Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,170)

Search Parameters:
Keywords = dielectric sample

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 618 KiB  
Article
Application of Microwaves to Reduce Checking in Low-Fat Biscuits: Impact on Sensory Characteristics and Energy Consumption
by Raquel Rodríguez, Xabier Murgui, Yolanda Rios, Eduardo Puértolas and Izaskun Pérez
Foods 2025, 14(15), 2693; https://doi.org/10.3390/foods14152693 - 30 Jul 2025
Viewed by 173
Abstract
The use of microwaves (MWs) has been proposed as an energy-efficient method for reducing checking. Along with understanding moisture distribution, it is essential to consider structural characteristics to explain how MWs reduce checking. The influence of MWs on these characteristics depends on the [...] Read more.
The use of microwaves (MWs) has been proposed as an energy-efficient method for reducing checking. Along with understanding moisture distribution, it is essential to consider structural characteristics to explain how MWs reduce checking. The influence of MWs on these characteristics depends on the food matrix’s dielectric and viscoelastic properties, which vary significantly between fresh and pre-baked dough. This study investigates the effects of MW treatment applied before (MW-O) or after conventional oven baking (O-MW) on low-fat biscuits that are prone to checking. Color (CIELab), thickness, moisture content and distribution, checking rate, texture, sensory properties, energy consumption and baking time were analyzed. The findings suggest that MWs reduce checking rate by eliminating internal moisture differences, while also changing structural properties, as evidenced by increased thickness and hardness. MW-O eliminated checking (control samples showed 100%) but negatively affected color, texture (increased hardness and breaking work), and sensory quality. The O-MW checking rate (3.41%) was slightly higher than in MW-O, probably due to the resulting different structural properties (less thickness, less hardness and breaking work). O-MW biscuits were the most preferred by consumers (54.76% ranked them first), with color and texture close to the control samples. MW-O reduced total energy consumption by 16.39% and baking time by 25.00%. For producers, these improvements could compensate for the lower biscuit quality. O-MW did not affect energy consumption but reduced baking time by 14.38%. The productivity improvement, along with the reduction in checking and the satisfactory sensory quality, indicates that O-MW could be beneficial for the bakery sector. Full article
(This article belongs to the Special Issue Cereal Processing and Quality Control Technology)
Show Figures

Figure 1

21 pages, 2189 KiB  
Article
Surface Modification, Characterization, and Cytotoxicity of Ti-6Al-4V Alloy Enriched by EDM Process
by Bárbara A. B. dos Santos, Elaine C. S. Corrêa, Wellington Lopes, Liszt Y. C. Madruga, Ketul C. Popat, Roberta M. Sabino and Hermes de Souza Costa
Appl. Sci. 2025, 15(15), 8443; https://doi.org/10.3390/app15158443 - 30 Jul 2025
Viewed by 331
Abstract
This study investigates the surface modification of Ti-6Al-4V alloy through the electrical discharge machining (EDM) process to improve its suitability for orthopedic and dental implant applications. The analysis focused on evaluating the morphological, wettability, roughness, hardness, and biocompatibility properties of the modified surfaces. [...] Read more.
This study investigates the surface modification of Ti-6Al-4V alloy through the electrical discharge machining (EDM) process to improve its suitability for orthopedic and dental implant applications. The analysis focused on evaluating the morphological, wettability, roughness, hardness, and biocompatibility properties of the modified surfaces. Samples were subjected to different dielectric fluids and polarities during EDM. Subsequently, optical microscopy, roughness measurements, Vickers microhardness, contact angle tests, and in vitro cytotoxicity assays were performed. The results demonstrated that EDM processing led to the formation of distinct layers on the sample surfaces, with surface roughness increasing under negative polarity by up to ~304% in Ra and 305% in Rz. Additionally, wettability measurements indicated that the modified surfaces presented a lower water contact angle, which suggests enhanced hydrophilicity. Moreover, the modified samples showed a significant increase in Vickers microhardness, with the highest value reaching 1520 HV in the recast layer, indicating improvements in the mechanical properties. According to ISO 10993-5, all treated samples were classified as non-cytotoxic, presenting RGR values above 75%, similar to the untreated Ti-6Al-4V alloy. Therefore, it is concluded that surface modification through the EDM process has the potential to enhance the properties and safety of biomedical implants made with this alloy. Full article
(This article belongs to the Special Issue Titanium and Its Compounds: Properties and Innovative Applications)
Show Figures

Figure 1

19 pages, 590 KiB  
Review
Comprehensive Review of Dielectric, Impedance, and Soft Computing Techniques for Lubricant Condition Monitoring and Predictive Maintenance in Diesel Engines
by Mohammad-Reza Pourramezan, Abbas Rohani and Mohammad Hossein Abbaspour-Fard
Lubricants 2025, 13(8), 328; https://doi.org/10.3390/lubricants13080328 - 29 Jul 2025
Viewed by 331
Abstract
Lubricant condition analysis is a valuable diagnostic tool for assessing engine performance and ensuring the reliable operation of diesel engines. While traditional diagnostic techniques—such as Fourier transform infrared spectroscopy (FTIR)—are constrained by slow response times, high costs, and the need for specialized personnel. [...] Read more.
Lubricant condition analysis is a valuable diagnostic tool for assessing engine performance and ensuring the reliable operation of diesel engines. While traditional diagnostic techniques—such as Fourier transform infrared spectroscopy (FTIR)—are constrained by slow response times, high costs, and the need for specialized personnel. In contrast, dielectric spectroscopy, impedance analysis, and soft computing offer real-time, non-destructive, and cost-effective alternatives. This review examines recent advances in integrating these techniques to predict lubricant properties, evaluate wear conditions, and optimize maintenance scheduling. In particular, dielectric and impedance spectroscopies offer insights into electrical properties linked to oil degradation, such as changes in viscosity and the presence of wear particles. When combined with soft computing algorithms, these methods enhance data analysis, reduce reliance on expert interpretation, and improve predictive accuracy. The review also addresses challenges—including complex data interpretation, limited sample sizes, and the necessity for robust models to manage variability in real-world operations. Future research directions emphasize miniaturization, expanding the range of detectable contaminants, and incorporating multi-modal artificial intelligence to further bolster system robustness. Collectively, these innovations signal a shift from reactive to predictive maintenance strategies, with the potential to reduce costs, minimize downtime, and enhance overall engine reliability. This comprehensive review provides valuable insights for researchers, engineers, and maintenance professionals dedicated to advancing diesel engine lubricant monitoring. Full article
Show Figures

Graphical abstract

14 pages, 6801 KiB  
Article
Effect of Zr Doping on BNT–5BT Lead-Free Ceramics: Substitutional and Excess Incorporation Analysis
by Mauro Difeo, Miriam Castro and Leandro Ramajo
Micro 2025, 5(3), 35; https://doi.org/10.3390/micro5030035 - 28 Jul 2025
Viewed by 126
Abstract
This study evaluates the effect of zirconium (Zr) incorporation on the structural, microstructural, and functional properties of lead-free ceramics based on the 0.95(Bi0.5Na0.5)TiO3–0.05BaTiO3 (BNT–5BT) system. Two distinct doping strategies were investigated: (i) the substitutional incorporation of [...] Read more.
This study evaluates the effect of zirconium (Zr) incorporation on the structural, microstructural, and functional properties of lead-free ceramics based on the 0.95(Bi0.5Na0.5)TiO3–0.05BaTiO3 (BNT–5BT) system. Two distinct doping strategies were investigated: (i) the substitutional incorporation of Zr4+ at the Ti4+ site (BNT–5BT–xZrsub), and (ii) the addition of ZrO2 in excess (BNT–5BT–xZrexc). The samples were synthesized via conventional solid-state reaction and characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM/EDS), and electrical measurements, including dielectric, ferroelectric, and piezoelectric responses. Both doping routes were found to influence phase stability and electromechanical performance. Substitutional doping notably reduced the coercive field while preserving high remanent polarization, resulting in an enhanced piezoelectric coefficient (d33). These results highlight the potential of Zr-modified BNT–5BT ceramics for lead-free energy harvesting applications. Full article
Show Figures

Figure 1

16 pages, 3885 KiB  
Article
Synthesis and Properties of Bi1.8Mn0.5Ni0.5Ta2O9-Δ Pyrochlore
by Sergey V. Nekipelov, Olga V. Petrova, Alexandra V. Koroleva, Mariya G. Krzhizhanovskaya, Kristina N. Parshukova, Nikolay A. Sekushin, Boris A. Makeev and Nadezhda A. Zhuk
Chemistry 2025, 7(4), 119; https://doi.org/10.3390/chemistry7040119 - 25 Jul 2025
Viewed by 172
Abstract
Pyrochlore Bi1.8Mn0.5Ni0.5Ta2O9-Δ (sp.gr. Fd-3m, a = 10.5038(9) Å) was synthesized by the solid-phase reaction method and characterized by vibrational and X-ray spectroscopy. According to scanning electron microscopy, the ceramics are characterized by a [...] Read more.
Pyrochlore Bi1.8Mn0.5Ni0.5Ta2O9-Δ (sp.gr. Fd-3m, a = 10.5038(9) Å) was synthesized by the solid-phase reaction method and characterized by vibrational and X-ray spectroscopy. According to scanning electron microscopy, the ceramics are characterized by a porous microstructure formed by randomly oriented oblong grains. The average crystallite size determined by X-ray diffraction is 65 nm. The charge state of transition element cations in the pyrochlore was analyzed by soft X-ray spectroscopy using synchrotron radiation. For mixed pyrochlore, a characteristic shift of Bi4f and Ta4f and Ta5p spectra to the region of lower energies by 0.25 and 0.90 eV is observed compared to the binding energy in Bi2O3 and Ta2O5 oxides. XPS Mn2p spectrum of pyrochlore has an intermediate energy position compared to the binding energy in MnO and Mn2O3, which indicates a mixed charge state of manganese (II, III) cations. Judging by the nature of the Ni2p spectrum of the complex oxide, nickel ions are in the charge state of +(2+ζ). The relative permittivity of the sample in a wide temperature (up to 350 °C) and frequency range (25–106 Hz) does not depend on the frequency and exhibits a constant low value of 25. The minimum value of 4 × 10−3 dielectric loss tangent is exhibited by the sample at a frequency of 106 Hz. The activation energy of conductivity is 0.7 eV. The electrical behavior of the sample is modeled by an equivalent circuit containing a Warburg diffusion element. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

17 pages, 3311 KiB  
Article
A Holistic Integration of Machine Learning for Selecting Optimum Ratio of Nanoparticles in Epoxy-Based Nanocomposite Insulators
by Abubakar Siddique, Muhammad Usama Shahid, Laraib Akram, Waseem Aslam and Kholod D. Alsufiani
Processes 2025, 13(8), 2330; https://doi.org/10.3390/pr13082330 - 22 Jul 2025
Viewed by 804
Abstract
Epoxy-based nanocomposites have drawn much interest in high-voltage insulation applications due to their improved dielectric properties. The determination of the optimal nanoparticle (NP) concentration required to achieve a significant enhancement in nanocomposite dielectric properties remains a subject of ongoing research. Previous work has [...] Read more.
Epoxy-based nanocomposites have drawn much interest in high-voltage insulation applications due to their improved dielectric properties. The determination of the optimal nanoparticle (NP) concentration required to achieve a significant enhancement in nanocomposite dielectric properties remains a subject of ongoing research. Previous work has employed iterative experimental methodologies, often characterized by the hit-and-trial method, in attempts to find the optimal nanoparticle concentration. However, these efforts have yielded suboptimal or inconsistent results. Moreover, experimental procedures for optimizing the nanoparticle concentration require significant time and cost. This research study proposed the predictive capabilities of machine learning (ML) for the selection of the nanoparticle concentration in epoxy-based nanocomposite insulators. The authors employed a novel systematic approach in this research work, comprising dataset preparation, ML model implementation, and experimental validation. A real-time dataset with varying concentrations of NPs (TiO2, SiO2, Al2O3) was developed in the High Voltage Lab, KFUEIT, Pakistan. Several advanced machine learning models are trained on this dataset. Support Vector Regression (SVR) exhibits the highest prediction accuracy, with an R2 score of 0.97. SVR predicted a breakdown voltage (BDV) of 46.26 kV, with a (w/w %) concentration of 5% TiO2, 1.17631% SiO2, and 3.95755% Al2O3. To validate the SVR prediction, a hardware prototype with predicted NP concentration is developed and tested. The experimentally measured BDV of the predicted nanocomposite sample, registering 44.72 kV, authenticates the predictive accuracy of machine learning. This work demonstrates the efficacy of machine learning as a viable and efficient alternative to traditional experimental methods for optimizing nanoparticle concentrations using a predictive approach in epoxy-based nanocomposites for high-voltage insulation applications. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

26 pages, 4992 KiB  
Article
Composites from Recycled HDPE and ZnO Nanopowder with Improved Insulation and Weathering Features for Cable Jacketing Applications
by Alina Ruxandra Caramitu, Magdalena Valentina Lungu, Romeo Cristian Ciobanu, Ioana Ion, Eduard Marius Lungulescu, Gabriela Beatrice Sbarcea, Virgil Emanuel Marinescu, Sebastian Aradoaei, Mihaela Aradoaei and Raducu Machidon
Polymers 2025, 17(14), 1987; https://doi.org/10.3390/polym17141987 - 20 Jul 2025
Viewed by 380
Abstract
In this study, polymer matrix composites based on high-density polyethylene (HDPE) and recycled HDPE (HDPEr) were reinforced with zinc oxide nanoparticles (ZnO NPs). Four formulations (M1-M4) with HDPE/HDPEr/ZnO NP mass ratios of 50/50/0, 48/47/5, 45/45/10, and 43/42/15 were produced via melt injection molding. [...] Read more.
In this study, polymer matrix composites based on high-density polyethylene (HDPE) and recycled HDPE (HDPEr) were reinforced with zinc oxide nanoparticles (ZnO NPs). Four formulations (M1-M4) with HDPE/HDPEr/ZnO NP mass ratios of 50/50/0, 48/47/5, 45/45/10, and 43/42/15 were produced via melt injection molding. Disc-shaped samples (Ø30 ± 0.1 mm × 2 ± 0.1 mm) were evaluated in unaged and aged states (840 h at 100% humidity and 100 °C) using scanning electron microscopy, X-ray diffraction, ultraviolet–visible and Fourier-transform infrared spectroscopy, water absorption, thermal resistance, and mechanical and dielectric testing. Among all composites, M2 showed the best performance, with the highest aging resistance (estimated lifetime of 3891 h in humidity and 2361 h in heat). It also exhibited superior mechanical properties, with the highest indentation hardness, Vickers hardness, and elastic modulus before (0.042 GPa, 3.846 HV, and 0.732 GPa) and after aging under humidity (0.042 GPa, 3.932 HV, 0.706 GPa) and elevated temperature (0.085 GPa, 7.818 HV, 1.871 GPa). Although ZnO NPs slightly reduced electrical resistivity, M2 showed the most stable dielectric properties. In its unaged state, M2 had 22%, 30%, and 3% lower surface resistivity, volume resistivity, and dielectric strength, respectively, than M1 polymer. M2 was identified as the optimal formulation, combining mechanical strength, dielectric stability, and resistance to moisture and heat. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 1996 KiB  
Article
Lifetime Behavior of Turn Insulation in Rotating Machines Under Repetitive Pulsed Stress
by Ousama Zidane, Rainer Haller, Pavel Trnka and Hans Bärnklau
Energies 2025, 18(14), 3826; https://doi.org/10.3390/en18143826 - 18 Jul 2025
Viewed by 289
Abstract
Insulation materials are critical for the reliability and performance of electrical power systems, particularly in high-voltage rotating machines. While failures can arise from thermal, mechanical, or electrical stress, they predominantly manifest as electrical breakdowns. Prior research has primarily concentrated on aging in straight [...] Read more.
Insulation materials are critical for the reliability and performance of electrical power systems, particularly in high-voltage rotating machines. While failures can arise from thermal, mechanical, or electrical stress, they predominantly manifest as electrical breakdowns. Prior research has primarily concentrated on aging in straight winding sections, despite evidence indicating that failures frequently occur in the bending regions of turn insulation. This study explores the influence of high-frequency pulsed electrical stress on the lifetime behavior of Type II insulation systems used in high-voltage rotating machines. Practical samples, designed with geometric configurations and technology akin to that in rotating machines, were tested under conditions characterized by voltage slew rates (dv/dt) exceeding 10 kV/μs, with variations in frequency and waveform shape. The findings reveal that the rate of electrical aging remains consistent across differing pulse widths, risetimes, and polarities, displaying a similar lifetime exponent. Nonetheless, insulation durability is markedly more compromised under pulsed conditions. At the identical times-to-failure, the sinusoidal waveform necessitated nearly twice the applied peak voltage as the bipolar pulse waveform. This finding clearly suggests that pulsed excitation exacerbates insulation degradation more effectively due to the sharp rise times and high (dv/dt) rates imposing substantial electrical stress on dielectric materials. Full article
Show Figures

Figure 1

17 pages, 7597 KiB  
Article
Screen-Printed 1 × 4 Quasi-Yagi-Uda Antenna Array on Highly Flexible Transparent Substrate for the Emerging 5G Applications
by Matthieu Egels, Anton Venouil, Chaouki Hannachi, Philippe Pannier, Mohammed Benwadih and Christophe Serbutoviez
Electronics 2025, 14(14), 2850; https://doi.org/10.3390/electronics14142850 - 16 Jul 2025
Viewed by 259
Abstract
In the Internet of Things (IoT) era, the demand for cost-effective, flexible, wearable antennas and circuits has been growing. Accordingly, screen-printing techniques are becoming more popular due to their lower costs and high-volume manufacturing. This paper presents and investigates a full-screen-printed 1 × [...] Read more.
In the Internet of Things (IoT) era, the demand for cost-effective, flexible, wearable antennas and circuits has been growing. Accordingly, screen-printing techniques are becoming more popular due to their lower costs and high-volume manufacturing. This paper presents and investigates a full-screen-printed 1 × 4 Quasi-Yagi-Uda antenna array on a high-transparency flexible Zeonor thin-film substrate for emerging 26 GHz band (24.25–27.55 GHz) 5G applications. As part of this study, screen-printing implementation rules are developed by properly managing ink layer thickness on a transparent flexible Zeonor thin-film dielectric to achieve a decent antenna array performance. In addition, a screen-printing repeatability study has been carried out through a performance comparison of 24 antenna array samples manufactured by our research partner from CEA-Liten Grenoble. Despite the challenging antenna array screen printing at higher frequencies, the measured results show a good antenna performance as anticipated from the traditional subtractive printed circuit board (PCB) manufacturing process using standard substrates. It shows a wide-band matched input impedance from 22–28 GHz (i.e., 23% of relative band-width) and a maximum realized gain of 12.8 dB at 27 GHz. Full article
Show Figures

Figure 1

19 pages, 4331 KiB  
Article
Optimization of Grain Boundary Structure and Dielectric Properties in SrTiO3 Ceramics via Hot Isostatic Pressing
by Yilong Feng, Zhenya Lu, Ming Lv, Dan Qie and Zaiyun Long
Materials 2025, 18(14), 3301; https://doi.org/10.3390/ma18143301 - 13 Jul 2025
Viewed by 361
Abstract
This study fabricated SrTiO3 grain boundary layer ceramics using hot isostatic pressing (HIP), achieving a remarkably high dielectric constant of 60,350 and a superior breakdown strength of 1722 kV/m. Microstructural characterization via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed [...] Read more.
This study fabricated SrTiO3 grain boundary layer ceramics using hot isostatic pressing (HIP), achieving a remarkably high dielectric constant of 60,350 and a superior breakdown strength of 1722 kV/m. Microstructural characterization via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that HIP treatment significantly refined grain size uniformity and homogenized bismuth distribution at grain boundaries, thus enhancing the interfacial barrier effect. Probe-based impedance spectroscopy elucidated the dielectric behavior and conduction mechanisms of individual grain boundaries. HIP promotes the formation of interfacial barrier layers (IBLs), significantly improving electrical performance. Compared to untreated samples (average breakdown strength: 555 kV/m), HIP-processed ceramics exhibited a threefold enhancement in breakdown strength (1722 kV/m). The treated ceramic exhibited excellent temperature stability, with TCC ≤8% over −55 to 125 °C. The optimized dielectric properties stem from HIP-induced structural modifications, including reduced oxygen vacancy concentrations and homogenized electronic distribution at grain boundaries. These findings establish a quantitative correlation between HIP parameters, grain boundary restructuring, and macroscopic performance, providing critical insights for designing high-energy-density dielectric materials. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

19 pages, 2126 KiB  
Article
A Comparative Study of the Non-Destructive Diagnostic Tests of 500 Hz Accelerated-Aged XLPE Power Cables
by Adewumi Olujana Adeniyi, Trudy Sutherland and Hendrick Langa
Energies 2025, 18(14), 3647; https://doi.org/10.3390/en18143647 - 10 Jul 2025
Viewed by 220
Abstract
Power cable dielectrics must be tested to ascertain their insulation integrity after their design and manufacture. In Southern Africa, power cables must undergo testing in accordance with the South African National Standard (SANS) 1339. The SANS 1339 provides a destructive diagnostic method to [...] Read more.
Power cable dielectrics must be tested to ascertain their insulation integrity after their design and manufacture. In Southern Africa, power cables must undergo testing in accordance with the South African National Standard (SANS) 1339. The SANS 1339 provides a destructive diagnostic method to evaluate voltage breakdown strength and water tree growth. The shortfall is that there is no provision for the non-destructive determination of the residual strength and assessment of the condition of the power cables. It is possible that non-destructive tests are available. However, a question arises as to how they compare in effectiveness, which is the intention of this study. Accelerated aging at 500 Hz was conducted on the water-retardant cross-linked polyethene (TR-XLPE) power cable sample specimens, each 10 m long, according to SANS 1339. Non-destructive diagnostic tests (Tan δ, IRC, and RVM) were conducted on accelerated-aged and unaged cable samples. The comparative results of the accelerated-aged and unaged XPLE power cable samples, when applying non-destructive diagnostic techniques, show consistency and reveal the extent of degradation in the tested cable samples. This study demonstrates that non-destructive diagnostic methods can be used to assess the extent of XLPE power cable insulation aging. Full article
(This article belongs to the Topic Advances in Non-Destructive Testing Methods, 3rd Edition)
Show Figures

Figure 1

18 pages, 2260 KiB  
Article
Study of Detection of Typical Pesticides in Paddy Water Based on Dielectric Properties
by Shuanggen Huang, Mei Yang, Junshi Huang, Longwei Shang, Qi Chen, Fang Peng, Muhua Liu, Yan Wu and Jinhui Zhao
Agronomy 2025, 15(7), 1666; https://doi.org/10.3390/agronomy15071666 - 9 Jul 2025
Viewed by 255
Abstract
Due to the dramatic increase in pesticide usage and improper application, large amounts of unused pesticides enter the environment through paddy water, causing severe pesticide pollution. To find a rapid method for identifying pesticide types and predicting their concentrations, the dielectric properties frequency [...] Read more.
Due to the dramatic increase in pesticide usage and improper application, large amounts of unused pesticides enter the environment through paddy water, causing severe pesticide pollution. To find a rapid method for identifying pesticide types and predicting their concentrations, the dielectric properties frequency response of pesticides was analyzed in paddy water. A rapid detection method for typical pesticides such as chlorpyrifos, isoprothiolane, imidacloprid and carbendazim was studied based on their dielectric properties. In this paper, amplitude and phase frequency response data for blank paddy water samples and 15 types of paddy water samples containing pesticides were collected at 10 different temperatures. Principal component analysis (PCA) and competitive adaptive reweighted sampling (CARS) were used to extract characteristic frequencies. A species identification model based on support vector machine (SVM) for rapid detection of pesticides in paddy water was established using amplitude and phase frequency response data separately. Frequency response data of 431 sets from nine types of paddy water samples were divided into training and prediction sets in a 3:1 ratio, and a content prediction model based on artificial neural networks (ANN) with multiple inputs and single output was established using amplitude and phase frequency response data after CARS feature extraction. The experimental results show that both PCA-SVM and CARS-SVM species identification models established using amplitude and phase frequency response data have excellent identification effects, reaching over 90%. The PCA-SVM model based on phase frequency response data has the best identification effect for typical pesticides in paddy water with a prediction recognition accuracy range of 97.5–100%. The ANN content prediction model established using phase frequency response data performs well, and the highest R2 prediction values of chlorpyrifos, isoprothiolane, imidacloprid and carbendazim in paddy water were 0.8249, 0.8639, 0.9113 and 0.8368 respectively. The research established a dielectric property detection method for the identification and content prediction of typical pesticides in paddy water, providing a theoretical basis for the hardware design of capacitive sensors based on dielectric property and the detection of pesticide residues in paddy water. This provides a new method and approach for pesticide residue detection, which is of great significance for scientific pesticide application and sustainable agricultural development. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

16 pages, 3023 KiB  
Article
Application of Atmospheric Non-Thermal Plasmas to Control Rhizopus stolonifer Causing Soft Rot Disease in Strawberry
by Dheerawan Boonyawan, Hans Jørgen Lyngs Jørgensen and Salit Supakitthanakorn
Horticulturae 2025, 11(7), 818; https://doi.org/10.3390/horticulturae11070818 - 9 Jul 2025
Viewed by 324
Abstract
Rhizopus stolonifer causes soft rot disease in strawberry and is considered one of the most destructive pathogens affecting strawberries worldwide. This study investigated the efficacy of three atmospheric non-thermal plasmas (NTPs) consisting of gliding arc (GA), Tesla coil (TC) and dielectric barrier discharge [...] Read more.
Rhizopus stolonifer causes soft rot disease in strawberry and is considered one of the most destructive pathogens affecting strawberries worldwide. This study investigated the efficacy of three atmospheric non-thermal plasmas (NTPs) consisting of gliding arc (GA), Tesla coil (TC) and dielectric barrier discharge (DBD) for controlling R. stolonifer infection. Fungal mycelial discs were exposed to these plasmas for 10, 15 or 20 min, whereas conidial suspensions were treated for 1, 3, 5 or 7 min. Morphological alterations following non-thermal plasma exposure were studied using scanning electron microscopy (SEM). Exposure to GA and DBD plasmas for 20 min completely inhibited mycelial growth. SEM analysis revealed significant structural damage to the mycelium, sporangia and sporangiospores of treated samples compared to untreated controls. Complete inhibition of sporangiospore germination was achieved with treatments for at least 3 min for all NTPs. Pathogenicity assays on strawberry fruit showed that 15 min exposure to any of the tested NTPs completely prevented the development of soft rot disease. Importantly, NTP treatments did not adversely affect the external or internal characteristics of treated strawberries. These findings suggest that atmospheric non-thermal plasmas offer an effective approach for controlling R. stolonifer infection in strawberries, potentially providing a non-chemical alternative for post-harvest disease management. Full article
(This article belongs to the Special Issue Postharvest Diseases in Horticultural Crops and Their Management)
Show Figures

Graphical abstract

26 pages, 2441 KiB  
Article
Structure–Property Relationship in Isotactic Polypropylene Under Contrasting Processing Conditions
by Edin Suljovrujic, Dejan Milicevic, Katarina Djordjevic, Zorana Rogic Miladinovic, Georgi Stamboliev and Slobodanka Galovic
Polymers 2025, 17(14), 1889; https://doi.org/10.3390/polym17141889 - 8 Jul 2025
Viewed by 617
Abstract
Polypropylene (PP), with its good physical, thermal, and mechanical properties and excellent processing capabilities, has become one of the most used synthetic polymers. It is known that the overall properties of semicrystalline polymers, including PP, are governed by morphology, which is influenced by [...] Read more.
Polypropylene (PP), with its good physical, thermal, and mechanical properties and excellent processing capabilities, has become one of the most used synthetic polymers. It is known that the overall properties of semicrystalline polymers, including PP, are governed by morphology, which is influenced by the crystallization behavior of the polymer under specific conditions. The most important industrial PP remains the isotactic one, and it has been studied extensively for its polymorphic characteristics and crystallization behavior for over half a century. Due to its regular chain structure, isotactic polypropylene (iPP) belongs to the group of polymers with a high tendency for crystallization. The rapid quenching of molten iPP fails to produce a completely amorphous polymer but leads to an intermediate crystalline order. On the other hand, slow cooling yields a material with high crystalline content. The processing conditions that occur in practice and industry are between these two extremes and, in some cases, are even very close. Therefore, the study of limits in processability and the impact of extreme preparation conditions on morphology, structure, thermal, and mechanical properties fills a gap in the current understanding of how the processing conditions of iPP can be used to design the desired properties for specific applications and is in the focus of this research. The first set of samples (Q samples) was obtained by rapid quenching, while the second was prepared by very slow cooling from the melt to room temperature (SC samples). Testing of samples was performed by optical microscopy (OM), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic dielectric spectroscopy (DDS), and mechanical measurements. Characterization revealed that slowly cooled samples exhibited a significantly higher degree of crystallinity and larger crystallites (χ ≥ 55% and L(110) ≈ 20 nm), compared to quenched samples (χ < 30%, L(110) ≤ 3 nm). Mechanical testing showed a drastic contrast: quenched samples exhibited elongation at break > 500%, while slowly cooled samples broke below 15%, reflecting their brittle behavior. For the first time, DDS is applied to investigate molecular mobility differences between processing-dependent structural forms, specifically the mesomorphic (smectic) and α-monoclinic forms. In slowly cooled samples, α relaxation exhibited both enhanced intensity and an upward temperature shift, indicating stronger structural constraints due to a much higher crystalline phase content and significantly larger crystallite size, respectively. These findings provide novel insights into the structure–property–processing relationship, which is crucial for industrial applications. Full article
(This article belongs to the Special Issue Thermal and Elastic Properties of Polymer Materials)
Show Figures

Figure 1

18 pages, 2148 KiB  
Article
Structural and Dielectric Impedance Studies of Mixed Ionic–Electronic Conduction in SrLaFe1−xMnxTiO6 (x = 0, 0.33, 0.67, and 1.0) Double Perovskites
by Abdelrahman A. Elbadawi, Elsammani A. Shokralla, Mohamed A. Siddig, Obaidallah A. Algethami, Abdullah Ahmed Alghamdi and Hassan H. E. Idris
Ceramics 2025, 8(3), 87; https://doi.org/10.3390/ceramics8030087 - 7 Jul 2025
Viewed by 341
Abstract
The structural and electrical properties of double perovskite compounds SrLaFe1−xMnxTiO6−δ (x = 0, 0.33, 0.67, and 1.0) were studied using X-ray diffraction (XRD) and dielectric impedance measurements. The reparation of perovskite compounds was successfully achieved through the precursor [...] Read more.
The structural and electrical properties of double perovskite compounds SrLaFe1−xMnxTiO6−δ (x = 0, 0.33, 0.67, and 1.0) were studied using X-ray diffraction (XRD) and dielectric impedance measurements. The reparation of perovskite compounds was successfully achieved through the precursor solid-state reaction in air at 1250 °C. The purity phase and crystal structures of perovskite compounds were determined by means of the standard Rietveld refinement method using the FullProf suite. The best fitting results showed that SrLaFeTiO6−δ was orthorhombic with space group Pnma, and both SrLaFe0.67Mn0.33TiO6−δ and SrLaFe0.33Mn0.67TiO6−δ were cubic structures with space group Fm3m, while SrLaMnTiO6−δ was tetragonal with a I/4m space group. The charge density maps obtained for these structures indicated that the compounds show an ionic and mixed ionic–electronic conduction. The dielectric impedance measurements were carried out in the range of 20 Hz to 1 MHz, and the analysis showed that there is more than one relaxation mechanism of Debye type. Doping with Mn was found to reduce the dielectric impedance of the samples, and the major contribution to the dielectric impedance was established to change from a capacitive for SrLaFeTiO6−δ to a resistive for SrLaMnTiO6−δ. The fall in values of electrical resistance may be related to the possible occurrence of the double exchange (DEX) mechanism among the Mn ions, provided there is oxygen deficiency in the samples. DC-resistivity measurements revealed that SrLaFeTiO6−δ was an insulator while SrLaMnTiO6−δ was showing a semiconductor–metallic transition at ~250 K, which is in support of the DEX interaction. The dielectric impedance of SrLaFe0.67Mn0.33TiO6−δ was found to be similar to that of (La,Sr)(Co,Fe)O3-δ, the mixed ionic–electronic conductor (MIEC) model. The occurrence of a mixed ionic–electronic state in these compounds may qualify them to be used in free lead solar cells and energy storage technology. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

Back to TopTop