barley to Pg is crucial for advancing disease resistance breeding efforts. In this study, two barley genotypes—highly susceptible Alexis and immune [...] Read more.
Barley leaf stripe, caused by Pyrenophora graminea (Pg), significantly reduces yields across various regions globally. Understanding the resistance mechanisms of barley to Pg is crucial for advancing disease resistance breeding efforts. In this study, two barley genotypes—highly susceptible Alexis and immune Ganpi2—were inoculated with the highly pathogenic Pg isolate QWC for 7, 14, and 18 days. The number of differentially expressed genes (DEGs) in Alexis was 1350, 1898, and 2055 at 7, 14, and 18 days, respectively, while Ganpi2 exhibited 1195, 1682, and 2225 DEGs at the same time points. Gene expression pattern analysis revealed that Alexis responded more slowly to Pg infection compared to Ganpi2. A comparative analysis identified 457 DEGs associated with Ganpi2’s immunity to Pg. Functional enrichment of these DEGs highlighted the involvement of genes related to plant-pathogen interactions and kinase activity in Pg immunity. Additionally, 20 resistance genes and 24 transcription factor genes were predicted from the 457 DEGs. Twelve candidate genes were selected for qRT-PCR verification, and the results showed that the transcriptomic data was reliable. We conducted cloning of the candidate Pg resistance gene HvLRR_8-1 by the barley cultivar Ganpi2, and the sequence analysis confirmed that the HvLRR_8-1 gene contains seven leucine-rich repeat (LRR) domains and an S_TKc domain. Subcellular localization in tobacco indicates that the HvLRR_8-1 is localized on the cell membrane. Through the functional analysis using virus-induced gene silencing, it was demonstrated that HvLRR_8-1 plays a critical role in regulating barley resistance to Pg. This study represents the first comparative transcriptome analysis of barley varieties with differing responses to Pg infection, providing that HvLRR_8-1 represents a promising candidate gene for improving durable resistance against Pg in cultivated barley. Full article
(This article belongs to the Special Issue The Mechanisms of Plant Resistance and Pathogenesis)
Show Figures

Figure 1

18 pages, 3069 KiB  
Article
Transcriptomic Profiling of Buds Unveils Insights into Floral Initiation in Tea-Oil Tree (Camellia oleifera ‘changlin53’)
by Hongyan Guo, Zongshun Zhou, Jian Zhou, Chao Yan, Wenbin Zhong, Chang Li, Ying Jiang, Yaqi Yuan, Linqing Cao, Wenting Pan, Jinfeng Wang, Jia Wang, Tieding He, Yikai Hua, Yisi Liu, Lixian Cao and Chuansong Chen
Plants 2025, 14(15), 2348; https://doi.org/10.3390/plants14152348 - 30 Jul 2025
Viewed by 63
Abstract
Flowering is a key agronomic trait that directly influences the yield of the tea-oil tree (Camellia oleifera). Floral initiation, which precedes flower bud differentiation, represents a critical developmental stage affecting the flowering outcomes. However, the molecular mechanisms underlying floral initiation in [...] Read more.
Flowering is a key agronomic trait that directly influences the yield of the tea-oil tree (Camellia oleifera). Floral initiation, which precedes flower bud differentiation, represents a critical developmental stage affecting the flowering outcomes. However, the molecular mechanisms underlying floral initiation in C. oleifera remain poorly understood. In this study, buds from five key developmental stages of a 12-year-old C. oleifera cultivar ‘changlin53’ were collected as experimental samples. Scanning electron microscopy was employed to identify the stage of floral initiation. UPLC-MS/MS was used to analyze endogenous gibberellin (GA) concentrations, while transcriptomic analysis was performed to reveal the underlying transcriptional regulatory network. Six GA types were detected during floral initiation and petal development. GA4 was exclusively detected at the sprouting stage (BII), while GA3 was present in all samples but was significantly lower in BII and the flower bud primordium formation stage (BIII) than in the other samples. A total of 64 differentially expressed genes were concurrently enriched in flower development, reproductive shoot system development, and shoot system development. Weighted gene co-expression network analysis (WGCNA) identified eight specific modules significantly associated with different developmental stages. The magenta module, containing Unigene0084708 (CoFT) and Unigene0037067 (CoLEAFY), emerged as a key regulatory module driving floral initiation. Additionally, GA20OX1 and GA2OX8 were identified as candidate genes involved in GA-mediated regulation of floral initiation. Based on morphological and transcriptomic analyses, we conclude that floral initiation of C. oleifera is a continuous regulatory process governed by multiple genes, with the FT-LFY module playing a central role in the transition from apical meristem to floral meristem. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

20 pages, 15855 KiB  
Article
Resistance Response and Regulatory Mechanisms of Ciprofloxacin-Induced Resistant Salmonella Typhimurium Based on Comprehensive Transcriptomic and Metabolomic Analysis
by Xiaohan Yang, Jinhua Chu, Lulu Huang, Muhammad Haris Raza Farhan, Mengyao Feng, Jiapeng Bai, Bangjuan Wang and Guyue Cheng
Antibiotics 2025, 14(8), 767; https://doi.org/10.3390/antibiotics14080767 - 29 Jul 2025
Viewed by 153
Abstract
Background: Salmonella infections pose a serious threat to both animal and human health worldwide. Notably, there is an increasing trend in the resistance of Salmonella to fluoroquinolones, the first-line drugs for clinical treatment. Methods: Utilizing Salmonella Typhimurium CICC 10420 as the test strain, [...] Read more.
Background: Salmonella infections pose a serious threat to both animal and human health worldwide. Notably, there is an increasing trend in the resistance of Salmonella to fluoroquinolones, the first-line drugs for clinical treatment. Methods: Utilizing Salmonella Typhimurium CICC 10420 as the test strain, ciprofloxacin was used for in vitro induction to develop the drug-resistant strain H1. Changes in the minimum inhibitory concentrations (MICs) of various antimicrobial agents were determined using the broth microdilution method. Transcriptomic and metabolomic analyses were conducted to investigate alterations in gene and metabolite expression. A combined drug susceptibility test was performed to evaluate the potential of exogenous metabolites to restore antibiotic susceptibility. Results: The MICs of strain H1 for ofloxacin and enrofloxacin increased by 128- and 256-fold, respectively, and the strain also exhibited resistance to ceftriaxone, ampicillin, and tetracycline. A single-point mutation of Glu469Asp in the GyrB was detected in strain H1. Integrated multi-omics analysis showed significant differences in gene and metabolite expression across multiple pathways, including two-component systems, ABC transporters, pentose phosphate pathway, purine metabolism, glyoxylate and dicarboxylate metabolism, amino sugar and nucleotide sugar metabolism, pantothenate and coenzyme A biosynthesis, pyrimidine metabolism, arginine and proline biosynthesis, and glutathione metabolism. Notably, the addition of exogenous glutamine, in combination with tetracycline, significantly reduced the resistance of strain H1 to tetracycline. Conclusion: Ciprofloxacin-induced Salmonella resistance involves both target site mutations and extensive reprogramming of the metabolic network. Exogenous metabolite supplementation presents a promising strategy for reversing resistance and enhancing antibiotic efficacy. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Figure 1

27 pages, 4786 KiB  
Article
Whole RNA-Seq Analysis Reveals Longitudinal Proteostasis Network Responses to Photoreceptor Outer Segment Trafficking and Degradation in RPE Cells
by Rebecca D. Miller, Isaac Mondon, Charles Ellis, Anna-Marie Muir, Stephanie Turner, Eloise Keeling, Htoo A. Wai, David S. Chatelet, David A. Johnson, David A. Tumbarello, Andrew J. Lotery, Diana Baralle and J. Arjuna Ratnayaka
Cells 2025, 14(15), 1166; https://doi.org/10.3390/cells14151166 - 29 Jul 2025
Viewed by 255
Abstract
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers [...] Read more.
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers were fed photoreceptor outer segments (POS), designed to be synchronously internalised, mimicking homeostatic RPE activity. Cells were subsequently fixed at 4, 6, 24 and 48 h when POS were previously shown to maximally co-localise with Rab5, Rab7, LAMP/lysosomes and LC3b/autophagic compartments. A comprehensive analysis of differentially expressed genes involved in proteolysis revealed a pattern of gene orchestration consistent with POS breakdown in the autophagy-lysosomal pathway. At 4 h, these included elevated upstream signalling events promoting early stages of cargo transport and endosome maturation compared to RPE without POS exposure. This transcriptional landscape altered from 6 h, transitioning to promoting cargo degradation in autolysosomes by 24–48 h. Longitudinal scrutiny of mRNA transcripts revealed nuanced differences even within linked gene networks. POS exposure also initiated transcriptional upregulation in ubiquitin proteasome and chaperone-mediated systems within 4–6 h, providing evidence of cross-talk with other proteolytic processes. These findings show detailed evidence of transcriptome-level responses to cargo trafficking and processing in RPE cells. Full article
(This article belongs to the Special Issue Retinal Pigment Epithelium in Degenerative Retinal Diseases)
Show Figures

Figure 1

28 pages, 5315 KiB  
Article
Integrated Transcriptome and Metabolome Analysis Provides Insights into the Low-Temperature Response in Sweet Potato (Ipomoea batatas L.)
by Zhenlei Liu, Jiaquan Pan, Sitong Liu, Zitong Yang, Huan Zhang, Tao Yu and Shaozhen He
Genes 2025, 16(8), 899; https://doi.org/10.3390/genes16080899 - 28 Jul 2025
Viewed by 238
Abstract
Background/Objectives: Sweet potato is a tropical and subtropical crop and its growth and yield are susceptible to low-temperature stress. However, the molecular mechanisms underlying the low temperature stress of sweetpotato are unknown. Methods: In this work, combined transcriptome and metabolism analysis was employed [...] Read more.
Background/Objectives: Sweet potato is a tropical and subtropical crop and its growth and yield are susceptible to low-temperature stress. However, the molecular mechanisms underlying the low temperature stress of sweetpotato are unknown. Methods: In this work, combined transcriptome and metabolism analysis was employed to investigate the low-temperature responses of two sweet potato cultivars, namely, the low-temperature-resistant cultivar “X33” and the low-temperature-sensitive cultivar “W7”. Results: The differentially expressed metabolites (DEMs) of X33 at different time stages clustered in five profiles, while they clustered in four profiles of W7 with significant differences. Differentially expressed genes (DEGs) in X33 and W7 at different time points clustered in five profiles. More DEGs exhibited continuous or persistent positive responses to low-temperature stress in X33 than in W7. There were 1918 continuously upregulated genes and 6410 persistent upregulated genes in X33, whereas 1781 and 5804 were found in W7, respectively. Core genes involved in Ca2+ signaling, MAPK cascades, the reactive oxygen species (ROS) signaling pathway, and transcription factor families (including bHLH, NAC, and WRKY) may play significant roles in response to low temperature in sweet potato. Thirty-one common differentially expressed metabolites (DEMs) were identified in the two cultivars in response to low temperature. The KEGG analysis of these common DEMs mainly belonged to isoquinoline alkaloid biosynthesis, phosphonate and phosphinate metabolism, flavonoid biosynthesis, cysteine and methionine metabolism, glycine, serine, and threonine metabolism, ABC transporters, and glycerophospholipid metabolism. Five DEMs with identified Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were selected for correlation analysis. KEGG enrichment analysis showed that the carbohydrate metabolism, phenylpropanoid metabolism, and glutathione metabolism pathways were significantly enriched and played vital roles in low-temperature resistance in sweet potato. Conclusions: These findings contribute to a deeper understanding of the molecular mechanisms underlying plant cold tolerance and offer targets for molecular breeding efforts to enhance low-temperature resistance. Full article
Show Figures

Figure 1

15 pages, 946 KiB  
Article
Different Master Regulators Define Proximal and Distal Gastric Cancer: Insights into Prognosis and Opportunities for Targeted Therapy
by Luigi Marano, Salvatore Sorrenti, Silvia Malerba, Jaroslaw Skokowski, Karol Polom, Sergii Girnyi, Tomasz Cwalinski, Francesco Paolo Prete, Alejandro González-Ojeda, Clotilde Fuentes-Orozco, Aman Goyal, Rajan Vaithianathan, Miljana Vladimirov, Eleonora Lori, Daniele Pironi, Adel Abou-Mrad, Mario Testini, Rodolfo J. Oviedo and Yogesh Vashist
Curr. Oncol. 2025, 32(8), 424; https://doi.org/10.3390/curroncol32080424 - 28 Jul 2025
Viewed by 115
Abstract
Background: Gastric cancer (GC) represents a significant global health burden with considerable heterogeneity in clinical and molecular behavior. The anatomical site of tumor origin—proximal versus distal—has emerged as a determinant of prognosis and response to therapy. The aim of this paper is to [...] Read more.
Background: Gastric cancer (GC) represents a significant global health burden with considerable heterogeneity in clinical and molecular behavior. The anatomical site of tumor origin—proximal versus distal—has emerged as a determinant of prognosis and response to therapy. The aim of this paper is to elucidate the transcriptional and regulatory differences between proximal gastric cancer (PGC) and distal gastric cancer (DGC) through master regulator (MR) analysis. Methods: We analyzed RNA-seq data from TCGA-STAD and microarray data from GEO (GSE62254, GSE15459). Differential gene expression and MR analyses were performed using DESeq2, limma, corto, and RegEnrich pipelines. A harmonized matrix of 4785 genes was used for MR inference following normalization and batch correction. Functional enrichment and survival analyses were conducted to explore prognostic associations. Results: Among 364 TCGA and 492 GEO patients, PGC was associated with more aggressive clinicopathological features and poorer outcomes. We identified 998 DEGs distinguishing PGC and DGC. PGC showed increased FOXM1 (a key regulator of cell proliferation), STAT3, and NF-κB1 activity, while DGC displayed enriched GATA6, CDX2 (a marker of intestinal differentiation), and HNF4A signaling. Functional enrichment highlighted proliferative and inflammatory programs in PGC, and differentiation and metabolic pathways in DGC. MR activity stratified survival outcomes, reinforcing prognostic relevance. Conclusions: PGC and DGC are governed by distinct transcriptional regulators and signaling networks. Our findings provide a biological rationale for location-based stratification and inform targeted therapy development. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Figure 1

24 pages, 6890 KiB  
Article
Multi-Level Transcriptomic and Physiological Responses of Aconitum kusnezoffii to Different Light Intensities Reveal a Moderate-Light Adaptation Strategy
by Kefan Cao, Yingtong Mu and Xiaoming Zhang
Genes 2025, 16(8), 898; https://doi.org/10.3390/genes16080898 - 28 Jul 2025
Viewed by 183
Abstract
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive [...] Read more.
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive strategies of A. kusnezoffii under different light intensities through integrated physiological and transcriptomic analyses. Methods: Two-year-old A. kusnezoffii plants were exposed to three controlled light regimes (790, 620, and 450 lx). Leaf anatomical traits were assessed via histological sectioning and microscopic imaging. Antioxidant enzyme activities (CAT, POD, and SOD), membrane lipid peroxidation (MDA content), osmoregulatory substances, and carbon metabolites were quantified using standard biochemical assays. Transcriptomic profiling was conducted using Illumina RNA-seq, with differentially expressed genes (DEGs) identified through DESeq2 and functionally annotated via GO and KEGG enrichment analyses. Results: Moderate light (620 lx) promoted optimal leaf structure by enhancing palisade tissue development and epidermal thickening, while reducing membrane lipid peroxidation. Antioxidant defense capacity was elevated through higher CAT, POD, and SOD activities, alongside increased accumulation of soluble proteins, sugars, and starch. Transcriptomic analysis revealed DEGs enriched in photosynthesis, monoterpenoid biosynthesis, hormone signaling, and glutathione metabolism pathways. Key positive regulators (PHY and HY5) were upregulated, whereas negative regulators (COP1 and PIFs) were suppressed, collectively facilitating chloroplast development and photomorphogenesis. Trend analysis indicated a “down–up” gene expression pattern, with early suppression of stress-responsive genes followed by activation of photosynthetic and metabolic processes. Conclusions: A. kusnezoffii employs a coordinated, multi-level adaptation strategy under moderate light (620 lx), integrating leaf structural optimization, enhanced antioxidant defense, and dynamic transcriptomic reprogramming to maintain energy balance, redox homeostasis, and photomorphogenic flexibility. These findings provide a theoretical foundation for optimizing artificial cultivation and light management of alpine medicinal plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop