Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = diagnostic accuracy autofluorescence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4965 KB  
Article
Expanding the Genetic Spectrum in IMPG1 and IMPG2 Retinopathy
by Saoud Al-Khuzaei, Ahmed K. Shalaby, Jing Yu, Morag Shanks, Penny Clouston, Robert E. MacLaren, Stephanie Halford, Samantha R. De Silva and Susan M. Downes
Genes 2025, 16(12), 1474; https://doi.org/10.3390/genes16121474 - 9 Dec 2025
Viewed by 242
Abstract
Background: Pathogenic variants in interphotoreceptor matrix proteoglycan 1 (IMPG1) have been associated with autosomal dominant and recessive retinitis pigmentosa (RP) and autosomal dominant adult vitelliform macular dystrophy (AVMD). Monoallelic pathogenic variants in IMPG2 have been linked to maculopathy and biallelic variants [...] Read more.
Background: Pathogenic variants in interphotoreceptor matrix proteoglycan 1 (IMPG1) have been associated with autosomal dominant and recessive retinitis pigmentosa (RP) and autosomal dominant adult vitelliform macular dystrophy (AVMD). Monoallelic pathogenic variants in IMPG2 have been linked to maculopathy and biallelic variants to RP with early onset macular atrophy. Herein we characterise the phenotypic and genotypic features of patients with IMPG1/IMPG2 retinopathy and report novel variants. Methods: Patients with IMPG1 and IMPG2 variants and compatible phenotypes were retrospectively identified. Clinical data were obtained from reviewing the medical records. Phenotypic data included visual acuity, imaging included ultra-widefield pseudo-colour, fundus autofluorescence, and optical coherence tomography (OCT). Genetic testing was performed using next generation sequencing (NGS). Variant pathogenicity was investigated using in silico analysis (SIFT, PolyPhen-2, mutation taster, SpliceAI). The evolutionary conservation of novel missense variants was also investigated. Results: A total of 13 unrelated patients were identified: 2 (1 male; 1 female) with IMPG1 retinopathy and 11 (7 male; 4 female) with IMPG2 retinopathy. Both IMPG1 retinopathy patients were monoallelic: one patient had adult vitelliform macular dystrophy (AVMD) with drusenoid changes while the other had pattern dystrophy (PD), and they presented to clinic at age 81 and 72 years, respectively. There were 5 monoallelic IMPG2 retinopathy patients with a maculopathy phenotype, of whom 1 had PD and 4 had AVMD. The mean age of symptom onset of this group was 54.2 ± 11.8 years, mean age at presentation was 54.8 ± 11.5 years, and mean BCVAs were 0.15 ± 0.12 logMAR OD and −0.01 ± 0.12 logMAR OS. Six biallelic IMPG2 patients had RP with maculopathy, where the mean age of onset symptom onset was 18.4 years, mean age at examination was 68.7 years, and mean BCVAs were 1.90 logMAR OD and 1.82 logMAR OS. Variants in IMPG1 included one missense and one exon deletion. A total of 11 different IMPG2 variants were identified (4 missense, 7 truncating). A splicing defect was predicted for the c.871C>A p.(Arg291Ser) missense IMPG2 variant. One IMPG1 and five IMPG2 variants were novel. Conclusions: This study describes the phenotypic spectrum of IMPG1/IMPG2 retinopathy and six novel variants are reported. The phenotypes of PD and AVMD in monoallelic IMPG2 patients may result from haploinsufficiency, supported by the presence of truncating variants in both monoallelic and biallelic cases. The identification of novel variants expands the known genetic landscape of IMPG1 and IMPG2 retinopathies. These findings contribute to diagnostic accuracy, informed patient counselling regarding inheritance pattern, and may help guide recruitment for future therapeutic interventions. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

23 pages, 364 KB  
Review
Optical Imaging Technologies and Clinical Applications in Gastrointestinal Endoscopy
by Khyati Bidani, Vishali Moond, Madhvi Nagar, Arkady Broder and Nirav Thosani
Diagnostics 2025, 15(20), 2625; https://doi.org/10.3390/diagnostics15202625 - 17 Oct 2025
Viewed by 1320
Abstract
Optical imaging technologies expand gastrointestinal endoscopy beyond white-light endoscopy (WLE), improving visualization of mucosal, vascular, and subsurface features. They are applied to the detection of neoplastic and premalignant lesions, inflammatory diseases, and small bowel and pancreatic disorders, though their validation and readiness for [...] Read more.
Optical imaging technologies expand gastrointestinal endoscopy beyond white-light endoscopy (WLE), improving visualization of mucosal, vascular, and subsurface features. They are applied to the detection of neoplastic and premalignant lesions, inflammatory diseases, and small bowel and pancreatic disorders, though their validation and readiness for routine practice vary. This review critically evaluates both guideline-endorsed and investigational optical imaging techniques across major gastrointestinal indications, highlighting diagnostic performance, level of validation, current guideline recommendations, and practical challenges to adoption. In Barrett’s esophagus, narrow-band imaging (NBI) is guideline-endorsed, while acetic acid chromoendoscopy is validated in expert centers. For gastric intestinal metaplasia and early gastric cancer, magnifying NBI achieves diagnostic accuracies exceeding 90% and is guideline-recommended, with acetic acid chromoendoscopy aiding in margin delineation. In inflammatory bowel disease, dye-spray chromoendoscopy is the reference standard for dysplasia surveillance, with virtual methods such as NBI, FICE, and i-SCAN serving as practical alternatives when dye application is not feasible. In the colorectum, NBI supports validated optical diagnosis strategies (resect-and-discard, diagnose-and-leave), while dye-based chromoendoscopy improves detection of flat and serrated lesions. Capsule endoscopy remains the standard for small bowel evaluation of bleeding, Crohn’s disease, and tumors, with virtual enhancement, intelligent chromo capsule endoscopy, and AI-assisted interpretation emerging as promising adjuncts. Pancreaticobiliary applications of optical imaging are also advancing, though current evidence is still preliminary. Investigational modalities including confocal laser endomicroscopy, optical coherence tomography, autofluorescence, Raman spectroscopy, and fluorescence molecular imaging show potential but remain largely restricted to research or expert settings. Guideline-backed modalities such as NBI and dye-based chromoendoscopy are established for clinical practice and supported by robust evidence, whereas advanced techniques remain investigational. Future directions will rely on broader validation, integration of artificial intelligence, and adoption of molecularly targeted probes and next-generation capsule technologies, which together may enhance accuracy, efficiency, and standardization in gastrointestinal endoscopy. Full article
(This article belongs to the Special Issue Advances in Gastrointestinal Endoscopy: From Diagnosis to Therapy)
32 pages, 4514 KB  
Review
Blue Light and Green Light Fundus Autofluorescence, Complementary to Optical Coherence Tomography, in Age-Related Macular Degeneration Evaluation
by Antonia-Elena Ranetti, Horia Tudor Stanca, Mihnea Munteanu, Raluca Bievel Radulescu and Simona Stanca
Diagnostics 2025, 15(13), 1688; https://doi.org/10.3390/diagnostics15131688 - 2 Jul 2025
Viewed by 3387
Abstract
Background: Age-related macular degeneration (AMD) is one of the leading causes of permanent vision loss in the elderly, particularly in higher-income countries. Fundus autofluorescence (FAF) imaging is a widely used, non-invasive technique that complements structural imaging in the assessment of retinal pigment epithelium [...] Read more.
Background: Age-related macular degeneration (AMD) is one of the leading causes of permanent vision loss in the elderly, particularly in higher-income countries. Fundus autofluorescence (FAF) imaging is a widely used, non-invasive technique that complements structural imaging in the assessment of retinal pigment epithelium (RPE) integrity. While optical coherence tomography (OCT) remains the gold standard for retinal imaging due to its high-resolution cross-sectional visualization, FAF offers unique metabolic insights. Among the FAF modalities, blue light FAF (B-FAF) is more commonly employed, whereas green light FAF (G-FAF) provides subtly different image characteristics, particularly improved visualization and contrast in the central macula. Despite identical acquisition times and nearly indistinguishable workflows, G-FAF is notably underutilized in clinical practice. Objectives: This narrative review critically compares green and blue FAF in terms of their diagnostic utility relative to OCT, with a focus on lesion detectability, macular pigment interference, and clinical decision-making in retinal disorders. Methods: A comprehensive literature search was performed using the PubMed database for studies published prior to February 2025. The search utilized the keywords fundus autofluorescence and age-related macular degeneration. The primary focus was on short-wavelength FAF and its clinical utility in AMD, considering three aspects: diagnosis, follow-up, and prognosis. The OCT findings served as the reference standard for anatomical correlation and diagnostic accuracy. Results: Both FAF modalities correlated well with OCT in detecting RPE abnormalities. G-FAF demonstrated improved visibility of central lesions due to reduced masking by macular pigment and enhanced contrast in the macula. However, clinical preference remained skewed toward B-FAF, driven more by tradition and device default settings than by evidence-based superiority. G-FAF’s diagnostic potential remains underrecognized despite its comparable practicality and subtle imaging advantages specifically for AMD patients. AMD stages were accurately characterized, and relevant images were used to highlight the significance of G-FAF and B-FAF in the examination of AMD patients. Conclusions: While OCT remains the gold standard, FAF provides complementary information that can guide management strategy. Since G-FAF is functionally equivalent in acquisition, it offers slight advantages. Broader awareness and more frequent integration of G-FAF that could optimize multimodal imaging strategies, particularly in the intermediate stage, should be developed. Full article
(This article belongs to the Special Issue OCT and OCTA Assessment of Retinal and Choroidal Diseases)
Show Figures

Figure 1

13 pages, 4955 KB  
Article
Retinitis Pigmentosa Classification with Deep Learning and Integrated Gradients Analysis
by Hélder Ferreira, Ana Marta, Jorge Machado, Inês Couto, João Pedro Marques, João Melo Beirão and António Cunha
Appl. Sci. 2025, 15(4), 2181; https://doi.org/10.3390/app15042181 - 18 Feb 2025
Cited by 3 | Viewed by 3229
Abstract
Inherited retinal diseases (IRDs) are genetic disorders affecting photoreceptors and the retinal pigment epithelium, leading to progressive vision loss. Retinitis pigmentosa (RP), the most common IRD, manifests as night blindness, peripheral vision loss, and eventually central vision decline. RP is genetically diverse and [...] Read more.
Inherited retinal diseases (IRDs) are genetic disorders affecting photoreceptors and the retinal pigment epithelium, leading to progressive vision loss. Retinitis pigmentosa (RP), the most common IRD, manifests as night blindness, peripheral vision loss, and eventually central vision decline. RP is genetically diverse and can be categorized into non-syndromic and syndromic. Advanced imaging technologies such as fundus autofluorescence (FAF) and spectral-domain optical coherence tomography (SD-OCT) facilitate diagnosing and managing these conditions. The integration of artificial intelligence in analyzing retinal images has shown promise in identifying genes associated with RP. This study used a dataset from Portuguese public hospitals, comprising 2798 FAF images labeled for syndromic and non-syndromic RP across 66 genes. Three pre-trained models, Inception-v3, ResNet-50, and VGG-19, were used to classify these images, obtaining an accuracy of over 80% in the training data and 54%, 56%, and 54% in the test data for all models. Data preprocessing included class balancing and boosting to address variability in gene representation. Model performance was evaluated using some main metrics. The findings demonstrate the effectiveness of deep learning in automatically classifying retinal images for different RP-associated genes, marking a significant advancement in the diagnostic capabilities of artificial intelligence and advanced imaging techniques in IRD. Full article
(This article belongs to the Special Issue Advances and Applications of Medical Imaging Physics)
Show Figures

Figure 1

29 pages, 4176 KB  
Review
A Future Picture: A Review of Current Generative Adversarial Neural Networks in Vitreoretinal Pathologies and Their Future Potentials
by Raheem Remtulla, Adam Samet, Merve Kulbay, Arjin Akdag, Adam Hocini, Anton Volniansky, Shigufa Kahn Ali and Cynthia X. Qian
Biomedicines 2025, 13(2), 284; https://doi.org/10.3390/biomedicines13020284 - 24 Jan 2025
Cited by 4 | Viewed by 2210
Abstract
Machine learning has transformed ophthalmology, particularly in predictive and discriminatory models for vitreoretinal pathologies. However, generative modeling, especially generative adversarial networks (GANs), remains underexplored. GANs consist of two neural networks—the generator and discriminator—that work in opposition to synthesize highly realistic images. These synthetic [...] Read more.
Machine learning has transformed ophthalmology, particularly in predictive and discriminatory models for vitreoretinal pathologies. However, generative modeling, especially generative adversarial networks (GANs), remains underexplored. GANs consist of two neural networks—the generator and discriminator—that work in opposition to synthesize highly realistic images. These synthetic images can enhance diagnostic accuracy, expand the capabilities of imaging technologies, and predict treatment responses. GANs have already been applied to fundus imaging, optical coherence tomography (OCT), and fluorescein autofluorescence (FA). Despite their potential, GANs face challenges in reliability and accuracy. This review explores GAN architecture, their advantages over other deep learning models, and their clinical applications in retinal disease diagnosis and treatment monitoring. Furthermore, we discuss the limitations of current GAN models and propose novel applications combining GANs with OCT, OCT-angiography, fluorescein angiography, fundus imaging, electroretinograms, visual fields, and indocyanine green angiography. Full article
(This article belongs to the Special Issue Retinal Diseases: Imaging and Treatment)
Show Figures

Figure 1

23 pages, 7348 KB  
Review
Advancing Insights into Pediatric Macular Diseases: A Comprehensive Review
by Lucia Ambrosio, Tatiana Perepelkina, Abdelrahman M. Elhusseiny, Anne B. Fulton and Jose Efren Gonzalez Monroy
J. Clin. Med. 2025, 14(2), 614; https://doi.org/10.3390/jcm14020614 - 18 Jan 2025
Cited by 1 | Viewed by 2765
Abstract
Pediatric macular disorders are a diverse group of inherited retinal diseases characterized by central vision loss due to dysfunction and degeneration of the macula, the region of the retina responsible for high-acuity vision. Common disorders in this category include Stargardt disease, Best vitelliform [...] Read more.
Pediatric macular disorders are a diverse group of inherited retinal diseases characterized by central vision loss due to dysfunction and degeneration of the macula, the region of the retina responsible for high-acuity vision. Common disorders in this category include Stargardt disease, Best vitelliform macular dystrophy, and X-linked retinoschisis. These conditions often manifest during childhood or adolescence, with symptoms such as progressive central vision loss, photophobia, and difficulty with fine visual tasks. Underlying mechanisms involve genetic mutations that disrupt photoreceptor and retinal pigment epithelium function, accumulating toxic byproducts, impaired ion channel activity, or structural degeneration. Advances in imaging modalities like optical coherence tomography and fundus autofluorescence have improved diagnostic accuracy and disease monitoring. Emerging therapies are transforming the treatment landscape. Gene therapy and genome editing hold promise for addressing the genetic basis of these disorders, while stem cell-based approaches and pharmacological interventions aim to restore retinal function and mitigate damage. Personalized medicine, driven by genomic sequencing, offers the potential for tailored interventions. Despite current challenges, ongoing research into molecular mechanisms, advanced imaging, and innovative therapies provides hope for improving outcomes and quality of life in children with macular disorders. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

9 pages, 1786 KB  
Article
Near-Infrared On-Site Evaluation (NOSE) Examination of EBUS/EUSb Samples—A New Method for Sample Adequacy Evaluation
by Jiri Votruba, Ivan Čavarga, Tomas Bruha and Zuzana Sestakova
Diagnostics 2024, 14(17), 1887; https://doi.org/10.3390/diagnostics14171887 - 28 Aug 2024
Cited by 1 | Viewed by 1057
Abstract
Fine-needle aspiration biopsy is crucial for modern diagnostics of endoscopic procedures and thus an efficient and reliable method for increasing biopsy yields is urgently needed. In our study, we address the limited availability and high price of the rapid onsite evaluation (ROSE) technique [...] Read more.
Fine-needle aspiration biopsy is crucial for modern diagnostics of endoscopic procedures and thus an efficient and reliable method for increasing biopsy yields is urgently needed. In our study, we address the limited availability and high price of the rapid onsite evaluation (ROSE) technique by introducing the technique of near-infrared on-site evaluation (NOSE) consisting of spectral measurement of near-infrared radiation (NIR) transmitted through the evaluated material. For this purpose, we designed a special optical probe consisting of two fibres, of which one is a source fibre and the second is a detector fibre. The distal ends of both fibres are brought together into one bundle which is, with the help of a special extension, applied to a cuvette with an analysed sample at a defined distance from the cuvette bottom and fixed in place. A portion of the NIR radiation received by the detector fibre after it propagates through the sample then depends on the optical and therefore morphological characteristics of the sample. Based on the measured spectral curve, we can calculate the attenuation coefficient curve and subsequently the parameter of the sample richness and the parameter characterising the autofluorescence peak as well. We found that the value of our introduced parameters is in significant relation to sample richness as well as to sample malignity. NOSE evaluation of EBUS/EUSb (endobronchial/oesophageal ultrasound bronchoscopy) specimens can be considered an easy new technique aiming to improve sampling diagnostic accuracy and to diminish costs related to the presence of a cytopathologist and related instrumentation in the endoscopy suite. Full article
(This article belongs to the Special Issue Advances in Endoscopy)
Show Figures

Figure 1

19 pages, 2083 KB  
Systematic Review
Intraoperative Techniques That Define the Mucosal Margins of Oral Cancer In-Vivo: A Systematic Review
by Klijs J. de Koning, Carleen M. E. M. Adriaansens, Rob Noorlag, Remco de Bree and Robert J. J. van Es
Cancers 2024, 16(6), 1148; https://doi.org/10.3390/cancers16061148 - 14 Mar 2024
Cited by 6 | Viewed by 3148
Abstract
Background: This systematic review investigates techniques for determining adequate mucosal margins during the resection of oral squamous cell carcinoma (SCC). The primary treatment involves surgical removal with ≥5 mm margins, highlighting the importance of accurate differentiation between SCC and dysplasia during surgery. Methods: [...] Read more.
Background: This systematic review investigates techniques for determining adequate mucosal margins during the resection of oral squamous cell carcinoma (SCC). The primary treatment involves surgical removal with ≥5 mm margins, highlighting the importance of accurate differentiation between SCC and dysplasia during surgery. Methods: A comprehensive Embase and PubMed literature search was performed. Studies underwent quality assessment using QUADAS-2. Results: After the full-text screening and exclusion of studies exhibiting high bias, eight studies were included, focusing on three margin visualization techniques: autofluorescence, iodine staining, and narrow-band imaging (NBI). Negative predictive value (NPV) was calculable across the studies, though reference standards varied. Results indicated NPVs for autofluorescence, iodine, and NBI ranging from 61% to 100%, 92% to 99%, and 86% to 100%, respectively. Autofluorescence did not significantly enhance margins compared to white light-guided surgery, while iodine staining demonstrated improvement for mild or moderate dysplasia. NBI lacked comparison with a white light-guided surgery cohort. Conclusions: We recommend studying and comparing the diagnostic accuracy of iodine staining and NBI in larger cohorts of patients with oral SCC, focusing on discriminating between SCC and (severe) dysplasia. Furthermore, we advise reporting the diagnostic accuracy alongside the treatment effects to improve the assessment of these techniques. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies)
Show Figures

Figure 1

11 pages, 1201 KB  
Article
Retromode Scanning Laser Ophthalmoscopy for Choroidal Nevi: A Preliminary Study
by Claudia Azzolini, Maura Di Nicola, Francesco Pozzo Giuffrida, Francesca Cappelli, Claudia Bellina, Francesco Viola and Paolo Chelazzi
Life 2023, 13(6), 1253; https://doi.org/10.3390/life13061253 - 25 May 2023
Cited by 6 | Viewed by 2326
Abstract
The purpose of the present study was to document pathological findings on retromode imaging in choroidal nevi and evaluate its diagnostic validity, using the confocal scanning laser ophthalmoscope Nidek Mirante (cSLO). A total of 41 choroidal nevi from 41 patients were included. All [...] Read more.
The purpose of the present study was to document pathological findings on retromode imaging in choroidal nevi and evaluate its diagnostic validity, using the confocal scanning laser ophthalmoscope Nidek Mirante (cSLO). A total of 41 choroidal nevi from 41 patients were included. All patients underwent multicolor fundus (mCF), infrared reflectance (IR), green fundus autofluorescence (FAF), dark-field (DF) and retromode (RM) imaging and optical coherence tomography (OCT) scans. We investigated retromode images to evaluate choroidal nevus features by comparing the results with those of mCF, IR, FAF, DF and OCT. In 100% of available images, retromode scanning laser ophthalmoscopy was able to detect choroidal nevi with a characteristic “hypo-retro-reflective” pattern, even the cases not visible on mCF, IR and FAF images. It also made it possible to delineate the margins of lesions with the highest rate of sharpness and accuracy among the imaging modalities examined. These findings seem to demonstrate how RM-SLO is an innovative diagnostic tool to detect and follow up choroidal nevi in a fast, reliable and non-invasive way. Full article
(This article belongs to the Special Issue Novel Diagnosis and Therapeutics Approaches in Retina Diseases)
Show Figures

Figure 1

11 pages, 2282 KB  
Review
Efficacy of Artificial Intelligence-Assisted Discrimination of Oral Cancerous Lesions from Normal Mucosa Based on the Oral Mucosal Image: A Systematic Review and Meta-Analysis
by Ji-Sun Kim, Byung Guk Kim and Se Hwan Hwang
Cancers 2022, 14(14), 3499; https://doi.org/10.3390/cancers14143499 - 19 Jul 2022
Cited by 28 | Viewed by 4579
Abstract
The accuracy of artificial intelligence (AI)-assisted discrimination of oral cancerous lesions from normal mucosa based on mucosal images was evaluated. Two authors independently reviewed the database until June 2022. Oral mucosal disorder, as recorded by photographic images, autofluorescence, and optical coherence tomography (OCT), [...] Read more.
The accuracy of artificial intelligence (AI)-assisted discrimination of oral cancerous lesions from normal mucosa based on mucosal images was evaluated. Two authors independently reviewed the database until June 2022. Oral mucosal disorder, as recorded by photographic images, autofluorescence, and optical coherence tomography (OCT), was compared with the reference results by histology findings. True-positive, true-negative, false-positive, and false-negative data were extracted. Seven studies were included for discriminating oral cancerous lesions from normal mucosa. The diagnostic odds ratio (DOR) of AI-assisted screening was 121.66 (95% confidence interval [CI], 29.60; 500.05). Twelve studies were included for discriminating all oral precancerous lesions from normal mucosa. The DOR of screening was 63.02 (95% CI, 40.32; 98.49). Subgroup analysis showed that OCT was more diagnostically accurate (324.33 vs. 66.81 and 27.63) and more negatively predictive (0.94 vs. 0.93 and 0.84) than photographic images and autofluorescence on the screening for all oral precancerous lesions from normal mucosa. Automated detection of oral cancerous lesions by AI would be a rapid, non-invasive diagnostic tool that could provide immediate results on the diagnostic work-up of oral cancer. This method has the potential to be used as a clinical tool for the early diagnosis of pathological lesions. Full article
(This article belongs to the Topic Artificial Intelligence in Cancer Diagnosis and Therapy)
Show Figures

Figure 1

13 pages, 1346 KB  
Article
Clinical Evaluation of the Optical Filter for Autofluorescence Glasses for Oral Cancer Curing Light Exposed (GOCCLES®) in the Management of Potentially Premalignant Disorders: A Retrospective Study
by Carlo Lajolo, Mariateresa Tranfa, Romeo Patini, Antonino Fiorino, Teresa Musarra, Roberto Boniello and Alessandro Moro
Int. J. Environ. Res. Public Health 2022, 19(9), 5579; https://doi.org/10.3390/ijerph19095579 - 4 May 2022
Cited by 14 | Viewed by 2807
Abstract
Background: Any oral potentially malignant disorders (OPMDs) must be regularly monitored through clinical examination to detect any possible malignant transformation. Conventional intraoral exams, however, can be difficult because these conditions may resemble benign lesions. For this reason, several non-invasive diagnostic technologies have been [...] Read more.
Background: Any oral potentially malignant disorders (OPMDs) must be regularly monitored through clinical examination to detect any possible malignant transformation. Conventional intraoral exams, however, can be difficult because these conditions may resemble benign lesions. For this reason, several non-invasive diagnostic technologies have been developed to help the clinician in detecting and distinguishing between cancerous and benign lesions. Epithelial dysplasia can be considered the most important predictor of malignant evolution. Therefore, in this study we aim to evaluate the ability of an optical filter for autofluorescence Glasses for Oral Cancer Curing Light Exposed (GOCCLES®) and of toluidine blue staining in identifying dysplastic areas in patients with OPMDs. Methods: In this retrospective study, medical records, photographs and videos of 25 patients with oral lesions were analyzed. Forty-two biopsy samples in 25 patients with OPMDs and at least one suspicious oral mucosa lesion that were evaluated in white light, autofluorescence with optical filter GOCCLES®, toluidine blue staining and then biopsied with histopathological analysis were analyzed. Results: The sensitivity and specificity for the autofluorescence evaluation with GOCCLES® for identifying dysplasia or carcinoma were 66% and 48%, respectively. The positive and negative predictive values were 34% and 77%, respectively, and the accuracy was 53%. The sensitivity and specificity for toluidine blue staining were 91% and 68%, respectively. The positive and negative predictive values were 55% and 95%, respectively, and the accuracy was 75%. Conclusions: The optical filter for autofluorescence (GOCCLES®) and toluidine blue staining are simple, inexpensive, rapid and non-invasive procedures that can assist the clinician in distinguishing OPMDs from healthy mucosa but they are not able to distinguish benign and malignant lesions. Full article
(This article belongs to the Special Issue New Advances in Dentistry)
Show Figures

Figure 1

16 pages, 2986 KB  
Article
Pterygium and Ocular Surface Squamous Neoplasia: Optical Biopsy Using a Novel Autofluorescence Multispectral Imaging Technique
by Abbas Habibalahi, Alexandra Allende, Jesse Michael, Ayad G. Anwer, Jared Campbell, Saabah B. Mahbub, Chandra Bala, Minas T. Coroneo and Ewa M. Goldys
Cancers 2022, 14(6), 1591; https://doi.org/10.3390/cancers14061591 - 21 Mar 2022
Cited by 13 | Viewed by 8870
Abstract
In this study, differentiation of pterygium vs. ocular surface squamous neoplasia based on multispectral autofluorescence imaging technique was investigated. Fifty (N = 50) patients with histopathological diagnosis of pterygium (PTG) and/or ocular surface squamous neoplasia (OSSN) were recruited. Fixed unstained biopsy specimens were [...] Read more.
In this study, differentiation of pterygium vs. ocular surface squamous neoplasia based on multispectral autofluorescence imaging technique was investigated. Fifty (N = 50) patients with histopathological diagnosis of pterygium (PTG) and/or ocular surface squamous neoplasia (OSSN) were recruited. Fixed unstained biopsy specimens were imaged by multispectral microscopy. Tissue autofluorescence images were obtained with a custom-built fluorescent microscope with 59 spectral channels, each with specific excitation and emission wavelength ranges, suitable for the most abundant tissue fluorophores such as elastin, flavins, porphyrin, and lipofuscin. Images were analyzed using a new classification framework called fused-classification, designed to minimize interpatient variability, as an established support vector machine learning method. Normal, PTG, and OSSN regions were automatically detected and delineated, with accuracy evaluated against expert assessment by a specialist in OSSN pathology. Signals from spectral channels yielding signals from elastin, flavins, porphyrin, and lipofuscin were significantly different between regions classified as normal, PTG, and OSSN (p < 0.01). Differential diagnosis of PTG/OSSN and normal tissue had accuracy, sensitivity, and specificity of 88 ± 6%, 84 ± 10% and 91 ± 6%, respectively. Our automated diagnostic method generated maps of the reasonably well circumscribed normal/PTG and OSSN interface. PTG and OSSN margins identified by our automated analysis were in close agreement with the margins found in the H&E sections. Such a map can be rapidly generated on a real time basis and potentially used for intraoperative assessment. Full article
(This article belongs to the Topic Biomedical Photonics)
Show Figures

Figure 1

14 pages, 2138 KB  
Article
Correlation between Autofluorescence Intensity and Histopathological Features in Non-Melanoma Skin Cancer: An Ex Vivo Study
by Ilaria Giovannacci, Marco Meleti, Federico Garbarino, Anna Maria Cesinaro, Ema Mataca, Giuseppe Pedrazzi, Camilla Reggiani, Alessia Paganelli, Arianna Truzzi, Federica Elia, Luca Giacomelli and Cristina Magnoni
Cancers 2021, 13(16), 3974; https://doi.org/10.3390/cancers13163974 - 6 Aug 2021
Cited by 10 | Viewed by 2922
Abstract
Non-melanoma skin cancer (NMSC) is the most common malignant tumor affecting fair-skinned people. Increasing incidence rates of NMSC have been reported worldwide, which is an important challenge in terms of public health management. Surgical excision with pre-operatively identified margins is one of the [...] Read more.
Non-melanoma skin cancer (NMSC) is the most common malignant tumor affecting fair-skinned people. Increasing incidence rates of NMSC have been reported worldwide, which is an important challenge in terms of public health management. Surgical excision with pre-operatively identified margins is one of the most common and effective treatment strategies. Incomplete tumor removal is associated with a very high risk of recurrence and re-excision. Biological tissues can absorb and re-emit specific light wave-lengths, detectable through spectrophotometric devices. Such a phenomenon is known as autofluorescence (AF). AF spectroscopy has been widely explored for non-invasive, early detection of NMSC as well as for evaluation of surgical margins before excision. Fluorescence-aided diagnosis is based on differences in spectral characteristics between healthy and neoplastic skin. Understanding the biological basis of such differences and correlating AF intensity to histological features could improve the diagnostic accuracy of skin fluorescence spectroscopy. The primary objective of the present pre-clinical ex vivo study is to investigate the correlation between the intensity of cutaneous AF and the histopathological features of NMSC. Ninety-eight lesions suggestive for NMSCs were radically excised from 75 patients (46 M; 29 F; mean age: 79 years). After removal, 115 specific reference points on lesions (“cases”; 59 on BBC, 53 on SCC and 3 on other lesions) and on peri-lesional healthy skin (controls; 115 healthy skin) were identified and marked through suture stitches. Such reference points were irradiated at 400–430 nm wavelength, and resulting emission AF spectra were acquired through spectrophotometry. For each case, AFIR (autofluorescence intensity ratio) was measured as the ratio between the number of photons emitted at a wavelength ranging between 450 and 700 nm (peak: 500 nm) in the healthy skin and that was captured in the pathological tissue. At the histological level, hyperkeratosis, neoangiogenesis, cellular atypia, epithelial thickening, fibrosis and elastosis were quantified by light microscopy and were assessed through a previously validated grading system. Statistical correlation between histologic variables and AFIR was calculated through linear regression. Spectrometric evaluation was performed on 230 (115 cases + 115 controls) reference points. The mean AFIR for BCC group was 4.5, while the mean AFIR for SCC group was 4.4 and the fluorescence peaks at 500 nm were approximately 4 times lower (hypo-fluorescent) in BCCs and in SCCs than in healthy skin. Histological variables significantly associated with alteration of AFIR were fibrosis and elastosis (p < 0.05), neoangiogenesis, hyperkeratosis and epithelial thickening. Cellular atypia was not significantly associated with alteration of AFIR. The intensity of fluorescence emission in neoplastic tissues was approximately 4 times lower than that in healthy tissues. Histopathological features such as hyperkeratosis, neoangiogenesis, fibrosis and elastosis are statistically associated with the decrease in AFIR. We hypothesize that such tissue alterations are among the possible biophysical and biochemical bases of difference in emission AF between neoplastic and healthy tissue. The results of the present evaluation highlighted the possible usefulness of autofluorescence as diagnostic, non-invasive and real-time tool for NMSCs. Full article
Show Figures

Graphical abstract

18 pages, 4978 KB  
Article
Spatially-Resolved Multiply-Excited Autofluorescence and Diffuse Reflectance Spectroscopy: SpectroLive Medical Device for Skin In Vivo Optical Biopsy
by Walter Blondel, Alain Delconte, Grégoire Khairallah, Frédéric Marchal, Amélie Gavoille and Marine Amouroux
Electronics 2021, 10(3), 243; https://doi.org/10.3390/electronics10030243 - 21 Jan 2021
Cited by 21 | Viewed by 3563
Abstract
This contribution presents the development of an optical spectroscopy device, called SpectroLive, that allows spatially-resolved multiply-excited autofluorescence and diffuse reflectance measurements. Besides describing the device, this study aims at presenting the metrological and safety regulation validations performed towards its aimed application to skin [...] Read more.
This contribution presents the development of an optical spectroscopy device, called SpectroLive, that allows spatially-resolved multiply-excited autofluorescence and diffuse reflectance measurements. Besides describing the device, this study aims at presenting the metrological and safety regulation validations performed towards its aimed application to skin carcinoma in vivo diagnosis. This device is made of six light sources and four spectrometers for detection of the back-scattered intensity spectra collected through an optical probe (made of several optical fibers) featuring four source-to-detector separations (from 400 to 1000 µm). In order to be allowed by the French authorities to be evaluated in clinics, the SpectroLive device was successfully checked for electromagnetic compatibility and electrical and photobiological safety. In order to process spectra, spectral correction and metrological calibration were implemented in the post-processing software. Finally, we characterized the device’s sensitivity to autofluorescence detection: excitation light irradiance at the optical probe tip in contact with skin surface ranges from 2 to 11 W/m², depending on the light source. Such irradiances combined to sensitive detectors allow the device to acquire a full spectroscopic sequence within 6 s which is a short enough duration to be compatible with optical-guided surgery. All these results about sensitivity and safety make the SpectroLive device mature enough to be evaluated through a clinical trial that aims at evaluating its diagnostic accuracy for skin carcinoma diagnosis. Full article
(This article belongs to the Special Issue Advanced Laser Technologies for Biophotonics)
Show Figures

Figure 1

15 pages, 1340 KB  
Review
Non-Invasive Diagnostic System Based on Light for Detecting Early-Stage Oral Cancer and High-Risk Precancerous Lesions—Potential for Dentistry
by Seiko Tatehara and Kazuhito Satomura
Cancers 2020, 12(11), 3185; https://doi.org/10.3390/cancers12113185 - 29 Oct 2020
Cited by 19 | Viewed by 5678
Abstract
Oral health promotion and examinations have contributed to the early detection of oral cancer and oral potentially malignant disorders, leading to the adaptation of minimally invasive therapies and subsequent improvements in the prognosis/maintenance of the quality of life after treatments. However, the accurate [...] Read more.
Oral health promotion and examinations have contributed to the early detection of oral cancer and oral potentially malignant disorders, leading to the adaptation of minimally invasive therapies and subsequent improvements in the prognosis/maintenance of the quality of life after treatments. However, the accurate detection of early-stage oral cancer and oral epithelial dysplasia is particularly difficult for conventional oral examinations because these lesions sometimes resemble benign lesions or healthy oral mucosa tissues. Although oral biopsy has been considered the gold standard for accurate diagnosis, it is deemed invasive for patients. For this reason, most clinicians are looking forward to the development of non-invasive diagnostic technologies to detect and distinguish between cancerous and benign lesions. To date, several non-invasive adjunctive fluorescence-based detection systems have improved the accuracy of the detection and diagnosis of oral mucosal lesions. Autofluorescence-based systems can detect lesions as a loss of autofluorescence through irradiation with blue-violet lights. Photodynamic diagnosis using 5-aminolevulinic acid (ALA-PDD) shows the presence of very early oral cancers and oral epithelial dysplasia as a red fluorescent area. In this article, currently used fluorescence-based diagnostic methods are introduced and discussed from a clinical point of view. Full article
(This article belongs to the Special Issue Non-Invasive Early Detection of Cancers)
Show Figures

Figure 1

Back to TopTop