Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,441)

Search Parameters:
Keywords = difference input

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2072 KiB  
Article
Modeling and Characteristic Analysis of Mistuned Series–Series-Compensated Wireless Charging System for EVs
by Weihan Li, Yunhan Han and Chenxu Li
Energies 2025, 18(15), 4091; https://doi.org/10.3390/en18154091 (registering DOI) - 1 Aug 2025
Abstract
Cumulative mistuning effects in electric vehicle wireless charging systems, arising from component tolerances, coil misalignments, and aging-induced drifts, can significantly degrade system performance. To mitigate this issue, this work establishes an analysis model for mistuned series–series-compensated wireless power transfer (WPT) systems. Through equivalent [...] Read more.
Cumulative mistuning effects in electric vehicle wireless charging systems, arising from component tolerances, coil misalignments, and aging-induced drifts, can significantly degrade system performance. To mitigate this issue, this work establishes an analysis model for mistuned series–series-compensated wireless power transfer (WPT) systems. Through equivalent simplification of mistuned parameters, we systematically examine the effects of compensation capacitances and coil inductances on input impedance, output power, and efficiency in SS-compensated topologies across wide load ranges and different coupling coefficients. Results reveal that transmitter-side parameter deviations exert more pronounced impacts on input impedance and power gain than receiver-side variations. Remarkably, under receiver-side inductance mistuning of −20%, a significant 32° shift in the input impedance angle was observed. Experimental validation on a 500 W prototype confirms ≤5% maximum deviation between calculated and measured values for efficiency, input impedance angle, and power gain. Full article
(This article belongs to the Special Issue Wireless Charging Technologies for Electric Vehicles)
8 pages, 2132 KiB  
Proceeding Paper
Impact of Current Variations on Weld Bead Properties During the Cold Metal Transfer (CMT) Welding of 7075 Aluminium Using an ER4043 Filler Wire
by Vishal Bhardwaj, Siddharth Garg and Qasim Murtaza
Eng. Proc. 2025, 93(1), 22; https://doi.org/10.3390/engproc2025093022 (registering DOI) - 1 Aug 2025
Abstract
This study investigated into how different current input levels during cold metal transfer (CMT) welding affected the characteristics of the weld bead. For the current variation, three input values were taken: 80 A, 90 A, and 100 A. Weld beads fabricated from all [...] Read more.
This study investigated into how different current input levels during cold metal transfer (CMT) welding affected the characteristics of the weld bead. For the current variation, three input values were taken: 80 A, 90 A, and 100 A. Weld beads fabricated from all three current inputs were compared by analysing their microstructure, microhardness, tensile strength, and residual stress. The microhardness of the weld bead decreased when the current parameter was increased from 80 A to 100 A. The average tensile strength increased from 80 A to 90 A. The lowest residual stress calculated was −135 MPa with 100 A current. Full article
Show Figures

Figure 1

29 pages, 6397 KiB  
Article
Task Travel Time Prediction Method Based on IMA-SURBF for Task Dispatching of Heterogeneous AGV System
by Jingjing Zhai, Xing Wu, Qiang Fu, Ya Hu, Peihuang Lou and Haining Xiao
Biomimetics 2025, 10(8), 500; https://doi.org/10.3390/biomimetics10080500 (registering DOI) - 1 Aug 2025
Abstract
The heterogeneous automatic guided vehicle (AGV) system, composed of several AGVs with different load capability and handling function, has good flexibility and agility to operational requirements. Accurate task travel time prediction (T3P) is vital for the efficient operation of heterogeneous AGV systems. However, [...] Read more.
The heterogeneous automatic guided vehicle (AGV) system, composed of several AGVs with different load capability and handling function, has good flexibility and agility to operational requirements. Accurate task travel time prediction (T3P) is vital for the efficient operation of heterogeneous AGV systems. However, T3P remains a challenging problem due to individual task correlations and dynamic changes in model input/output dimensions. To address these challenges, a biomimetics-inspired learning framework based on a radial basis function (RBF) neural network with an improved mayfly algorithm and a selective update strategy (IMA-SURBF) is proposed. Firstly, a T3P model is constructed by using travel-influencing factors as input and task travel time as output of the RBF neural network, where the input/output dimension is determined dynamically. Secondly, the improved mayfly algorithm (IMA), a biomimetic metaheuristic method, is adopted to optimize the initial parameters of the RBF neural network, while a selective update strategy is designed for parameter updates. Finally, simulation experiments on model design, parameter initialization, and comparison with deep learning-based models are conducted in a complex assembly line scenario to validate the accuracy and efficiency of the proposed method. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

24 pages, 2751 KiB  
Article
Double Wishbone Suspension: A Computational Framework for Parametric 3D Kinematic Modeling and Simulation Using Mathematica
by Muhammad Waqas Arshad, Stefano Lodi and David Q. Liu
Technologies 2025, 13(8), 332; https://doi.org/10.3390/technologies13080332 (registering DOI) - 1 Aug 2025
Abstract
The double wishbone suspension (DWS) system is widely used in automotive engineering because of its favorable kinematic properties, which affect vehicle dynamics, handling, and ride comfort; hence, it is important to have an accurate 3D model, simulation, and analysis of the system in [...] Read more.
The double wishbone suspension (DWS) system is widely used in automotive engineering because of its favorable kinematic properties, which affect vehicle dynamics, handling, and ride comfort; hence, it is important to have an accurate 3D model, simulation, and analysis of the system in order to optimize its design. This requires efficient computational tools for parametric study. The development of effective computational tools that support parametric exploration stands as an essential requirement. Our research demonstrates a complete Wolfram Mathematica system that creates parametric 3D kinematic models and conducts simulations, performs analyses, and generates interactive visualizations of DWS systems. The system uses homogeneous transformation matrices to establish the spatial relationships between components relative to a global coordinate system. The symbolic geometric parameters allow designers to perform flexible design exploration and the kinematic constraints create an algebraic equation system. The numerical solution function NSolve computes linkage positions from input data, which enables fast evaluation of different design parameters. The integrated 3D visualization module based on Mathematica’s manipulate function enables users to see immediate results of geometric configurations and parameter effects while calculating exact 3D coordinates. The resulting robust, systematic, and flexible computational environment integrates parametric 3D design, kinematic simulation, analysis, and dynamic visualization for DWS, serving as a valuable and efficient tool for engineers during the design, development, assessment, and optimization phases of these complex automotive systems. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

16 pages, 2641 KiB  
Article
Seismic Assessment of Informally Designed 2-Floor RC Houses: Lessons from the 2020 Southern Puerto Rico Earthquake Sequence
by Lautaro Peralta and Luis A. Montejo
Eng 2025, 6(8), 176; https://doi.org/10.3390/eng6080176 - 1 Aug 2025
Abstract
The 2020 southern Puerto Rico earthquake sequence highlighted the severe seismic vulnerability of informally constructed two-story reinforced concrete (RC) houses. This study examines the failure mechanisms of these structures and assesses the effectiveness of first-floor RC shear-wall retrofitting. Nonlinear pushover and dynamic time–history [...] Read more.
The 2020 southern Puerto Rico earthquake sequence highlighted the severe seismic vulnerability of informally constructed two-story reinforced concrete (RC) houses. This study examines the failure mechanisms of these structures and assesses the effectiveness of first-floor RC shear-wall retrofitting. Nonlinear pushover and dynamic time–history analyses were performed using fiber-based distributed plasticity models for RC frames and nonlinear macro-elements for second-floor masonry infills, which introduced a significant inter-story stiffness imbalance. A bi-directional seismic input was applied using spectrally matched, near-fault pulse-like ground motions. The findings for the as-built structures showed that stiffness mismatches between stories, along with substantial strength and stiffness differences between orthogonal axes, resulted in concentrated plastic deformations and displacement-driven failures in the first story—consistent with damage observed during the 2020 earthquakes. Retrofitting the first floor with RC shear walls notably improved the performance, doubling the lateral load capacity and enhancing the overall stiffness. However, the retrofitted structures still exhibited a concentration of inelastic action—albeit with lower demands—shifted to the second floor, indicating potential for further optimization. Full article
Show Figures

Figure 1

32 pages, 15216 KiB  
Article
Leveraging Soil Geography for Land Use Planning: Assessing and Mapping Soil Ecosystem Services Indicators in Emilia-Romagna, NE Italy
by Fabrizio Ungaro, Paola Tarocco and Costanza Calzolari
Geographies 2025, 5(3), 39; https://doi.org/10.3390/geographies5030039 (registering DOI) - 1 Aug 2025
Abstract
An indicator-based approach was implemented to assess the contributions of soils in supplying ecosystem services, providing a scalable tool for modeling the spatial heterogeneity of soil functions at regional and local scales. The method consisted of (i) the definition of soil-based ecosystem services [...] Read more.
An indicator-based approach was implemented to assess the contributions of soils in supplying ecosystem services, providing a scalable tool for modeling the spatial heterogeneity of soil functions at regional and local scales. The method consisted of (i) the definition of soil-based ecosystem services (SESs), using available point data and thematic maps; (ii) the definition of appropriate SES indicators; (iii) the assessment and mapping of potential SESs provision for the Emilia-Romagna region (22.510 km2) in NE Italy. Depending on data availability and on the role played by terrain features and soil geography and its complexity, maps of basic soil characteristics (textural fractions, organic C content, and pH) covering the entire regional territory were produced at a 1 ha resolution using digital soil mapping techniques and geostatistical simulations to explicitly consider spatial variability. Soil physical properties such as bulk density, porosity, and hydraulic conductivity at saturation were derived using pedotransfer functions calibrated using local data and integrated with supplementary information such as land capability and remote sensing indices to derive the inputs for SES assessment. Eight SESs were mapped at 1:50,000 reference scale: buffering capacity, carbon sequestration, erosion control, food provision, biomass provision, water regulation, water storage, and habitat for soil biodiversity. The results are discussed and compared for the different pedolandscapes, identifying clear spatial patterns of soil functions and potential SES supply. Full article
Show Figures

Figure 1

13 pages, 769 KiB  
Article
A Novel You Only Listen Once (YOLO) Deep Learning Model for Automatic Prominent Bowel Sounds Detection: Feasibility Study in Healthy Subjects
by Rohan Kalahasty, Gayathri Yerrapragada, Jieun Lee, Keerthy Gopalakrishnan, Avneet Kaur, Pratyusha Muddaloor, Divyanshi Sood, Charmy Parikh, Jay Gohri, Gianeshwaree Alias Rachna Panjwani, Naghmeh Asadimanesh, Rabiah Aslam Ansari, Swetha Rapolu, Poonguzhali Elangovan, Shiva Sankari Karuppiah, Vijaya M. Dasari, Scott A. Helgeson, Venkata S. Akshintala and Shivaram P. Arunachalam
Sensors 2025, 25(15), 4735; https://doi.org/10.3390/s25154735 (registering DOI) - 31 Jul 2025
Abstract
Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inaccurate and variable, with low [...] Read more.
Accurate diagnosis of gastrointestinal (GI) diseases typically requires invasive procedures or imaging studies that pose the risk of various post-procedural complications or involve radiation exposure. Bowel sounds (BSs), though typically described during a GI-focused physical exam, are highly inaccurate and variable, with low clinical value in diagnosis. Interpretation of the acoustic characteristics of BSs, i.e., using a phonoenterogram (PEG), may aid in diagnosing various GI conditions non-invasively. Use of artificial intelligence (AI) and improvements in computational analysis can enhance the use of PEGs in different GI diseases and lead to a non-invasive, cost-effective diagnostic modality that has not been explored before. The purpose of this work was to develop an automated AI model, You Only Listen Once (YOLO), to detect prominent bowel sounds that can enable real-time analysis for future GI disease detection and diagnosis. A total of 110 2-minute PEGs sampled at 44.1 kHz were recorded using the Eko DUO® stethoscope from eight healthy volunteers at two locations, namely, left upper quadrant (LUQ) and right lower quadrant (RLQ) after IRB approval. The datasets were annotated by trained physicians, categorizing BSs as prominent or obscure using version 1.7 of Label Studio Software®. Each BS recording was split up into 375 ms segments with 200 ms overlap for real-time BS detection. Each segment was binned based on whether it contained a prominent BS, resulting in a dataset of 36,149 non-prominent segments and 6435 prominent segments. Our dataset was divided into training, validation, and test sets (60/20/20% split). A 1D-CNN augmented transformer was trained to classify these segments via the input of Mel-frequency cepstral coefficients. The developed AI model achieved area under the receiver operating curve (ROC) of 0.92, accuracy of 86.6%, precision of 86.85%, and recall of 86.08%. This shows that the 1D-CNN augmented transformer with Mel-frequency cepstral coefficients achieved creditable performance metrics, signifying the YOLO model’s capability to classify prominent bowel sounds that can be further analyzed for various GI diseases. This proof-of-concept study in healthy volunteers demonstrates that automated BS detection can pave the way for developing more intuitive and efficient AI-PEG devices that can be trained and utilized to diagnose various GI conditions. To ensure the robustness and generalizability of these findings, further investigations encompassing a broader cohort, inclusive of both healthy and disease states are needed. Full article
(This article belongs to the Special Issue Biomedical Signals, Images and Healthcare Data Analysis: 2nd Edition)
Show Figures

Figure 1

32 pages, 7263 KiB  
Article
Time Series Prediction and Modeling of Visibility Range with Artificial Neural Network and Hybrid Adaptive Neuro-Fuzzy Inference System
by Okikiade Adewale Layioye, Pius Adewale Owolawi and Joseph Sunday Ojo
Atmosphere 2025, 16(8), 928; https://doi.org/10.3390/atmos16080928 (registering DOI) - 31 Jul 2025
Abstract
The time series prediction of visibility in terms of various meteorological variables, such as relative humidity, temperature, atmospheric pressure, and wind speed, is presented in this paper using Single-Variable Regression Analysis (SVRA), Artificial Neural Network (ANN), and Hybrid Adaptive Neuro-fuzzy Inference System (ANFIS) [...] Read more.
The time series prediction of visibility in terms of various meteorological variables, such as relative humidity, temperature, atmospheric pressure, and wind speed, is presented in this paper using Single-Variable Regression Analysis (SVRA), Artificial Neural Network (ANN), and Hybrid Adaptive Neuro-fuzzy Inference System (ANFIS) techniques for several sub-tropical locations. The initial method used for the prediction of visibility in this study was the SVRA, and the results were enhanced using the ANN and ANFIS techniques. Throughout the study, neural networks with various algorithms and functions were trained with different atmospheric parameters to establish a relationship function between inputs and visibility for all locations. The trained neural models were tested and validated by comparing actual and predicted data to enhance visibility prediction accuracy. Results were compared to assess the efficiency of the proposed systems, measuring the root mean square error (RMSE), coefficient of determination (R2), and mean bias error (MBE) to validate the models. The standard statistical technique, particularly SVRA, revealed that the strongest functional relationship was between visibility and RH, followed by WS, T, and P, in that order. However, to improve accuracy, this study utilized back propagation and hybrid learning algorithms for visibility prediction. Error analysis from the ANN technique showed increased prediction accuracy when all the atmospheric variables were considered together. After testing various neural network models, it was found that the ANFIS model provided the most accurate predicted results, with improvements of 31.59%, 32.70%, 30.53%, 28.95%, 31.82%, and 22.34% over the ANN for Durban, Cape Town, Mthatha, Bloemfontein, Johannesburg, and Mahikeng, respectively. The neuro-fuzzy model demonstrated better accuracy and efficiency by yielding the finest results with the lowest RMSE and highest R2 for all cities involved compared to the ANN model and standard statistical techniques. However, the statistical performance analysis between measured and estimated visibility indicated that the ANN produced satisfactory results. The results will find applications in Optical Wireless Communication (OWC), flight operations, and climate change analysis. Full article
(This article belongs to the Special Issue Atmospheric Modeling with Artificial Intelligence Technologies)
Show Figures

Figure 1

19 pages, 3654 KiB  
Article
Longitudinal Displacement Reconstruction Method of Suspension Bridge End Considering Multi-Type Data Under Deep Learning Framework
by Xiaoting Yang, Chao Wu, Youjia Zhang, Wencai Shao, Linyuan Chang, Kaige Kong and Quan Cheng
Buildings 2025, 15(15), 2706; https://doi.org/10.3390/buildings15152706 (registering DOI) - 31 Jul 2025
Abstract
Suspension bridges, as a type of long-span bridge, usually have a larger longitudinal displacement at the end of the beam (LDBD). LDBD can be used to evaluate the safety of bridge components at the end of the beam. However, due to factors such [...] Read more.
Suspension bridges, as a type of long-span bridge, usually have a larger longitudinal displacement at the end of the beam (LDBD). LDBD can be used to evaluate the safety of bridge components at the end of the beam. However, due to factors such as sensor failure and system maintenance, LDBD in the bridge health monitoring system is often missing. Therefore, this study reconstructs the missing part of LDBD based on the long short-term memory network (LSTM) and various data. Specifically, first, the monitoring data that may be related to LDBD in a suspension bridge is analyzed, and the temperature and beam end rotation angle data (RDBD) at representative locations are selected. Then, the temperature data at different places of the bridge are used as the input of the LSTM model to compare and analyze the prediction effect of LDBD. Next, RDBD is used as the input of the LSTM model to observe the prediction effect of LDBD. Finally, temperature and RDBD are used as the input of the LSTM model to observe whether the prediction effect of the LSTM model is improved. The results show that compared with other parts of the bridge, the prediction effect of the temperature inside the box girder in the main span as the model input is better; when RDBD is used as the input of the LSTM model, it is better than the prediction effect of temperature as the model input; temperature and RDBD have higher prediction accuracy when used as the input of the LSTM model together than when used separately as the input of the LSTM model. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 651 KiB  
Article
Enhancing IoT Connectivity in Suburban and Rural Terrains Through Optimized Propagation Models Using Convolutional Neural Networks
by George Papastergiou, Apostolos Xenakis, Costas Chaikalis, Dimitrios Kosmanos and Menelaos Panagiotis Papastergiou
IoT 2025, 6(3), 41; https://doi.org/10.3390/iot6030041 (registering DOI) - 31 Jul 2025
Abstract
The widespread adoption of the Internet of Things (IoT) has driven major advancements in wireless communication, especially in rural and suburban areas where low population density and limited infrastructure pose significant challenges. Accurate Path Loss (PL) prediction is critical for the effective deployment [...] Read more.
The widespread adoption of the Internet of Things (IoT) has driven major advancements in wireless communication, especially in rural and suburban areas where low population density and limited infrastructure pose significant challenges. Accurate Path Loss (PL) prediction is critical for the effective deployment and operation of Wireless Sensor Networks (WSNs) in such environments. This study explores the use of Convolutional Neural Networks (CNNs) for PL modeling, utilizing a comprehensive dataset collected in a smart campus setting that captures the influence of terrain and environmental variations. Several CNN architectures were evaluated based on different combinations of input features—such as distance, elevation, clutter height, and altitude—to assess their predictive accuracy. The findings reveal that CNN-based models outperform traditional propagation models (Free Space Path Loss (FSPL), Okumura–Hata, COST 231, Log-Distance), achieving lower error rates and more precise PL estimations. The best performing CNN configuration, using only distance and elevation, highlights the value of terrain-aware modeling. These results underscore the potential of deep learning techniques to enhance IoT connectivity in sparsely connected regions and support the development of more resilient communication infrastructures. Full article
Show Figures

Figure 1

13 pages, 1859 KiB  
Article
Electricity Load Forecasting Method Based on the GRA-FEDformer Algorithm
by Xin Jin, Tingzhe Pan, Heyang Yu, Zongyi Wang and Wangzhang Cao
Energies 2025, 18(15), 4057; https://doi.org/10.3390/en18154057 (registering DOI) - 31 Jul 2025
Abstract
In recent years, Transformer-based methods have shown full potential in power load forecasting problems. However, their computational cost is high, while it is difficult to capture the global characteristics of the time series. When the forecasting time length is long, the overall shift [...] Read more.
In recent years, Transformer-based methods have shown full potential in power load forecasting problems. However, their computational cost is high, while it is difficult to capture the global characteristics of the time series. When the forecasting time length is long, the overall shift of the forecasting trend often occurs. Therefore, this paper proposes a gray relation analysis–frequency-enhanced decomposition transformer (GRA-FEDformer) method for forecasting power loads in power systems. Firstly, considering the impact of different weather factors on power loads, the correlation between various factors and power loads was analyzed using the GRA method to screen out the high-correlation factors as model inputs. Secondly, a frequency decomposition method for long short-time-scale components was utilized. Its combination with the transformer-based model can give the deep learning model an ability to simultaneously capture the fluctuating behavior of the short time scale and the overall trend of changes in the long time scale in power loads. The experimental results show that the proposed method had better forecasting performance than the other methods for a one-year dataset in a region of Morocco. In particular, the advantages of the proposed method were more obvious in the forecasting task with a longer forecasting length. Full article
(This article belongs to the Topic Advances in Power Science and Technology, 2nd Edition)
Show Figures

Figure 1

17 pages, 3112 KiB  
Article
Impacts of Conservation Tillage on Soil Organic Carbon Mineralization in Eastern Inner Mongolia
by Boyu Liu, Jianquan Wang, Dian Jin and Hailin Zhang
Agronomy 2025, 15(8), 1847; https://doi.org/10.3390/agronomy15081847 - 30 Jul 2025
Abstract
Soil organic carbon (SOC) mineralization plays the critical role of regulating carbon sequestration potential. This process is strongly influenced by agricultural practices, particularly tillage regimes and straw management. However, the complex interactions between tillage methods, straw types, and application rates in terms of [...] Read more.
Soil organic carbon (SOC) mineralization plays the critical role of regulating carbon sequestration potential. This process is strongly influenced by agricultural practices, particularly tillage regimes and straw management. However, the complex interactions between tillage methods, straw types, and application rates in terms of SOC dynamics, especially in semi-arid agroecosystems like eastern Inner Mongolia, remain poorly understood. In this study, we assessed the combined effects of no tillage (NT) vs. rotary tillage (RT), three straw types (maize/MS, wheat/WS, and oilseed rape/OS), and three application rates (0.4%/low, 0.8%/medium, and 1.2%/high) on SOC concentration and mineralization using controlled laboratory incubation with soils from long-term plots. The key findings revealed that NT significantly increased the SOC concentration in the topsoil (0–20 cm) by an average of 14.5% compared to that in the RT. Notably, combining NT with medium-rate wheat straw (0.8%) resulted in the achievement of the highest SOC accumulation (28.70 g/kg). SOC mineralization increased with straw inputs, exhibiting significant straw type × rate interactions. Oilseed rape straw showed the highest specific mineralization rate (33.9%) at low input, while maize straw mineralized fastest under high input with RT. Therefore, our results demonstrate that combining NT with either 0.8% wheat straw or 1.2% maize straw represents an optimal application strategy, as the SOC concentration is enhanced by 12–18% for effective carbon sequestration in this water-limited semi-arid region. Therefore, optimizing SOC sequestration requires the integration of appropriate crop residue application rates and tillage methods tailored to different cropping systems. Full article
Show Figures

Figure 1

33 pages, 8289 KiB  
Article
An Adaptive Hybrid Correlation Kriging Approach for Uncertainty Dynamic Optimization of Spherical-Conical Shell Structure
by Tianchen Huang, Qingshan Wang, Rui Zhong and Tao Liu
Materials 2025, 18(15), 3588; https://doi.org/10.3390/ma18153588 - 30 Jul 2025
Abstract
In this paper, an uncertainty optimization method based on the adaptive hybrid correlation Kriging surrogate model is proposed to optimize the ply angles of laminated spherical-conical shells. First, equations of motion of laminated spherical-conical shells are constructed to calculate the vibration characteristics. Then, [...] Read more.
In this paper, an uncertainty optimization method based on the adaptive hybrid correlation Kriging surrogate model is proposed to optimize the ply angles of laminated spherical-conical shells. First, equations of motion of laminated spherical-conical shells are constructed to calculate the vibration characteristics. Then, this paper proposes a Kriging surrogate model with adaptive weight hybrid correlation functions and validates its accuracy. Based on this framework, the weight distribution of the surrogate model for uncertain parameters in laminated spherical-conical shells under different ply angles is analyzed. To address the uncertainty optimization problem in laminated spherical-conical shell structures, an Improved Multi-objective Salp Swarm Algorithm is developed, and its optimization efficacy is systematically validated. Furthermore, an adaptive hybrid correlation Kriging surrogate model is reconstructed, incorporating both uncertainty parameters and design variables as inputs, with the peak vibration displacement and fundamental frequency serving as the output responses. The uncertainty optimization results confirm that the proposed methodology, along with the enhanced Kriging modeling strategy, exhibits both applicability and computational efficiency for such engineering applications. Full article
Show Figures

Figure 1

14 pages, 871 KiB  
Article
Evaluation of Deviations Produced by Soft Tissue Fitting in Virtually Planned Orthognathic Surgery
by Álvaro Pérez-Sala, Pablo Montes Fernández-Micheltorena, Miriam Bobadilla, Ricardo Fernández-Valadés Gámez, Javier Martínez Goñi, Ángela Villanueva, Iñigo Calvo Archanco, José Luis Del Castillo Pardo de Vera, José Luis Cebrián Carretero, Carlos Navarro Cuéllar, Ignacio Navarro Cuellar, Gema Arenas, Ana López López, Ignacio M. Larrayoz and Rafael Peláez
Appl. Sci. 2025, 15(15), 8478; https://doi.org/10.3390/app15158478 (registering DOI) - 30 Jul 2025
Abstract
Orthognathic surgery (OS) is a complex procedure commonly used to treat dentofacial deformities (DFDs). These conditions, related to jaw position or size and often involving malocclusion, affect approximately 15% of the population. Due to the complexity of OS, accurate planning is essential. Digital [...] Read more.
Orthognathic surgery (OS) is a complex procedure commonly used to treat dentofacial deformities (DFDs). These conditions, related to jaw position or size and often involving malocclusion, affect approximately 15% of the population. Due to the complexity of OS, accurate planning is essential. Digital assessment using computer-aided design (CAD) and computer-aided manufacturing (CAM) tools enhances surgical predictability. However, limitations in soft tissue simulation often require surgeon input to optimize aesthetic results and minimize surgical impact. This study aimed to evaluate the accuracy of virtual surgery planning (VSP) by analyzing the relationship between planning deviations and surgical satisfaction. A single-center, retrospective study was conducted on 16 patients who underwent OS at San Pedro University Hospital of La Rioja. VSP was based on CT scans using Dolphin Imaging software (v12.0, Patterson Dental, St. Paul, MN, USA) and surgeries were guided by VSP-designed occlusal splints. Outcomes were assessed using the Orthognathic Quality of Life (OQOL) questionnaire and deviations were measured through pre- and postoperative imaging. The results showed high satisfaction scores and good overall outcomes, despite moderate deviations from the virtual plan in many cases, particularly among Class II patients. A total of 63% of patients required VSP modifications due to poor soft tissue fitting, with 72% of these being Class II DFDs. Most deviations involved less maxillary advancement than planned, while maintaining optimal occlusion. This suggests that VSP may overestimate advancement needs, especially in Class II cases. No significant differences in satisfaction were observed between patients with low (<2 mm) and high (>2 mm) deviations. These findings support the use of VSP as a valuable planning tool for OS. However, surgeon experience remains essential, especially in managing soft tissue behavior. Improvements in soft tissue prediction are needed to enhance accuracy, particularly for Class II DFDs. Full article
(This article belongs to the Special Issue Intelligent Medicine and Health Care, 2nd Edition)
Show Figures

Figure 1

20 pages, 3139 KiB  
Article
Intelligent Recognition and Parameter Estimation of Radar Active Jamming Based on Oriented Object Detection
by Jiawei Lu, Yiduo Guo, Weike Feng, Xiaowei Hu, Jian Gong and Yu Zhang
Remote Sens. 2025, 17(15), 2646; https://doi.org/10.3390/rs17152646 - 30 Jul 2025
Abstract
To enhance the perception capability of radar in complex electromagnetic environments, this paper proposes an intelligent jamming recognition and parameter estimation method based on deep learning. The core idea of the method is to reformulate the jamming perception problem as an object detection [...] Read more.
To enhance the perception capability of radar in complex electromagnetic environments, this paper proposes an intelligent jamming recognition and parameter estimation method based on deep learning. The core idea of the method is to reformulate the jamming perception problem as an object detection task in computer vision, and we pioneer the application of oriented object detection to this problem, enabling simultaneous jamming classification and key parameter estimation. This method takes the time–frequency spectrogram of jamming signals as input. First, it employs the oriented object detection network YOLOv8-OBB (You Only Look Once Version 8–oriented bounding box) to identify three types of classic suppression jamming and five types of Interrupted Sampling Repeater Jamming (ISRJ) and outputs the positional information of the jamming in the time–frequency spectrogram. Second, for the five ISRJ types, a post-processing algorithm based on boxes fusion is designed to further extract features for secondary recognition. Finally, by integrating the detection box information and secondary recognition results, parameters of different ISRJ are estimated. In this paper, ablation experiments from the perspective of Non-Maximum Suppression (NMS) are conducted to simulate and compare the OBB method with the traditional horizontal bounding box-based detection approaches, highlighting OBB’s detection superiority in dense jamming scenarios. Experimental results show that, compared with existing jamming detection methods, the proposed method achieves higher detection probabilities under the jamming-to-noise ratio (JNR) ranging from 0 to 20 dB, with correct identification rates exceeding 98.5% for both primary and secondary recognition stages. Moreover, benefiting from the advanced YOLOv8 network, the method exhibits an absolute error of less than 1.85% in estimating six types of jamming parameters, outperforming existing methods in estimation accuracy across different JNR conditions. Full article
(This article belongs to the Special Issue Array and Signal Processing for Radar (Second Edition))
Show Figures

Figure 1

Back to TopTop