Blue Light and Green Light Fundus Autofluorescence, Complementary to Optical Coherence Tomography, in Age-Related Macular Degeneration Evaluation
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Age-Related Macular Degeneration Diagnosis
3.2. Fundus Autofluorescence
3.2.1. Fundus Autofluorescence in Normal Eyes
3.2.2. Causes of Abnormal Fundus Autofluorescence
- Increased lipofuscin inside the RPE;
- Subretinal autofluorescent deposits: vitelliform dystrophy [44];
3.3. Fundus Autofluorescence in Age-Related Macular Degeneration
3.3.1. Early and Intermediate Age-Related Macular Degeneration
3.3.2. Age-Related Macular Degeneration Prediction of Progression to the Late Stages
3.3.3. Late Age-Related Macular Degeneration
Geographic Atrophy
Neovascular Age-Related Macular Degeneration
3.4. Blue Fundus Autofluorescence Versus Green Fundus Autofluorescence in Age-Related Macular Degeneration Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitchell, P.; Liew, G.; Gopinath, B.; Wong, T.Y. Age-related macular degeneration. Lancet 2018, 392, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, J.D.; Bourne, R.R.A.; Briant, P.S.; Flaxman, S.R.; Taylor, H.R.B.; Jonas, J.B.; Abdoli, A.A.; Abrha, W.A.; Abualhasan, A.; Abu-Gharbieh, E.G.; et al. Causes of Blindness and Vision Impairment in 2020 and Trends over 30 years, and Prevalence of Avoidable Blindness in Relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.-Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [PubMed]
- Vemulakonda, G.A.; Bailey, S.T.; Kim, S.J.; Kovach, J.L.; Lim, J.I.; Ying, G.; Flaxel, C.J. Age-Related Macular Degeneration Preferred Practice Pattern®. Ophthalmology 2025, 132, P1–P74. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Erfurth, U.; Chong, V.; Loewenstein, A.; Larsen, M.; Souied, E.; Schlingemann, R.; Eldem, B.; Monés, J.; Richard, G.; Bandello, F. Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br. J. Ophthalmol. 2014, 98, 1144–1167. [Google Scholar] [CrossRef]
- Vujosevic, S. EURETINA IME Platform on Dry AMD & GA: Implementing Modern Diagnosis and Management Approaches in Today’s Practice. In Proceedings of the 24th EURETINA Congress, Barcelona, Spain, 20 September 2024; Available online: https://eplatform.euretina.org/dry-amd-ga-ime-platform-implementing-modern-diagnosis-and-management-approaches-in-todays-practice/ (accessed on 16 June 2025).
- Mainster, M.A.; Desmettre, T.; Querques, G.; Turner, P.L.; Ledesma-Gil, G. Scanning laser ophthalmoscopy retroillumination: Applications and illusions. Int. J. Retin. Vitr. 2022, 8, 71. [Google Scholar] [CrossRef]
- Ranetti, A.-E.; Stanca, H.T.; Tăbăcaru, B.; Teodoru, A.; Munteanu, M.; Stanca, S. Retromode Imaging in Age-Related Macular Degeneration. Medicina 2023, 59, 647. [Google Scholar] [CrossRef]
- Woon, W.H.; Fitzke, F.W.; Bird, A.C.; Marshall, J. Confocal imaging of the fundus using a scanning laser ophthalmoscope. Br. J. Ophthalmol. 1992, 76, 470–474. [Google Scholar] [CrossRef]
- Fleckenstein, M.; Schmitz-Valckenberg, S.; Chakravarthy, U. Age-Related Macular Degeneration: A Review. JAMA 2024, 331, 147–157. [Google Scholar] [CrossRef]
- Bearelly, S.; Cousins, S.W. Fundus autofluorescence imaging in age-related macular degeneration and geographic atrophy. Adv. Exp. Med. Biol. 2010, 664, 395–402. [Google Scholar] [CrossRef]
- Tan, A.C.S.; Fleckenstein, M.; Schmitz-Valckenberg, S.; Holz, F.G. Clinical Application of Multicolor Imaging Technology. Ophthalmologica 2016, 236, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Yung, M.; Klufas, M.A.; Sarraf, D. Clinical applications of fundus autofluorescence in retinal disease. Int. J. Retin. Vitr. 2016, 2, 12. [Google Scholar] [CrossRef]
- Hanson, R.L.W.; Airody, A.; Sivaprasad, S.; Gale, R.P. Optical coherence tomography imaging biomarkers associated with neovascular age-related macular degeneration: A systematic review. Eye 2022, 37, 2438–2453. [Google Scholar] [CrossRef] [PubMed]
- Keane, P.A.; Patel, P.J.; Liakopoulos, S.; Heussen, F.M.; Sadda, S.R.; Tufail, A. Evaluation of Age-related Macular Degeneration With Optical Coherence Tomography. Surv. Ophthalmol. 2012, 57, 389–414. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Erfurth, U.; Waldstein, S.M. A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Prog. Retin. Eye Res. 2016, 50, 1–24. [Google Scholar] [CrossRef]
- von Ruckmann, A.; Fitzke, F.W.; Bird, A.C. Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br. J. Ophthalmol. 1995, 79, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Delori, F.C.; Dorey, C.K.; Staurenghi, G.; Arend, O.; Goger, D.G.; Weiter, J.J. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Investig. Ophthalmol. Vis. Sci. 1995, 36, 718–729. [Google Scholar]
- Holz, F.G.; Bindewald-Wittich, A.; Fleckenstein, M.; Dreyhaupt, J.; Scholl, H.P.N.; Schmitz-Valckenberg, S. Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am. J. Ophthalmol. 2007, 143, 463–472. [Google Scholar] [CrossRef]
- Holz, F.G.; Bellman, C.; Staudt, S.; Schütt, F.; Völcker, H.E. Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1051–1056. [Google Scholar] [CrossRef]
- Holz, F.G.; Sadda, S.R.; Staurenghi, G.; Lindner, M.; Bird, A.C.; Blodi, B.A.; Bottoni, F.; Chakravarthy, U.; Chew, E.Y.; Csaky, K.; et al. Imaging Protocols in Clinical Studies in Advanced Age-Related Macular Degeneration. Ophthalmology 2017, 124, 464–478. [Google Scholar] [CrossRef]
- Gualino, V.; Tadayoni, R.; Cohen, S.Y.; Erginay, A.; Fajnkuchen, F.; Haouchine, B.; Krivosic, V.; Quentel, G.; Vicaut, E.; Gaudric, A. Optical coherence tomography, fluorescein angiography, and diagnosis of choroidal neovascularization in age-related macular degeneration. Retina 2019, 39, 1664–1671. [Google Scholar] [CrossRef]
- De Carlo, T.E.; Bonini Filho, M.A.; Chin, A.T.; Adhi, M.; Ferrara, D.; Baumal, C.R.; Witkin, A.J.; Reichel, E.; Duker, J.S.; Waheed, N.K. Spectral-Domain Optical Coherence Tomography Angiography of Choroidal Neovascularization. Ophthalmology 2015, 122, 1228–1238. [Google Scholar] [CrossRef]
- Guymer, R.; Wu, Z. Age-related macular degeneration AMD: More than meets the eye. The role of multimodal imaging in today’s management of—A review. Clin. Experiment. Ophthalmol. 2020, 48, 983–995. [Google Scholar] [CrossRef]
- Garrity, S.T.; Sarraf, D.; Freund, K.B.; Sadda, S.R. Multimodal Imaging of Nonneovascular Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2018, 59, AMD48–AMD64. [Google Scholar] [CrossRef] [PubMed]
- Croce, A.C.; Bottiroli, G. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. Eur. J. Histochem. 2014, 58, 2461. [Google Scholar] [CrossRef] [PubMed]
- Holz, F.G.; Schmitz-Valckenberg, S.; Spaide, R.F.; Bird, A.C. (Eds.) Atlas of Fundus Autofluorescence Imaging; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-71993-9. [Google Scholar]
- Schmitz-Valckenberg, S.; Holz, F.G.; Bird, A.C.; Spaide, R.F. Fundus autofluorescence imaging: Review and Perspectives. Retina 2008, 28, 385–409. [Google Scholar] [CrossRef]
- Ranetti, A.-E.; Simplified Retinoid Cycle. Created in BioRender. 2025. Available online: https://app.biorender.com/citation/670c475b7910ec2bcc7252a1 (accessed on 5 February 2025).
- Feeney-Burns, L.; Hilderbrand, E.S.; Eldridge, S. Aging human RPE: Morphometric analysis of macular, equatorial, and peripheral cells. Investig. Ophthalmol. Vis. Sci. 1984, 25, 195–200. [Google Scholar]
- Ranetti, A.-E.; Granules of Melanin, Lipofuscin and Melanolipofuscin Inside the RPE Cells. Created in BioRender. 2025. Available online: https://app.biorender.com/citation/670ac14f700813e332e6eb7d (accessed on 5 February 2025).
- Weiter, J.J.; Delori, F.C.; Wing, G.L.; Fitch, K.A. Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Investig. Ophthalmol. Vis. Sci. 1986, 27, 145–152. [Google Scholar]
- Wing, G.L.; Blanchard, G.C.; Weiter, J.J. The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci. 1978, 17, 601–607. [Google Scholar]
- Schütt, F.; Davies, S.; Kopitz, J.; Holz, F.G.; Boulton, M.E. Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Investig. Ophthalmol. Vis. Sci. 2000, 41, 2303–2308. [Google Scholar]
- Delori, F.C.; Goger, D.G.; Dorey, C.K. Age-Related Accumulation and Spatial Distribution of Lipofuscin in RPE of Normal Subjects. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1855–1866. [Google Scholar] [PubMed]
- Pole, C.; Ameri, H. Fundus Autofluorescence and Clinical Applications. J. Ophthalmic Vis. Res. 2021, 16, 432–461. [Google Scholar] [CrossRef]
- Schmitz-Valckenberg, S.; Fleckenstein, M.; Scholl, H.P.N.; Holz, F.G. Fundus autofluorescence and progression of age-related macular degeneration. Surv. Ophthalmol. 2009, 54, 96–117. [Google Scholar] [CrossRef] [PubMed]
- Krebs, I. Noemi Lois and John, V. Forrester: Fundus Autofluorescence: Hardcover 285pp with online access, ISBN 978-1-5825-57 99-1 Walters Kluwer Lippincott Williams & Wilkins. Graefe’s Arch. Clin. Exp. Ophthalmol. 2011, 249, 309. [Google Scholar] [CrossRef]
- Bearelly, S.; Khanifar, A.A.; Lederer, D.E.; Lee, J.J.; Ghodasra, J.H.; Stinnett, S.S.; Cousins, S.W. Use of fundus autofluorescence images to predict geographic atrophy progression. Retina. 2011, 31, 81–86. [Google Scholar] [CrossRef]
- Hwang, J.C.; Chan, J.W.K.; Chang, S.; Smith, R.T. Predictive value of fundus autofluorescence for development of geographic atrophy in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2006, 47, 2655–2661. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Hong, I.H.; Chung, J.K.; Kim, K.L.; Kim, H.K.; Park, S.P. Predictors for the progression of geographic atrophy in patients with age-related macular degeneration: Fundus autofluorescence study with modified fundus camera. Eye 2014, 28, 209–218. [Google Scholar] [CrossRef]
- Kuehlewein, L.; Dustin, L.; Sagong, M.; Hariri, A.; Mendes, T.S.; Rofagha, S.; Bhisitkul, R.B.; Sadda, S.R. Predictors of Macular Atrophy Detected by Fundus Autofluorescence in Patients with Neovascular Age-Related Macular Degeneration After Long-Term Ranibizumab Treatment. Ophthalmic Surg. Lasers Imaging Retin. 2016, 47, 224–231. [Google Scholar] [CrossRef]
- Han, J.; Cho, N.S.; Kim, K.; Kim, E.S.; Kim, D.G.; Kim, J.M.; Yu, S.-Y. Fundus autofluorescence patterns in central serous chorioretinopathy. Retina 2020, 40, 1387–1394. [Google Scholar] [CrossRef]
- Parodi, M.B.; Iacono, P.; Campa, C.; Del Turco, C.; Bandello, F. Fundus Autofluorescence Patterns in Best Vitelliform Macular Dystrophy. Am. J. Ophthalmol. 2014, 158, 1086–1092. [Google Scholar] [CrossRef]
- Boon, C.J.F.; Jeroen Klevering, B.; Keunen, J.E.E.; Hoyng, C.B.; Theelen, T. Fundus autofluorescence imaging of retinal dystrophies. Vis. Res. 2008, 48, 2569–2577. [Google Scholar] [CrossRef] [PubMed]
- Daich Varela, M.; Laich, Y.; Hashem, S.A.; Mahroo, O.A.; Webster, A.R.; Michaelides, M. Prognostication in Stargardt Disease Using Fundus Autofluorescence: Improving Patient Care. Ophthalmology 2023, 130, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, J.R.; Marsiglia, M.; Allikmets, R.; Tsang, S.; Lee, W.; Duncker, T.; Zernant, J. Flecks in Recessive Stargardt Disease: Short-Wavelength Autofluorescence, Near-Infrared Autofluorescence, and Optical Coherence Tomography. Investig. Ophthalmol. Vis. Sci. 2015, 56, 5029–5039. [Google Scholar] [CrossRef]
- Oishi, A.; Oishi, M.; Ogino, K.; Morooka, S.; Yoshimura, N. Wide-Field Fundus Autofluorescence for Retinitis Pigmentosa and Cone/Cone-Rod Dystrophy. In Retinal Degenerative Diseases; Bowes Rickman, C., LaVail, M.M., Anderson, R.E., Grimm, C., Hollyfield, J., Ash, J., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2016; Volume 854, pp. 307–313. ISBN 978-3-319-17120-3. [Google Scholar]
- Hariri, A.H.; Gui, W.; Datoo O’Keefe, G.A.; Ip, M.S.; Sadda, S.R.; Gorin, M.B. Ultra-Widefield Fundus Autofluorescence Imaging of Patients with Retinitis Pigmentosa. Ophthalmol. Retin. 2018, 2, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Robson, A.G. Functional characterisation and serial imaging of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Br. J. Ophthalmol. 2006, 90, 472–479. [Google Scholar] [CrossRef]
- Pauleikhoff, L.; Heeren, T.F.C.; Gliem, M.; Lim, E.; Pauleikhoff, D.; Holz, F.G.; Clemons, T.; Balaskas, K.; Egan, C.A.; Charbel Issa, P. Fundus Autofluorescence Imaging in Macular Telangiectasia Type 2: MacTel Study Report Number 9. Am. J. Ophthalmol. 2021, 228, 27–34. [Google Scholar] [CrossRef]
- Yeh, S. Fundus Autofluorescence Imaging of the White Dot Syndromes. Arch. Ophthalmol. 2010, 128, 46. [Google Scholar] [CrossRef]
- Preising, M.N.; Wegscheider, E.; Friedburg, C.; Poloschek, C.M.; Wabbels, B.K.; Lorenz, B. Fundus Autofluorescence in Carriers of Choroideremia and Correlation with Electrophysiologic and Psychophysical Data. Ophthalmology 2009, 116, 1201–1209.e2. [Google Scholar] [CrossRef]
- Lavinsky, D.; Belfort, R.N.; Navajas, E.; Torres, V.; Martins, M.C.; Belfort, R. Fundus autofluorescence of choroidal nevus and melanoma. Br. J. Ophthalmol. 2007, 91, 1299–1302. [Google Scholar] [CrossRef]
- Kellner, U.; Renner, A.B.; Tillack, H. Fundus Autofluorescence and mfERG for Early Detection of Retinal Alterations in Patients Using Chloroquine/Hydroxychloroquine. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3531–3538. [Google Scholar] [CrossRef]
- Ranetti, A.-E. Spectral Characteristics of B-FAF, G-FAF, and Retinal Fluorophores. 2025. Available online: https://app.biorender.com/citation/68534b3d4e468be068dae88a (accessed on 23 June 2025).
- Wolf-Schnurrbusch, U.E.K.; Wittwer, V.V.; Ghanem, R.; Niederhaeuser, M.; Enzmann, V.; Framme, C.; Wolf, S. Blue-Light versus Green-Light Autofluorescence: Lesion Size of Areas of Geographic Atrophy. Investig. Ophthalmol. Vis. Sci. 2011, 52, 9497–9502. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Valckenberg, S.; Pfau, M.; Fleckenstein, M.; Staurenghi, G.; Sparrow, J.R.; Bindewald-Wittich, A.; Spaide, R.F.; Wolf, S.; Sadda, S.R.; Holz, F.G. Fundus autofluorescence imaging. Prog. Retin. Eye Res. 2021, 81, 100893. [Google Scholar] [CrossRef]
- Joseph, A.; Rahimy, E.; Freund, K.B.; Sorenson, J.A.; Sarraf, D. Fundus Autofluorescence and Photoreceptor Bleaching in Multiple Evanescent White Dot Syndrome. Ophthalmic Surg. Lasers Imaging Retin. 2013, 44, 588–592. [Google Scholar] [CrossRef]
- Sato, T.; Mrejen, S.; Spaide, R.F. Multimodal Imaging of Optic Disc Drusen. Am. J. Ophthalmol. 2013, 156, 275–282.e1. [Google Scholar] [CrossRef]
- Mennel, S.; Meyer, C.H.; Eggarter, F.; Peter, S. Autofluorescence and Angiographic Findings of Retinal Astrocytic Hamartomas in Tuberous Sclerosis. Ophthalmologica 2005, 219, 350–356. [Google Scholar] [CrossRef]
- Shields, C.L.; Pirondini, C.; Bianciotto, C.; Harmon, S.A.; Shields, J.A. Autofluorescence of congenital hypertrophy of the retinal pigment epithelium. Retina 2007, 27, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Ferris, F.L.; Wilkinson, C.P.; Bird, A.; Chakravarthy, U.; Chew, E.; Csaky, K.; Sadda, S.R. Clinical Classification of Age-related Macular Degeneration. Ophthalmology 2013, 120, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F. Fundus autofluorescence and age-related macular degeneration. Ophthalmology 2003, 110, 392–399. [Google Scholar] [CrossRef]
- Schmitz-Valckenberg, S.; Bültmann, S.; Dreyhaupt, J.; Bindewald, A.; Holz, F.G.; Rohrschneider, K. Fundus autofluorescence and fundus perimetry in the junctional zone of geographic atrophy in patients with age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2004, 45, 4470–4476. [Google Scholar] [CrossRef]
- Bindewald, A.; Bird, A.C.; Dandekar, S.S.; Dolar-Szczasny, J.; Dreyhaupt, J.; Fitzke, F.W.; Einbock, W.; Holz, F.G.; Jorzik, J.J.; Keilhauer, C.; et al. Classification of Fundus Autofluorescence Patterns in Early Age-Related Macular Disease. Investig. Ophthalmol. Vis. Sci. 2005, 46, 3309–3314. [Google Scholar] [CrossRef]
- Bindewald, A.; Schmitz-Valckenberg, S.; Jorzik, J.J.; Dolar-Szczasny, J.; Sieber, H.; Keilhauer, C.; Weinberger, A.W.A.; Dithmar, S.; Pauleikhoff, D.; Mansmann, U.; et al. Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration. Br. J. Ophthalmol. 2005, 89, 874–878. [Google Scholar] [CrossRef] [PubMed]
- Dandekar, S.S. Autofluorescence Imaging of Choroidal Neovascularization Due to Age-Related Macular Degeneration. Arch. Ophthalmol. 2005, 123, 1507–1513. [Google Scholar] [CrossRef]
- McBain, V.A.; Townend, J.; Lois, N. Fundus autofluorescence in exudative age-related macular degeneration. Br. J. Ophthalmol. 2007, 91, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Kellner, U.; Kellner, S.; Weinitz, S. Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration. Retina 2010, 30, 6–15. [Google Scholar] [CrossRef]
- Schmitz-Valckenberg, S.; Fleckenstein, M.; Göbel, A.P.; Hohman, T.C.; Holz, F.G. Optical coherence tomography and autofluorescence findings in areas with geographic atrophy due to age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1–6. [Google Scholar] [CrossRef]
- Landa, G.; Rosen, R.B.; Pilavas, J.; Garcia, P.M.T. Drusen characteristics revealed by spectral-domain optical coherence tomography and their corresponding fundus autofluorescence appearance in dry age-related macular degeneration. Ophthalmic Res. 2012, 47, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Toy, B.C.; Krishnadev, N.; Indaram, M.; Cunningham, D.; Cukras, C.A.; Chew, E.Y.; Wong, W.T. Drusen regression is associated with local changes in fundus autofluorescence in intermediate age-related macular degeneration. Am. J. Ophthalmol. 2013, 156, 532–542.e1. [Google Scholar] [CrossRef]
- Göbel, A.P.; Fleckenstein, M.; Heeren, T.F.C.; Holz, F.G.; Schmitz-Valckenberg, S. In-vivo mapping of drusen by fundus autofluorescence and spectral-domain optical coherence tomography imaging. Graefes Arch. Clin. Exp. Ophthalmol. 2016, 254, 59–67. [Google Scholar] [CrossRef]
- Takasago, Y.; Shiragami, C.; Kobayashi, M.; Osaka, R.; Ono, A.; Yamashita, A.; Tsujikawa, A.; Hirooka, K. Macular atrophy findings by optical coherence tomography angiography compared with fundus autofluorescence in treated exudative age-related macular degeneration. Retina 2019, 39, 296–302. [Google Scholar] [CrossRef]
- Cozzi, M.; Monteduro, D.; Parrulli, S.; Corvi, F.; Zicarelli, F.; Corradetti, G.; Sadda, S.R.; Staurenghi, G. Sensitivity and Specificity of Multimodal Imaging in Characterizing Drusen. Ophthalmol. Retin. 2020, 4, 987–995. [Google Scholar] [CrossRef]
- Bui, P.T.A.; Reiter, G.S.; Fabianska, M.; Waldstein, S.M.; Grechenig, C.; Bogunovic, H.; Arikan, M.; Schmidt-Erfurth, U. Fundus autofluorescence and optical coherence tomography biomarkers associated with the progression of geographic atrophy secondary to age-related macular degeneration. Eye 2022, 36, 2013–2019. [Google Scholar] [CrossRef] [PubMed]
- Bindewald-Wittich, A.; Dolar-Szczasny, J.; Kuenzel, S.H.; Von Der Emde, L.; Pfau, M.; Rejdak, R.; Schmitz-Valckenberg, S.; Ach, T.; Dreyhaupt, J.; Holz, F.G. Blue-light fundus autofluorescence imaging of pigment epithelial detachments. Eye 2023, 37, 1191–1201. [Google Scholar] [CrossRef]
- Nawrocka, Z.A.; Nawrocki, J. Fundus Autofluorescence Patterns in Subretinal Hemorrhages Associated with Neovascular Age-Related Macular Degeneration. Ophthalmol. J. Int. Ophtalmol. Int. J. Ophthalmol. Z. Augenheilkd. 2024, 247, 58–64. [Google Scholar] [CrossRef]
- Ehlers, J.P.; McConville, C.; Yordi, S.; Cetin, H.; Cakir, Y.; Kalra, G.; Amine, R.; Whitney, J.; Whitmore, V.; Bonnay, M.; et al. Correlation Between Blue Fundus Autofluorescence and SD-OCT Measurements of Geographic Atrophy in Dry Age-Related Macular Degeneration. Am. J. Ophthalmol. 2024, 266, 92–101. [Google Scholar] [CrossRef]
- Cocce, K.J.; Stinnett, S.S.; Luhmann, U.F.O.; Vajzovic, L.; Horne, A.; Schuman, S.G.; Toth, C.A.; Cousins, S.W.; Lad, E.M. Visual Function Metrics in Early and Intermediate Dry Age-related Macular Degeneration for Use as Clinical Trial Endpoints. Am. J. Ophthalmol. 2018, 189, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Delori, F.C.; Fleckner, M.R.; Goger, D.G.; Weiter, J.J.; Dorey, C.K. Autofluorescence distribution associated with drusen in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2000, 41, 496–504. [Google Scholar]
- von Rückmann, A.; Fitzke, F.W.; Bird, A.C. Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope. Investig. Ophthalmol. Vis. Sci. 1997, 38, 478–486. [Google Scholar]
- Smith, R.T.; Chan, J.K.; Busuoic, M.; Sivagnanavel, V.; Bird, A.C.; Chong, N.V. Autofluorescence characteristics of early, atrophic, and high-risk fellow eyes in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2006, 47, 5495–5504. [Google Scholar] [CrossRef]
- Solbach, U.; Keilhauer, C.; Knabben, H.; Wolf, S. Imaging of retinal autofluorescence in patients with age-related macular degeneration. Retina 1997, 17, 385–389. [Google Scholar] [CrossRef]
- Einbock, W.; Moessner, A.; Schnurrbusch, U.E.K.; Holz, F.G.; Wolf, S. Changes in fundus autofluorescence in patients with age-related maculopathy. Correlation to visual function: A prospective study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2005, 243, 300–305. [Google Scholar] [CrossRef]
- Khan, K.N.; Mahroo, O.A.; Khan, R.S.; Mohamed, M.D.; McKibbin, M.; Bird, A.; Michaelides, M.; Tufail, A.; Moore, A.T. Differentiating drusen: Drusen and drusen-like appearances associated with ageing, age-related macular degeneration, inherited eye disease and other pathological processes. Prog. Retin. Eye Res. 2016, 53, 70–106. [Google Scholar] [CrossRef]
- Age-Related Eye Disease Study Research Group. The age-related eye disease study (AREDS) system for classifying cataracts from photographs: AREDS report no. 4∗∗Members of the Age-Related Eye Disease Study Research Group are listed at the end of the article. Am. J. Ophthalmol. 2001, 131, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Bird, A.C.; Bressler, N.M.; Bressler, S.B.; Chisholm, I.H.; Coscas, G.; Davis, M.D.; De Jong, P.T.V.M.; Klaver, C.C.W.; Klein, B.E.K.; Klein, R.; et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration. Surv. Ophthalmol. 1995, 39, 367–374. [Google Scholar] [CrossRef]
- Spaide, R.F.; Curcio, C.A. Drusen characterization with multimodal imaging. Retina 2010, 30, 1441–1454. [Google Scholar] [CrossRef]
- Curcio, C.A. Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Investig. Ophthalmol. Vis. Sci. 2018, 59, AMD160–AMD181. [Google Scholar] [CrossRef]
- Lois, N.; Owens, S.L.; Coco, R.; Hopkins, J.; Fitzke, F.W.; Bird, A.C. Fundus autofluorescence in patients with age-related macular degeneration and high risk of visual loss. Am. J. Ophthalmol. 2002, 133, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Balaratnasingam, C.; Cherepanoff, S.; Dolz-Marco, R.; Killingsworth, M.; Chen, F.K.; Mendis, R.; Mrejen, S.; Too, L.K.; Gal-Or, O.; Curcio, C.A.; et al. Cuticular Drusen. Ophthalmology 2018, 125, 100–118. [Google Scholar] [CrossRef]
- Jaffe, G.J.; Chakravarthy, U.; Freund, K.B.; Guymer, R.H.; Holz, F.G.; Liakopoulos, S.; Monés, J.M.; Rosenfeld, P.J.; Sadda, S.R.; Sarraf, D.; et al. Imaging Features Associated with Progression to Geographic Atrophy in Age-Related Macular Degeneration. Ophthalmol. Retin. 2021, 5, 855–867. [Google Scholar] [CrossRef]
- Ouyang, Y.; Heussen, F.M.; Hariri, A.; Keane, P.A.; Sadda, S.R. Optical Coherence Tomography–Based Observation of the Natural History of Drusenoid Lesion in Eyes with Dry Age-related Macular Degeneration. Ophthalmology 2013, 120, 2656–2665. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.S.; Pilgrim, M.G.; Fearn, S.; Bertazzo, S.; Tsolaki, E.; Morrell, A.P.; Li, M.; Messinger, J.D.; Dolz-Marco, R.; Lei, J.; et al. Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration. Sci. Transl. Med. 2018, 10, eaat4544. [Google Scholar] [CrossRef]
- Spaide, R.F. Disease expression in nonexudative age-related macular degeneration varies with choroidal thickness. Retina 2018, 38, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sivaprasad, S. Drusen and pachydrusen: The definition, pathogenesis, and clinical significance. Eye 2021, 35, 121–133. [Google Scholar] [CrossRef]
- Lee, J.; Byeon, S.H. Prevalence and clinical characteristics of pachydrusen in polypoidal choroidal vasculopathy: Multimodal image study. Retina 2019, 39, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.; Manayath, G.; Shroff, D.; Salloju, V.; Dhar, P. Polypoidal Choroidal Vasculopathy: An Update on Diagnosis and Treatment. Clin. Ophthalmol. 2023, 17, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Luu, C.D.; Ayton, L.N.; Goh, J.K.; Lucci, L.M.; Hubbard, W.C.; Hageman, J.L.; Hageman, G.S.; Guymer, R.H. Fundus autofluorescence characteristics of nascent geographic atrophy in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1546–1552. [Google Scholar] [CrossRef]
- Joachim, N.; Mitchell, P.; Rochtchina, E.; Tan, A.G.; Wang, J.J. Incidence and Progression of Reticular Drusen in Age-related Macular Degeneration. Ophthalmology 2014, 121, 917–925. [Google Scholar] [CrossRef]
- Holz, F.G.; Saßmannshausen, M. Reticular Pseudodrusen: Detecting a Common High-Risk Feature in Age-Related Macular Degeneration. Ophthalmol. Retin. 2021, 5, 719–720. [Google Scholar] [CrossRef]
- Ueda-Arakawa, N.; Ooto, S.; Tsujikawa, A.; Yamashiro, K.; Oishi, A.; Yoshimura, N. Sensitivity and specificity of detecting reticular pseudodrusen in multimodal imaging in Japanese patients. Retina 2013, 33, 490–497. [Google Scholar] [CrossRef]
- Spaide, R.F.; Ooto, S.; Curcio, C.A. Subretinal drusenoid deposits AKA pseudodrusen. Surv. Ophthalmol. 2018, 63, 782–815. [Google Scholar] [CrossRef]
- Ho, J.; Witkin, A.J.; Liu, J.; Chen, Y.; Fujimoto, J.G.; Schuman, J.S.; Duker, J.S. Documentation of Intraretinal Retinal Pigment Epithelium Migration via High-Speed Ultrahigh-Resolution Optical Coherence Tomography. Ophthalmology 2011, 118, 687–693. [Google Scholar] [CrossRef]
- Sadda, S.R.; Guymer, R.; Holz, F.G.; Schmitz-Valckenberg, S.; Curcio, C.A.; Bird, A.C.; Blodi, B.A.; Bottoni, F.; Chakravarthy, U.; Chew, E.Y.; et al. Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT. Ophthalmology 2018, 125, 537–548. [Google Scholar] [CrossRef]
- Midena, E.; Vujosevic, S.; Convento, E.; Manfre’, A.; Cavarzeran, F.; Pilotto, E. Microperimetry and fundus autofluorescence in patients with early age-related macular degeneration. Br. J. Ophthalmol. 2007, 91, 1499–1503. [Google Scholar] [CrossRef]
- Querques, L.; Querques, G.; Forte, R.; Souied, E.H. Microperimetric correlations of autofluorescence and optical coherence tomography imaging in dry age-related macular degeneration. Am. J. Ophthalmol. 2012, 153, 1110–1115. [Google Scholar] [CrossRef]
- Batoğlu, F.; Demirel, S.; Özmert, E.; Oguz, Y.G.; Özyol, P. Autofluorescence Patterns as a Predictive Factor for Neovascularization. Optom. Vis. Sci. 2014, 91, 950–955. [Google Scholar] [CrossRef]
- Cachulo, L.; Silva, R.; Fonseca, P.; Pires, I.; Carvajal-Gonzalez, S.; Bernardes, R.; Cunha-Vaz, J.G. Early Markers of Choroidal Neovascularization in the Fellow Eye of Patients with Unilateral Exudative Age-Related Macular Degeneration. Ophthalmologica 2011, 225, 144–149. [Google Scholar] [CrossRef]
- Taha, A.T.; Shen, L.L.; Diaz, A.; Chahal, N.; Saroya, J.; Sun, M.; Allingham, M.J.; Farsiu, S.; Yiu, G.; Keenan, J.D.; et al. Association of Hyperautofluorescence Signals with Geographic Atrophy Progression in the METformin for the MINimization of Geographic Atrophy Progression Trial. Ophthalmol. Sci. 2025, 5, 100620. [Google Scholar] [CrossRef]
- Keenan, T.D.L.; Cukras, C.A.; Chew, E.Y. Age-Related Macular Degeneration: Epidemiology and Clinical Aspects. In Age-Related Macular Degeneration; Chew, E.Y., Swaroop, A., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2021; Volume 1256, pp. 1–31. ISBN 978-3-030-66013-0. [Google Scholar]
- Fleckenstein, M.; Mitchell, P.; Freund, K.B.; Sadda, S.; Holz, F.G.; Brittain, C.; Henry, E.C.; Ferrara, D. The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration. Ophthalmology 2018, 125, 369–390. [Google Scholar] [CrossRef] [PubMed]
- Sunness, J.S.; Margalit, E.; Srikumaran, D.; Applegate, C.A.; Tian, Y.; Perry, D.; Hawkins, B.S.; Bressler, N.M. The Long-term Natural History of Geographic Atrophy from Age-Related Macular Degeneration. Ophthalmology 2007, 114, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Joachim, N.; Mitchell, P.; Kifley, A.; Rochtchina, E.; Hong, T.; Wang, J.J. Incidence and Progression of Geographic Atrophy. Ophthalmology 2013, 120, 2042–2050. [Google Scholar] [CrossRef]
- Curcio, C.A.; Messinger, J.D.; Berlin, A.; Sloan, K.R.; McLeod, D.S.; Edwards, M.M.; Bijon, J.; Freund, K.B. Fundus Autofluorescence Variation in Geographic Atrophy of Age-Related Macular Degeneration: A Clinicopathologic Correlation. Investig. Ophthalmol. Vis. Sci. 2025, 66, 49. [Google Scholar] [CrossRef]
- Corradetti, G.; Byon, I.; Corvi, F.; Cozzi, M.; Staurenghi, G.; Sadda, S.R. Retro mode illumination for detecting and quantifying the area of geographic atrophy in non-neovascular age-related macular degeneration. Eye 2022, 36, 1560–1566. [Google Scholar] [CrossRef] [PubMed]
- Biarnés, M.; Monés, J.; Trindade, F.; Alonso, J.; Arias, L. Intra and interobserver agreement in the classification of fundus autofluorescence patterns in geographic atrophy secondary to age-related macular degeneration. Graefe’s Arch. Clin. Exp. Ophthalmol. 2012, 250, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Valckenberg, S.; Sahel, J.-A.; Danis, R.; Fleckenstein, M.; Jaffe, G.J.; Wolf, S.; Pruente, C.; Holz, F.G. Natural History of Geographic Atrophy Progression Secondary to Age-Related Macular Degeneration (Geographic Atrophy Progression Study). Ophthalmology 2016, 123, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Valckenberg, S.; Jorzik, J.; Unnebrink, K.; Holz, F.G. Analysis of digital scanning laser ophthalmoscopy fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration. Graefe’s Arch. Clin. Exp. Ophthalmol. 2002, 240, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Pfau, M.; Goerdt, L.; Schmitz-Valckenberg, S.; Mauschitz, M.M.; Mishra, D.K.; Holz, F.G.; Lindner, M.; Fleckenstein, M. Green-Light Autofluorescence Versus Combined Blue-Light Autofluorescence and Near-Infrared Reflectance Imaging in Geographic Atrophy Secondary to Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2017, 58, BIO121–BIO130. [Google Scholar] [CrossRef]
- Heier, J.S.; Lad, E.M.; Holz, F.G.; Rosenfeld, P.J.; Guymer, R.H.; Boyer, D.; Grossi, F.; Baumal, C.R.; Korobelnik, J.-F.; Slakter, J.S.; et al. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): Two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. Lancet 2023, 402, 1434–1448. [Google Scholar] [CrossRef]
- Patel, S.S.; Lally, D.R.; Hsu, J.; Wykoff, C.C.; Eichenbaum, D.; Heier, J.S.; Jaffe, G.J.; Westby, K.; Desai, D.; Zhu, L.; et al. Avacincaptad pegol for geographic atrophy secondary to age-related macular degeneration: 18-month findings from the GATHER1 trial. Eye 2023, 37, 3551–3557. [Google Scholar] [CrossRef]
- Froines, C.P.; Saunders, T.F.; Heathcote, J.A.; Pak, J.W.; Chew, E.Y.; Blodi, B.A.; Domalpally, A. Comparison of Geographic Atrophy Measurements Between Blue-Light Heidelberg Standard Field and Green-Light Optos Ultrawide Field Autofluorescence. Transl. Vis. Sci. Technol. 2024, 13, 1. [Google Scholar] [CrossRef]
- Batıoğlu, F.; Gedik Oğuz, Y.; Demirel, S.; Ozmert, E. Geographic atrophy progression in eyes with age-related macular degeneration: Role of fundus autofluorescence patterns, fellow eye and baseline atrophy area. Ophthalmic Res. 2014, 52, 53–59. [Google Scholar] [CrossRef]
- Abbasgholizadeh, R.; Habibi, A.; Emamverdi, M.; Ashrafkhorasani, M.; London, N.; Sinai, M.J.; Sinai, E.C.; Sadda, S.R. Comparison of Blue-Light Autofluorescence and Ultrawidefield Green-Light Autofluorescence for Assessing Geographic Atrophy. Ophthalmol. Retin. 2024, 8, 987–993. [Google Scholar] [CrossRef]
- Egger, D.; Doll, B.; Gonzalez, C.; Ahmadzai, P.; Heger, K.A.; Kreid, B.; Montuoro, A.; Link, J.; Yamaguchi, T.C.; Esmaeelpour, M.; et al. Photoreceptor-RPE loss ratio and fundus autofluorescence patterns as predictive factors for lesion progression in geographic atrophy. Acta Ophthalmol. 2025, 103, e204–e212. [Google Scholar] [CrossRef] [PubMed]
- Chhablani, J.; Kozak, I.R.; Mojana, F.; Cheng, L.; Morrison, V.L.; Wang, H.; Kim, J.S.; Dustin, L.; Azen, S.; Freeman, W.R. Fundus autofluorescence not predictive of treatment response to intravitreal bevacizumab in exudative age-related macular degeneration. Retina 2012, 32, 1465–1470. [Google Scholar] [CrossRef] [PubMed]
- Vaclavik, V.; Vujosevic, S.; Dandekar, S.S.; Bunce, C.; Peto, T.; Bird, A.C. Autofluorescence imaging in age-related macular degeneration complicated by choroidal neovascularization: A prospective study. Ophthalmology 2008, 115, 342–346. [Google Scholar] [CrossRef]
- Kumar, N.; Mrejen, S.; Fung, A.T.-C.; Marsiglia, M.; Loh, B.K.; Spaide, R.F. Retinal pigment epithelial cell loss assessed by fundus autofluorescence imaging in neovascular age-related macular degeneration. Ophthalmology 2013, 120, 334–341. [Google Scholar] [CrossRef]
- Chen, L.; Messinger, J.D.; Ferrara, D.; Freund, K.B.; Curcio, C.A. Fundus Autofluorescence in Neovascular Age-Related Macular Degeneration: A Clinicopathologic Correlation Relevant to Macular Atrophy. Ophthalmol. Retin. 2021, 5, 1085–1096. [Google Scholar] [CrossRef]
- Lee, J.Y.; Chung, H.; Kim, H.C. Changes in Fundus Autofluorescence after Anti-vascular Endothelial Growth Factor According to the Type of Choroidal Neovascularization in Age-related Macular Degeneration. Korean J. Ophthalmol. KJO 2016, 30, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, S.; Ueta, T.; Takahashi, H.; Obata, R.; Smith, R.T.; Yanagi, Y. Characteristics of fundus autofluorescence and drusen in the fellow eyes of Japanese patients with exudative age-related macular degeneration. Graefes Arch. Clin. Exp. Ophthalmol. Albrecht Von. Graefe’s Arch. Klin. Exp. Ophthalmol. 2013, 251, 1–9. [Google Scholar] [CrossRef]
- Karampelas, M.; Malamos, P.; Petrou, P.; Georgalas, I.; Papaconstantinou, D.; Brouzas, D. Retinal Pigment Epithelial Detachment in Age-Related Macular Degeneration. Ophthalmol. Ther. 2020, 9, 739–756. [Google Scholar] [CrossRef]
- Bird, A.C. Pathogenesis of retinal pigment epithelial detachment in the elderly; the relevance of Bruch’s membrane change. Eye 1991, 5, 1–12. [Google Scholar] [CrossRef]
- Karadimas, P.; Bouzas, E.A. Fundus Autofluorescence Imaging in Serous and Drusenoid Pigment Epithelial Detachments Associated with Age-Related Macular Degeneration. Am. J. Ophthalmol. 2005, 140, 1163–1165. [Google Scholar] [CrossRef]
- Mitchell, P.; Rodríguez, F.J.; Joussen, A.M.; Koh, A.; Eter, N.; Wong, D.T.; Korobelnik, J.-F.; Okada, A.A. Management of retinal pigment epithelium tear during anti–vascular endothelial growth factor therapy. Retina 2021, 41, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Nagiel, A.; Freund, K.B.; Spaide, R.F.; Munch, I.C.; Larsen, M.; Sarraf, D. Mechanism of Retinal Pigment Epithelium Tear Formation Following Intravitreal Anti–Vascular Endothelial Growth Factor Therapy Revealed by Spectral-Domain Optical Coherence Tomography. Am. J. Ophthalmol. 2013, 156, 981–988.e2. [Google Scholar] [CrossRef] [PubMed]
- Sarraf, D.; Joseph, A.; Rahimy, E. Retinal pigment epithelial tears in the era of intravitreal pharmacotherapy: Risk factors, pathogenesis, prognosis and treatment (an American Ophthalmological Society thesis). Trans. Am. Ophthalmol. Soc. 2014, 112, 142–159. [Google Scholar] [PubMed]
- Ersoz, M.G.; Karacorlu, M.; Arf, S.; Sayman Muslubas, I.; Hocaoglu, M. Retinal pigment epithelium tears: Classification, pathogenesis, predictors, and management. Surv. Ophthalmol. 2017, 62, 493–505. [Google Scholar] [CrossRef]
- Metrangolo, C.; Donati, S.; Mazzola, M.; Fontanel, L.; Messina, W.; D’alterio, G.; Rubino, M.; Radice, P.; Premi, E.; Azzolini, C. OCT Biomarkers in Neovascular Age-Related Macular Degeneration: A Narrative Review. J. Ophthalmol. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Bittencourt, M.G.; Hassan, M.; Halim, M.S.; Afridi, R.; Nguyen, N.V.; Plaza, C.; Tran, A.N.T.; Ahmed, M.I.; Nguyen, Q.D.; Sepah, Y.J. Blue light versus green light fundus autofluorescence in normal subjects and in patients with retinochoroidopathy secondary to retinal and uveitic diseases. J. Ophthalmic Inflamm. Infect. 2019, 9, 1. [Google Scholar] [CrossRef]
- SPECTRALIS Multimodal Imaging Platform Optimized for the Posterior Segment. Available online: https://business-lounge.heidelbergengineering.com/us/en/products/spectralis/spectralis/ (accessed on 22 June 2025).
- Schroeder, M.; Peter, V.G.; Gränse, L.; Andréasson, S.; Rivolta, C.; Kjellström, U. A novel phenotype associated with the R162W variant in the KCNJ13 gene. Ophthalmic Genet. 2022, 43, 500–507. [Google Scholar] [CrossRef]
- Optimized Filters Move Autofluorescence Imaging Forward. Available online: https://www.retinalphysician.com/issues/2009/october/optimized-filters-move-autofluorescence-imaging-forward/ (accessed on 22 June 2025).
- Sodhi, S.K.; Golding, J.; Trimboli, C.; Choudhry, N. Feasibility of peripheral OCT imaging using a novel integrated SLO ultra-widefield imaging swept-source OCT device. Int. Ophthalmol. 2021, 41, 2805–2815. [Google Scholar] [CrossRef]
- Silverstone Brochure. Available online: https://www.optos.com/globalassets/public/optos/products/silverstone/brochure-silverstone-us.pdf (accessed on 1 July 2025).
- Nidek Mirante Brochure. Available online: https://www.nidek-intl.com/wp-content/uploads/2024/05/Mirante.pdf (accessed on 22 June 2025).
AMD Stage | Clinical Findings |
---|---|
Early AMD | Medium drusen, with dimensions >63 μm and ≤125 μm Absence of any pigment abnormalities [63] |
Intermediate AMD | Large drusen, with >125 μm and/or the presence of pigment abnormalities [63] |
Late AMD | GA and/or exudative AMD [63] |
Year | Study | FAF System, Excitation Wavelength | Milestone | Contribution |
---|---|---|---|---|
1995 | Delori et al. [18] | Custom-built fundus spectrophotometer; 430–550 nm | In vivo characterization of FAF in human retina. | Created the biochemical and biophysical foundation for FAF imaging in retinal diseases. Postulated that lipofuscin is the main retinal fluorophore and established the localization and distribution of autofluorescence. |
1995 | Ruckmann et al. [17] | Confocal SLO; 488 nm | Confocal SLO was used for in vivo FAF imaging of the retina. | FAF images presented enhanced contrast, and less interference. Confirmed that the autofluorescence signal primarily originated from lipofuscin. |
2003 | Spaide RF [64] | Modified fundus camera; 580 nm | Fellow eyes of patients with exudative AMD showed higher autofluorescence, suggesting FAF has a role in risk stratification before exudation. | Linked focal hyper-autofluorescence to areas of hyperpigmentation, indicating lipofuscin accumulation and oxidative stress. Supported the concept that FAF reflects the RPE stress, which may precede neovascularization. |
2004 | Schmitz-Valckenberg et al. [65] | Confocal SLO; 488 nm | Correlation of FAF signal abnormalities with retinal sensitivity in the GA junctional zone. | Functional correlation of FAF phenotypes in late form of AMD. FAF imaging represents a structural tool and a marker for functional decline in disease progression. |
2005 | Bindewald et al. [66] | Confocal SLO; 488 nm | Phenotypic classification of FAF patterns in patients with early AMD. | Eight FAF phenotypes were described: normal, minimal change, focal increased, patchy, linear, lacelike, reticular, and speckled. Retinal alterations which are not visible on color fundus photography can be seen on FAF imaging. |
2005 | Bindewald et al. [67] | Confocal SLO; 488 nm | Phenotypic classification of FAF patterns in the junctional zone of GA in AMD. | Identified five FAF junctional patterns: none, focal, banded, patchy, and diffuse—with the latter subdivided into reticular, branching, fine granular, and fine granular with peripheral punctate spots. A reproducible imaging-based phenotypic classification was created. |
2005 | Dandekar et al. [68] | Confocal SLO; 488 nm | Characterization of the FAF patterns of CNV due to AMD. | Preserved FAF signifies viable RPE and an improved visual prognosis, but reduced FAF shows RPE and photoreceptor loss. FAF is an effective instrument for evaluating disease progression and guiding treatment strategies. |
2007 | Holz et al. [19] | Confocal SLO; 488 nm | FAF phenotypes can predict the rate of GA progression in AMD. | GA progression assessment in relation to FAF patterns. They demonstrated that specific FAF phenotypes in the junctional zone—particularly diffuse trickling and banded—are associated with significantly faster atrophy enlargement. |
2007 | McBain et al. [69] | Confocal SLO; 488 nm | FAF patterns in untreated classic and occult CNV in AMD using confocal SLO. | Classic CNV presents with reduced FAF, likely due to blockage rather than RPE destruction. Occult CNV patients present with variable FAF aspect, reflecting the heterogeneous pathology. |
2010 | Kellner et al. [70] | Confocal SLO; 488 nm (SW-FAF) and 787 nm (NIR-FAF) | Comparative study of SW-FAF and NIR-FAF in AMD, using a single imaging system. | SW-FAF and NIR-FAF visualize different aspects of RPE pathology—lipofuscin (SW) vs. melanin (NIR). Found that NIR-FAF changes often precede or exceed SW-FAF loss, especially in exudative AMD. |
2011 | Schmitz-Valckenberg et al. [71] | Confocal SLO; 488 nm | Quantitatively correlated FAF-defined atrophic areas with OCT layer disruptions across the outer retina and RPE in GA. | Validated that severely reduced FAF corresponds to irreversible RPE and photoreceptor damage. Supported FAF as a reliable, non-invasive tool to monitor GA progression and assess structural-functional correlation. |
2012 | Landa et al. [72] | Confocal SLO; 488 nm | Directly correlated OCT morphological characteristics of individual drusen with their FAF aspect, using precise image registration techniques. | Identified drusen size and ellipsoid zone disruption as key factors strongly associated with abnormal FAF. Provided biomarkers for AMD progression. Supported FAF as an early indicator of photoreceptor-RPE dysfunction before visible atrophy. |
2013 | Toy et al. [73] | Modified fundus camera; 550–600 nm | Demonstrated that spontaneous drusen regression in intermediate AMD is frequently associated with significant localized FAF signal changes, even when fundus photographs appear normal. | Found that drusen regression showed decreased FAF, suggesting early RPE damage. Showed FAF is more sensitive than CFP for detecting post-regression changes. |
2016 | Göbel et al. [74] | Confocal SLO; 488 nm | Correlated FAF signal intensity over drusen with specific microstructural OCT alterations, helping refine imaging biomarkers in early and intermediate AMD. | Showed that drusen with abnormal FAF aspect often had corresponding structural damage on OCT. Highlighted FAF variability across drusen, reflecting different stages of AMD progression. |
2019 | Takasago et al. [75] | Confocal SLO; 488 nm | Demonstrated a strong association between macular atrophy areas seen on FAF and choriocapillaris non-perfusion on OCT-A in treated exudative AMD. | Showed that choriocapillaris non-perfusion area is larger than macular atrophy in most cases. Suggested that choroidal ischemia plays a major role in the pathogenesis of atrophy after anti-VEGF. Advocated for the concomitant utilization of FAF and OCT-A in evaluating structural and vascular abnormalities in AMD. |
2020 | Cozzi et al. [76] | Confocal SLO; 532 nm | Comprehensive study comparing five advanced imaging modalities, including G-FAF and retromode, for identifying and classifying drusen and subretinal drusenoid deposits (SDD) in early/intermediate AMD. | G-FAF was highly effective for detecting dot SDDs. Highlighted G-FAF’s value in multimodal classification—particularly useful alongside OCT. |
2022 | Bui et al. [77] | Confocal SLO; 488 nm | Established one of the first large-scale models integrating FAF and deep learning-analyzed OCT biomarkers to predict GA progression in patients with AMD. | Found that FAF patterns, especially the diffuse-trickling phenotype, and the presence of SDD were significantly associated with faster GA growth. Showed that HRF concentration, a marker of RPE dysmorphia, interacted significantly with FAF phenotypes in predicting GA progression. |
2023 | Bindewald-Wittich et al. [78] | Confocal SLO; 488 nm | Large-scale, systematic study which classified FAF patterns of PED for diverse underlying pathologies. Patients with AMD represented 85% of the total cases included. | Showed irregular/granular FAF as the most common pattern overlying PED. Concurring pathologies found in patients with AMD: drusen, hemorrhages, GA, RPE tears. |
2024 | Nawrocka et al. [79] | Confocal SLO; 488 nm | The study demonstrated that FAF patterns were not influenced by the treatment type, but rather by the duration of the hemorrhage prior to intervention. | Established that FAF imaging can reflect the age and metabolic state of subretinal hemorrhage, making it a valuable indicator of photoreceptor and RPE damage in AMD. Highlighted FAF as a non-invasive modality for assessing chronicity of SMH and guiding clinical decisions regarding urgency and prognosis. |
2024 | Ehlers et al. [80] | Confocal SLO; 488 nm | This study demonstrated a strong and consistent correlation between B-FAF and OCT measurements of GA over an 18-month period, using data from the GATHER1 clinical trial. | Validated OCT as a reliable alternative to FAF for quantifying GA area in clinical trials. Showed minimal differences between FAF and OCT-based GA measurements. Highlighted complementary strengths of OCT and FAF. |
FAF Pattern | FAF Description | Fundus Correlation [66] | Clinical Significance | Frequency |
---|---|---|---|---|
None/Normal [66] | No visible FAF changes | Hard/soft drusen | Low risk of progression | N/A |
Minimum change [66] | Limited FAF intensity alterations | Hard/soft drusen | Slow progression | 9% |
Focal increased [66] | Punctiform, isolated area of hyperautofluorescence +/− dark halo | Pigment abnormalities/soft drusen | Documented cases progressed to GA | 4% |
Patchy [66] | Larger, irregular areas of hyper-FAF | Pigment abnormalities/soft drusen | High risk of progression to neovascular AMD | 23% |
Linear [66] | One or more hyperautofluorescent linear lesions | Hyperpigmentation | Slow progression | 3% |
Lace-like [66] | Network of branching hyperautofluorescent lines | Hyperpigmentation | Slow progression | 2% |
Reticular [66] | Multiple small dots of hypoautofluorescence | Reticular pseudodrusen in the supero-temporal quadrant | Documented progression to exudative changes | 15% |
Speckled [66] | Irregular abnormalities extending beyond the macular area with mottled aspect | Pigment abnormalities +/− soft confluent drusen | Slow progression | 26% |
Focal-plaque-like [86] | Large hyperautofluorescent region | Hyperpigmentation +/− soft drusen | Moderate risk of progression | Not available |
FAF Pattern | Frequency | Junctional Zone Pattern | Clinical Correlations [19] |
---|---|---|---|
None [67] | 12.1% | No abnormal FAF junctional zone | Slowest progression 0.38 mm2/year |
Focal [67] | 12.1% | Small hyper-FAF dots at lesion margins | Reduced progression 0.81 mm2/year |
Banded [67] | 12.8% | Perilesional band of hyper-FAF at the GA margin | Rapid progression 1.81 mm2/year |
Patchy [67] | 2% | Irregular large area of hyper-FAF | Fast progression 1.84 mm2/year |
Diffuse | 57% | Mean progression rate 1.77 mm2/year | |
| 27.5% | Hyper-FAF branches at the GA margin | |
| 4.7% | Hyper-FAF radial lines | |
| 18% | Large area of hyper-FAF with small particles around the GA | |
| 18.1% | Hyper-FAF with extended lesions around the GA | |
| N/A | Grey spreading central zone with hyper-FAF margins | Very fast progression 3.02 mm2/year |
Clinical Parameter/Lesion | OCT | FAF |
---|---|---|
RPE/Photoreceptor dysfunction/degeneration | Structural lesions—thinning or disruption of ellipsoid zone [72] | Hyper/hypo-autofluorescence [72] |
Retinal fluorophore distribution | - | Generates a topographic representation of lipofuscin distribution [28] 24 June 2025 10:14:00 a.m. |
Drusen | Size, homogeneity, shape, reflectivity, ellipsoid zone status characterization [72] | Autofluorescence appearance modified mainly by drusen size and ellipsoid zone [72] |
Elevations of RPE/Bruch’s membrane complex [74] 24 June 2025 10:14:00 a.m. | Normal/increased/decreased autofluorescence [74] | |
SDD | Hyper-reflective deposits above the RPE [76] | Hypo-autofluorescent lesions [76] |
GA | RPE loss >250 microns, ellipsoid zone disruption, increased choroidal transmission >250 microns, outer nuclear layer thinning [107] | Hypoautofluorescent area >250 microns [107] |
Incipient detection of lesions, structural analysis | Follow-up of established GA [107] | |
RPE tear | RPE dehiscence adjacent to an elevated PED, with the RPE appearing retracted and irregular [140] | RPE tear appears as central hypoautofluorescence due to exposed choroid, with adjacent hyperautofluorescence at the retracted RPE edge [141] |
nAMD | Incipient CNV | Normal FAF [68,70] |
Type 1: CNV under the RPE | Irregular pattern of FAF [68] | |
Type 2: CNV above the RPE | Hypoautofluorescent lesion [68] | |
Disciform scar/subretinal hyper-reflective material [142] | Mostly reduced FAF [37] |
Study | Device | Keypoints |
---|---|---|
Wolf-Schnurrbusch et al. (2011) [57] | HRA platform (Heidelberg Engineering); B-FAF: 488 nm, G-FAF: 514 nm | Macular pigment absorption in B-FAF led to diminished foveal autofluorescence, which may obscure central atrophy. B-FAF may falsely imply foveal involvement and overestimate the GA size. G-FAF provided better delineation of lesion borders, especially in the central/foveal region. Conclusions: G-FAF is superior for assessing small, central lesions, and GA quantification, while B-FAF performs well in the periphery. |
Pfau et al. (2017) [122] | HRA2/Spectralis (Heidelberg Engineering); B-FAF: excitation 488 nm, emission 500–700 nm, G-FAF: 518 nm | B-FAF provided good lesion visualization, but macular pigment interference reduced reproducibility. G-FAF showed highest inter-reader agreement and more consistent morphological lesion characteristics. Conclusions: G-FAF is more reproducible, making it preferable for use in clinical trials requiring precise grading. |
Corradetti et al. (2022) [118] | SLO Mirante (Nidek); B-FAF: 488 nm, G-FAF: 532 nm | B-FAF served as a standard imaging tool with high contrast for GA detection. G-FAF offered comparable accuracy, slightly more patient-friendly, and less foveal shadowing. Conclusions: B-FAF and G-FAF were equivalent in GA measurement; both can be used reliably in practice. |
Froines et al. (2024) [125] | B-FAF: Spectralis (488 nm excitation, 500 nm barrier filter), G-FAF: Optos Ultrawidefield (532 nm, 633 nm excitation, 540 nm barrier filter) | B-FAF reported larger GA areas. UWF G-FAF underestimated GA size. G-FAF offered clearer foveal visualization, aiding the measurement of GA proximity to the foveal center. Conclusions: Both modalities showed similar GA progression rates. Differences in imaging systems suggest that consistency is essential in longitudinal follow-up. |
Abbasgholizadeh et al. (2024) [127] | B-FAF: Spectralis HRA + OCT2 (488 nm), G-FAF: Optos Ultrawidefield (532 nm) | B-FAF enabled semiautomated GA quantification using Region Finder with high segmentation precision. G-FAF provided ultrawidefield coverage and strong correlation with B-FAF, but GA sizes differed. Conclusions: Both are reliable, but not interchangeable over time. Use the same system consistently in follow-up. |
Imaging Platform | OCT Type | FAF Excitation Wavelength | Confocal SLO | FA/ICGA | Distinctive Additional Features |
---|---|---|---|---|---|
Heidelberg Spectralis [143,144] (Heidelberg Engineering, Heidelberg, Germany) | SD | 488 nm (Blue) | Yes | Optional | Widely used in research and clinical trials |
Topcon DRI OCT Triton Plus [145,146] (Topcon, Inc., Tokyo, Japan) | SS | 535–585 nm (Green) | Yes | Yes | Spaide filters |
Optos Silverstone [147,148] (Optos PLC, Dunfermline, Scotland, United Kingdom) | SS | 488 nm/532 nm (Blue/Green) | Yes | Yes | Ultra-widefield view |
Nidek Mirante [149] (Nidek Co., Gamagori, Japan) | SD | 488 nm/532 nm (Blue/Green) | Yes | Yes | Retromode Imaging |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranetti, A.-E.; Stanca, H.T.; Munteanu, M.; Bievel Radulescu, R.; Stanca, S. Blue Light and Green Light Fundus Autofluorescence, Complementary to Optical Coherence Tomography, in Age-Related Macular Degeneration Evaluation. Diagnostics 2025, 15, 1688. https://doi.org/10.3390/diagnostics15131688
Ranetti A-E, Stanca HT, Munteanu M, Bievel Radulescu R, Stanca S. Blue Light and Green Light Fundus Autofluorescence, Complementary to Optical Coherence Tomography, in Age-Related Macular Degeneration Evaluation. Diagnostics. 2025; 15(13):1688. https://doi.org/10.3390/diagnostics15131688
Chicago/Turabian StyleRanetti, Antonia-Elena, Horia Tudor Stanca, Mihnea Munteanu, Raluca Bievel Radulescu, and Simona Stanca. 2025. "Blue Light and Green Light Fundus Autofluorescence, Complementary to Optical Coherence Tomography, in Age-Related Macular Degeneration Evaluation" Diagnostics 15, no. 13: 1688. https://doi.org/10.3390/diagnostics15131688
APA StyleRanetti, A.-E., Stanca, H. T., Munteanu, M., Bievel Radulescu, R., & Stanca, S. (2025). Blue Light and Green Light Fundus Autofluorescence, Complementary to Optical Coherence Tomography, in Age-Related Macular Degeneration Evaluation. Diagnostics, 15(13), 1688. https://doi.org/10.3390/diagnostics15131688