Divergence in Coding Sequences and Expression Patterns Among the Functional Categories of Secretory Genes Between Two Aphid Species
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Rearing of the Rose Grain Aphid
2.2. Tissue Dissection and RNA Extraction
2.3. Transcriptome Assembly and Prediction of Orthologous Genes
2.4. Gene Expression Quantification
2.5. Interspecific Divergence of the Coding Sequences
2.6. Gene Expression Variation Among Functional Categories
2.7. Functional Protein Association Network (Pleiotropy)
2.8. Data Manipulation and Analysis
3. Result
3.1. Variation in Coding Sequences Between Secretory and Non-Secretory Genes
3.2. Mean and Variability of Gene Expression Divergence
3.3. Coding Sequence and Expression Variation in Relation to Pleiotropy and Functional Gene Categories
3.4. Correlation Between Expression Divergence, Coding Sequence Divergence, and Pleiotropy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kranti, W.; Nivedita, G.; Shindikar, M. Understanding the plant aphid interaction: A Review. Eur. J. Biol. Biotechnol. 2021, 2, 1–6. [Google Scholar] [CrossRef]
- Lawrence, L. The future for aphids in Australian grain crops and pastures. Outlooks Pest Manag. 2009, 20, 285–288. [Google Scholar] [CrossRef]
- Yi, X. Aphids and their transmitted potato viruses: A continuous challenges in potato crops. J. Integr. Agric. 2020, 19, 367–375. [Google Scholar] [CrossRef]
- Qi, C.; Wei, Q.; Ye, Y.; Liu, J.; Li, G.; Liang, J.W.; Huang, H.; Wu, G. Fixation of Expression Divergences by Natural Selection in Arabidopsis Coding Genes. Int. J. Mol. Sci. 2024, 25, 13710. [Google Scholar] [CrossRef]
- Boulain, H.; Legeai, F.; Jaquiéry, J.; Guy, E.; Morlière, S.; Simon, J.-C.; Sugio, A. Differential expression of candidate salivary effector genes in pea aphid biotypes with distinct host plant specificity. Front. Plant Sci. 2019, 10, 1301. [Google Scholar] [CrossRef] [PubMed]
- Romero, I.G.; Ruvinsky, I.; Gilad, Y. Comparative studies of gene expression and the evolution of gene regulation. Nat. Rev. Genet. 2012, 13, 505–516. [Google Scholar] [CrossRef]
- Williams, S.G.; Lovell, S.C. The effect of sequence evolution on protein structural divergence. Mol. Biol. Evol. 2009, 26, 1055–1065. [Google Scholar] [CrossRef]
- Boissot, N.; Dutartre-Fricaux, L.; Beucher, C.; Vanlerberghe, F. Highly conserved genes expressed in aphid saliva are candidates for host plant adaptation in Aphis gossypii. arXiv 2020. [Google Scholar] [CrossRef]
- Thorpe, P.; Cock, P.J.; Bos, J. Comparative transcriptomics and proteomics of three different aphid species identifies core and diverse effector sets. BMC Genom. 2016, 17, 172. [Google Scholar] [CrossRef]
- Elzinga, D.A.; Jander, G. The role of protein effectors in plant–aphid interactions. Curr. Opin. Plant Biol. 2013, 16, 451–456. [Google Scholar] [CrossRef]
- Linksvayer, T.A.; Wade, M.J. Genes with social effects are expected to harbor more sequence variation within and between species. Evolution 2009, 63, 1685–1696. [Google Scholar] [CrossRef]
- Zhong, X.; Lundberg, M.; Raberg, L. Divergence in coding sequence and expression of different functional categories of immune genes between two wild rodent species. Genome Biol. Evol. 2021, 13, evab023. [Google Scholar] [CrossRef] [PubMed]
- Invitrogen. Trizol Reagent Users Guide; Thermo Fisher Scientific: Waltham, MA, USA, 2020; pp. 1–4. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Jarque, C.M.; Bera, A.K. Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ. Lett. 1980, 6, 255–259. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, version 4.3.1; CRAN: Vienna, Austria, 2023. [Google Scholar]
- Asar, Ö.; Ilk, O.; Dag, O. Estimating Box-Cox power transformation parameter via goodness-of-fit tests. Commun. Stat.-Simul. Comput. 2014, 46, 91–105. [Google Scholar] [CrossRef]
- Dag, O.; Asar, O.; Ilk, O. A Methodology to Implement Box-Cox Transformation When No Covariate is Available. Commun. Stat.-Simul. Comput. 2014, 43, 1740–1759. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics, 11st ed.; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Dhar, A.K.; Robles-Sikisaka, R.; Saksmerprome, V.; Lakshman, D.K. Biology, genome organization, and evolution of parvoviruses in marine shrimp. Adv. Virus Res. 2014, 89, 85–139. [Google Scholar] [CrossRef]
- Chen, J.; Swofford, R.; Johnson, J.; Cummings, B.B.; Rogel, N.; Lindblad-Toh, K.; Haerty, W.; Palma, F.D.; Regev, A. A quantitative framework for characterizing the evolutionary history of mammalian gene expression. Genome Res. 2019, 29, 53–63. [Google Scholar] [CrossRef]
- Khan, Y.; Hammarstrom, D.; Ellefsen, S.; Ahmad, R. Normalization of gene expression data revisited: The three viewpoints of the transcriptome in human skeletal muscle undergoing load-induced hypertrophy and why they matter. BMC Bioinform. 2022, 23, 241. [Google Scholar] [CrossRef]
- Liu, H.; Rahman, S.U.; Mao, Y.; Xu, X.; Tao, S. Codon usage bias in 5′ terminal coding sequences reveals distinct enrichment of gene functions. Genomics 2017, 109, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Davis, C.I.; Kondrashov, F.A.; Hartl, D.L.; Kulathinal, R.J. The functional genomic distribution of protein divergence in two animal phyla: Coevolution, genomic conflict, and constraint. Genome Res. 2004, 14, 802–811. [Google Scholar] [CrossRef]
- Nguyen, D.-Q.; Webber, C.; Ponting, C.P. Bias of selection on human copy-number variants. PLoS Genet. 2006, 2, e20. [Google Scholar] [CrossRef]
- Delport, W.; Scheffler, K.; Seoighe, C. Models of coding sequence evolution. Brief. Bioinform. 2009, 10, 97–109. [Google Scholar] [CrossRef]
- Dayı, M. Analysis of Positive Selection Provides Insights into Lifestyle-and Lineage-Specific Patterns of Molecular Evolution in Insects. Düzce Üniversitesi Bilim. Teknol. Derg. 2022, 10, 764–772. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, X.; Sun, L.; Bai, Y.; Zhang, D.; Tang, B. Evolution of mitochondrial energy metabolism genes associated with hydrothermal vent adaption of Alvinocaridid shrimps. Genes Genom. 2017, 39, 1367–1376. [Google Scholar] [CrossRef]
- Shapiro, B.J.; Alm, E.J. Comparing patterns of natural selection across species using selective signatures. PLoS Genet. 2008, 4, e23. [Google Scholar] [CrossRef]
- Gao, H.; Zhu, X.; Li, G.; Liu, E.; Shen, Y.; Zhao, S.; Ge, F. RNA Sequencing Analysis of Metopolophium dirhodum (Walker) (Hemiptera: Aphididae) Reveals the Mechanism Underlying Insecticide Resistance. Front. Sustain. Food Syst. 2021, 5, 639841. [Google Scholar] [CrossRef]
- Moyers, B.T.; Rieseberg, L.H. Divergence in Gene Expression Is Uncoupled from Divergence in Coding Sequence in a Secondarily Woody Sunflower. Int. J. Plant Sci. 2013, 174, 1079–1089. [Google Scholar] [CrossRef]
- Hodgins, K.A.; Yeaman, S.; Nurkowski, K.A.; Rieseberg, L.H.; Aitken, S.N. Expression Divergence Is Correlated with Sequence Evolution but Not Positive Selection in Conifers. Mol. Biol. Evol. 2016, 30, 1502–1516. [Google Scholar] [CrossRef]
- Warnefors, M.; Kaessmann, H. Evolution of the correlation between expression divergence and protein divergence in mammals. Genome Biol. Evol. 2013, 5, 1324–1335. [Google Scholar] [CrossRef]
- Jordan, I.K.; Marino-Ramirez, L.; Koonin, E.V. Evolutionary significance of gene expression divergence. Gene 2005, 345, 119–126. [Google Scholar] [CrossRef]
- Nuzhdin, S.V.; Wayne, M.L.; Harmon, K.L.; McIntyre, L.M. Common pattern of evolution of gene expression level and protein sequence in Drosophila. Mol. Biol. Evol. 2004, 21, 1308–1317. [Google Scholar] [CrossRef]
- Liao, B.Y.; Zhang, J. Low rates of expression profile divergence in highly expressed genes and tissue-specific genes during mammalian evolution. Mol. Biol. Evol. 2006, 23, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Josephs, E.B.; Wright, S.I.; Stinchcombe, J.R.; Schoen, D.J. The Relationship between Selection, Network Connectivity, and Regulatory Variation within a Population of Capsella grandiflora. Genome Biol. Evol. 2017, 9, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Barbitoff, Y.A.; Bogaichuk, P.M.; Pavlova, N.S.; Predeus, A.V. Functional determinants and evolutionary consequences of pleiotropy in complex and Mendelian traits. arXiv 2024, arXiv:2024.2010. 2028.620594. [Google Scholar]
- Li, W.-H.; Yang, J.; Gu, X. Expression divergence between duplicate genes. Trends Genet. 2005, 21, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Chau, L.M.; Goodisman, M.A.D. Gene Duplication and the Evolution of Phenotypic Diversity in Insect Societies. Evolution 2017, 71, 2871–2884. [Google Scholar] [CrossRef] [PubMed]
Replication | KEGG Pathways | Classification of SG Based on KEGG | SG Annotated in RG Aphid and Pea Aphid | Relative Number of Genes Used for Sequence Divergence |
---|---|---|---|---|
Cellular Processes | 333 | 52 | 35 | 35 (10.51%) |
Environmental Information Processing | 319 | 17 | 8 | 8 (2.51%) |
Genetic Information Processing | 808 | 21 | 19 | 19 (2.35%) |
Metabolism | 778 | 56 | 28 | 28 (3.59%) |
Organismal Systems | 384 | 18 | 10 | 10 (2.60%) |
Total | 2622 | 164 | 100 | 100 (3.81%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gebrekidan, A.G.; Zhang, Y.; Chen, J. Divergence in Coding Sequences and Expression Patterns Among the Functional Categories of Secretory Genes Between Two Aphid Species. Biology 2025, 14, 964. https://doi.org/10.3390/biology14080964
Gebrekidan AG, Zhang Y, Chen J. Divergence in Coding Sequences and Expression Patterns Among the Functional Categories of Secretory Genes Between Two Aphid Species. Biology. 2025; 14(8):964. https://doi.org/10.3390/biology14080964
Chicago/Turabian StyleGebrekidan, Atsbha Gebreslasie, Yong Zhang, and Julian Chen. 2025. "Divergence in Coding Sequences and Expression Patterns Among the Functional Categories of Secretory Genes Between Two Aphid Species" Biology 14, no. 8: 964. https://doi.org/10.3390/biology14080964
APA StyleGebrekidan, A. G., Zhang, Y., & Chen, J. (2025). Divergence in Coding Sequences and Expression Patterns Among the Functional Categories of Secretory Genes Between Two Aphid Species. Biology, 14(8), 964. https://doi.org/10.3390/biology14080964