Optical Imaging Technologies and Clinical Applications in Gastrointestinal Endoscopy
Abstract
1. Introduction
2. Methods
3. Fundamentals and Classification of Optical Imaging Technology
3.1. White-Light Endoscopy (WLE)
3.2. Spectral Image-Enhanced Endoscopy
- Narrow-Band Imaging (NBI, Olympus): Uses optical filters at 415 nm (blue) and 540 nm (green), wavelengths strongly absorbed by hemoglobin, rendering superficial capillaries brown and deeper vessels cyan [11,12]. NBI enhances mucosal and vascular contrast, improves detection of early neoplasia in Barrett’s esophagus, facilitates real-time polyp characterization via the NICE classification, and increases recognition of early gastric cancer [12,13,14]. It is guideline-endorsed by the ESGE for diminutive polyp characterization and by the ASGE for targeted Barrett’s surveillance [15,16]. Advantages include ease of use, no dyes, and robust RCT validation, though limitations include darker images, reduced performance with bleeding or inflammation, and interobserver variability despite standardized classifications [17].
- FICE (Fuji Intelligent Color Enhancement, Fujifilm): A digital spectral estimation algorithm reconstructs images at selected wavelengths from standard white-light endoscopy, improving mucosal and vascular contrast. It is used mainly for colorectal polyp characterization, Barrett’s surveillance, and gastric lesion assessment [18]. Flexible presets are available, but validation is less robust than for NBI. Reported sensitivity and specificity for adenoma detection reach 85–92% and 83–90%, though the 2019 ESGE guidelines cite weaker evidence and limited adoption [15,19].
- i-SCAN (Pentax): A digital post-processing technology with three modes, surface enhancement, contrast enhancement, and tone enhancement. It is used for Barrett’s esophagus, colorectal polyp differentiation, and assessment of inflammatory bowel disease activity [18]. Its flexibility allows tailored imaging, and studies suggest correlation with histologic inflammation, but evidence remains modest, guideline endorsement is lacking, and adoption is limited by variable settings and a steeper learning curve [20].
3.3. Fluorescence-Based Imaging
- Autofluorescence Imaging (AFI): Excites endogenous fluorophores (collagen, NADH, flavins), displaying normal mucosa as green and dysplasia/neoplasia as magenta [21]. AFI has been tested in Barrett’s esophagus, ulcerative colitis, and early gastric cancer, but adds only ~2% incremental yield over standard endoscopy and shows false-positive rates of 70–80% [22]. Its low specificity and artifact susceptibility have led to a sharp decline in clinical use, though it may serve as an adjunct in multimodal systems [23].
- Fluorescence Molecular Imaging (FMI): Employs exogenous probes (e.g., VEGF-A targeted tracers) that bind selectively to neoplastic tissue, enabling high target-to-background contrast [24]. Early trials show feasibility in colorectal, esophageal, and gastric neoplasia, with potential for precision-guided biopsies. However, FMI remains investigational, limited by regulatory hurdles, probe safety, and cost [25,26].
3.4. High-Resolution Microscopy
- Confocal Laser Endomicroscopy (CLE): CLE uses laser excitation with a confocal aperture to generate high-resolution cellular images (1–5 μm), typically enhanced with intravenous fluorescein [27]. Two systems exist: endoscope-integrated CLE (Pentax) and probe-based CLE (Cellvizio, Mauna Kea). RCTs support its role in Barrett’s esophagus, gastric intestinal metaplasia, and IBD, where it improves dysplasia detection and may reduce random biopsies [28,29,30,31]. However, adoption is limited by cost, training, need for contrast, and technical constraints such as narrow field of view and shallow penetration depth (50–250 μm). Thus, CLE remains largely confined to expert centers [31].
- Endocytoscopy: Endocytoscopy provides ultra-high magnification (up to 1125×) of mucosal epithelium using topical stains (methylene blue or toluidine blue) [32,33]. It enables nuclear-level visualization with diagnostic accuracy approaching histology; a multicenter study reported 96.9% sensitivity and 100% specificity for colorectal neoplasia [34]. Additional applications include Barrett’s dysplasia and H. pylori assessment. Despite promise, adoption is limited outside Japan due to the need for meticulous preparation, dye application, and its very small field of view [32,33,34,35].
3.5. Depth-Resolved Imaging
- Optical Coherence Tomography (OCT): OCT uses low-coherence interferometry with near-infrared light to generate high-resolution cross-sectional images (7–10 μm, depth 1–2 mm) [36,37,38]. It has been applied in Barrett’s esophagus (including volumetric laser endomicroscopy, VLE), early esophageal and gastric cancer, IBD, and pancreaticobiliary strictures [37,38,39,40]. Newer applications include assessment of subepithelial lesions and guidance during endoscopic submucosal dissection [39]. OCT enables wide-field, contrast-free imaging useful for staging and guiding therapy, but clinical use remains limited by high equipment cost, probe-based workflow requirements, need for expert interpretation, and underdeveloped reimbursement models [38]. Consequently, while OCT is clinically valuable in select centers, its broader use remains niche.
3.6. Emerging and Experimental Techniques
- Raman Spectroscopy: Analyzes inelastic scattering of light to generate molecular “fingerprints” of tissue. Fiber-optic probes have shown high accuracy for early gastric cancer and colorectal neoplasia, with sensitivities around 90% and specificities up to 100% in pilot studies. It also shows potential in blood-based diagnostics and IBD differentiation. Raman spectroscopy offers label-free, highly specific biochemical analysis capable of detecting molecular changes that precede morphological alterations. Despite its promise, clinical use is limited by weak signal intensity, background fluorescence, and difficulty integrating systems into routine endoscopy [41,42,43].
- Photoacoustic Imaging (PAI): Combines optical excitation with ultrasound detection, allowing deeper imaging (~2 cm) and functional assessment of vascularity and oxygenation. Early work has demonstrated feasibility in colorectal cancer and inflammatory models, with multimodal systems integrating PAI, ultrasound, and optical microscopy. Translation remains restricted by bulky hardware, slow acquisition, and probe miniaturization challenges [44,45,46].
- Hyperspectral and Multispectral Imaging (HSI/MSI): Capture images at multiple wavelengths beyond standard red/green/blue endoscopy. Multispectral imaging (MSI) uses a limited number of discrete bands (≈5–20), while hyperspectral imaging (HSI) collects hundreds of contiguous narrow bands, producing a richer spectral signature that distinguishes subtle tissue differences. Early feasibility studies suggest improved detection of gastric and esophageal neoplasia, especially when paired with AI-based classification. Both remain experimental, limited by bulky equipment, slow data acquisition, and lack of large-scale validation [47,48,49,50].
- Multiphoton Microscopy: Uses nonlinear femtosecond lasers to achieve label-free, high-resolution imaging of subcellular structures via intrinsic autofluorescence and second-harmonic generation. Ex vivo studies of colorectal lesions reported ~90% sensitivity and specificity, outperforming CLE in diagnostic accuracy. Despite this potential, adoption is restricted by cost, complex laser systems, and lack of miniaturized endoscopes, though prototype devices show feasibility for future translation [51,52].
- Diffuse Reflectance Spectroscopy (DRS): Measures wavelength-dependent tissue scattering and absorption to assess composition and vascularity. Pilot studies reported accuracies above 85% for distinguishing neoplastic from non-neoplastic tissue in Barrett’s esophagus and colonic polyps. It is inexpensive and less prone to motion artifacts, but remains limited by point-based sampling without spatial mapping, which reduces practicality in real-time endoscopy [53,54].
3.7. Magnification Endoscopy
3.8. Integration vs. Probe-Based Systems
4. Clinical Applications
4.1. Barrett’s Esophagus
4.2. Gastric Premalignant Lesions and Early Gastric Cancer
4.2.1. Gastric Intestinal Metaplasia (GIM)
4.2.2. Early Gastric Cancer (EGC)
4.3. Inflammatory Bowel Disease
4.4. Colorectal Polyps and Neoplasia
4.5. Small Bowel Disorders
4.6. Pancreaticobiliary Disorders
5. Summary
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, Y.; Anandasabapathy, S.; Richards-Kortum, R. Advances in optical gastrointestinal endoscopy: A technical review. Mol. Oncol. 2021, 15, 2580–2599. [Google Scholar] [CrossRef]
- Chang, S.; Krzyzanowska, H.; Bowden, A.K. Label-free optical technologies to enhance noninvasive endoscopic imaging of early-stage cancers. Annu. Rev. Anal. Chem. 2024, 17, 289–311. [Google Scholar] [CrossRef]
- Turshudzhyan, A.; Gornick, D.; Mertz, G.; Tadros, M. Current Practice and Emerging Endoscopic Technology in the Diagnosis of Colorectal Cancer: A Narrative Review of Enhanced Imaging and Optical Biopsy. J. Transl. Gastroenterol. 2024, 2, 150–158. [Google Scholar] [CrossRef]
- Sinonquel, P.; Vermeire, S.; Maes, F.; Bisschops, R. Advanced imaging in gastrointestinal endoscopy: A literature review of the current state of the art. GE Port. J. Gastroenterol. 2023, 30, 175–191. [Google Scholar] [CrossRef]
- Kaur, M.; Lane, P.M.; Menon, C. Endoscopic optical imaging technologies and devices for medical purposes: State of the art. Appl. Sci. 2020, 10, 6865. [Google Scholar] [CrossRef]
- Kadota, T.; Abe, S.; Uedo, N.; Doyama, H.; Furue, Y.; Muto, M.; Nonaka, S.; Takamaru, H.; Murano, T.; Nakajo, K.; et al. Comparison of effective imaging modalities for detecting gastric neoplasms: A randomized three-arm phase II trial. Off. J. Am. Coll. Gastroenterol. 2022, 119, 2010–2018. [Google Scholar] [CrossRef]
- Curvers, W.L.; Singh, R.; Wallace, M.B.; Song, L.M.W.K.; Ragunath, K.; Wolfsen, H.C.; ten Kate, F.J.; Fockens, P.; Bergman, J.J. Identification of predictive factors for early neoplasia in Barrett’s esophagus after autofluorescence imaging: A stepwise multicenter structured assessment. Gastrointest. Endosc. 2009, 70, 9–17. [Google Scholar] [CrossRef]
- Banerjee, R.; Nageshwar Reddy, D. Advances in endoscopic imaging: Advantages and limitations. J. Dig. Endosc. 2012, 3 (Suppl. S5), 007–012. [Google Scholar] [CrossRef]
- Wang, T.D.; Van Dam, J. Optical biopsy: A new frontier in endoscopic detection and diagnosis. Clin. Gastroenterol. Hepatol. 2004, 2, 744–753. [Google Scholar] [CrossRef]
- Wei, X.; Gu, B. (Eds.) Optical Imaging in Human Disease and Biological Research; Springer: Singapore, 2021. [Google Scholar]
- Gono, K.; Obi, T.; Yamaguchi, M.; Ohyama, N.; Machida, H.; Sano, Y.; Yoshida, S.; Hamamoto, Y.; Endo, T. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J. Biomed. Opt. 2004, 9, 568–577. [Google Scholar] [CrossRef]
- Sharma, P.; Hawes, R.H.; Bansal, A.; Gupta, N.; Curvers, W.; Rastogi, A.; Singh, M.; Hall, M.; Mathur, S.C.; Wani, S.B.; et al. Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: A prospective, international, randomised controlled trial. Gut 2013, 62, 15–21. [Google Scholar] [CrossRef]
- Iacucci, M.; Trovato, C.; Daperno, M.; Akinola, O.; Greenwald, D.; Gross, S.A.; Hoffman, A.; Lee, J.; Lethebe, B.C.; Lowerison, M.; et al. Development and validation of the SIMPLE endoscopic classification of diminutive and small colorectal polyps. Endoscopy 2018, 50, 779–789. [Google Scholar]
- Muto, M.; Yao, K.; Kaise, M.; Kato, M.; Uedo, N.; Yagi, K.; Tajiri, H. Magnifying endoscopy simple diagnostic algorithm for early gastric cancer (MESDA-G). Dig. Endosc. 2016, 28, 379–393. [Google Scholar] [CrossRef]
- Bisschops, R.; East, J.E.; Hassan, C.; Hazewinkel, Y.; Kamiński, M.F.; Neumann, H.; Pellisé, M.; Antonelli, G.; Bustamante Balen, M.; Coron, E.; et al. Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) Guideline—Update 2019. Endoscopy 2019, 51, 1155–1179. [Google Scholar]
- Qumseya, B.; Sultan, S.; Bain, P.; Jamil, L.; Jacobson, B.; Anandasabapathy, S.; Agrawal, D.; Buxbaum, J.L.; Fishman, D.S.; Gurudu, S.R.; et al. ASGE guideline on screening and surveillance of Barrett’s esophagus. Gastrointest. Endosc. 2019, 90, 335–359. [Google Scholar] [CrossRef]
- Ahmadzada, S.; Tseros, E.; Sritharan, N.; Singh, N.; Smith, M.; Palme, C.E.; Riffat, F. The value of narrowband imaging using the Ni classification in the diagnosis of laryngeal cancer. Laryngoscope Investig. Otolaryngol. 2020, 5, 665–671. [Google Scholar] [CrossRef]
- Togashi, K.; Osawa, H.; Koinuma, K.; Hayashi, Y.; Miyata, T.; Sunada, K.; Nokubi, M.; Horie, H.; Yamamoto, H. A comparison of conventional endoscopy, chromoendoscopy, and the optimal-band imaging system for the differentiation of neoplastic and non-neoplastic colonic polyps. Gastrointest. Endosc. 2009, 69, 734–741. [Google Scholar] [CrossRef]
- Alaoui, A.A.; Oumedjbeur, K.; Djinbachian, R.; Marchand, É.; Marques, P.N.; Bouin, M.; Bouchard, S.; von Renteln, D. Clinical validation of the SIMPLE classification for optical diagnosis of colorectal polyps. Endosc. Int. Open 2021, 9, E684–E692. [Google Scholar] [CrossRef]
- Aminalai, A.; Rösch, T.; Aschenbeck, J.; Mayr, M.; Drossel, R.; Schröder, A.; Scheel, M.; Treytnar, D.; Gauger, U.; Stange, G.; et al. Live image processing does not increase adenoma detection rate during colonoscopy: A randomized comparison between FICE and conventional imaging (Berlin Colonoscopy Project 5, BECOP-5). Off. J. Am. Coll. Gastroenterol. 2010, 105, 2383–2388. [Google Scholar] [CrossRef]
- Kara, M.A.; Peters, F.P.; Fockens, P.; ten Kate, F.J.; Bergman, J.J. Endoscopic video-autofluorescence imaging followed by narrow band imaging for detecting early neoplasia in Barrett’s esophagus. Gastrointest. Endosc. 2006, 64, 176–185. [Google Scholar] [CrossRef]
- Boerwinkel, D.F.; Holz, J.A.; Kara, M.A.; Meijer, S.L.; Wallace, M.B.; Song, L.M.W.K.; Ragunath, K.; Wolfsen, H.C.; Iyer, P.G.; Wang, K.K.; et al. Effects of autofluorescence imaging on detection and treatment of early neoplasia in patients with Barrett’s esophagus. Clin. Gastroenterol. Hepatol. 2014, 12, 774–781. [Google Scholar] [CrossRef]
- Curvers, W.L.; van Vilsteren, F.G.; Baak, L.C.; Böhmer, C.; Mallant-Hent, R.C.; Naber, A.H.; van Oijen, A.; Ponsioen, C.Y.; Scholten, P.; Schenk, E.; et al. Endoscopic trimodal imaging versus standard video endoscopy for detection of early Barrett’s neoplasia: A multicenter, randomized, crossover study in general practice. Gastrointest. Endosc. 2011, 73, 195–203. [Google Scholar] [CrossRef]
- Nagengast, W.B.; Hartmans, E.; Garcia-Allende, P.B.; Peters, F.T.; Linssen, M.D.; Koch, M.; Koller, M.; Tjalma, J.J.; Karrenbeld, A.; Jorritsma-Smit, A.; et al. Near-infrared fluorescence molecular endoscopy detects dysplastic oesophageal lesions using topical and systemic tracer of vascular endothelial growth factor A. Gut 2019, 68, 7–10. [Google Scholar] [CrossRef]
- Hartmans, E.; Tjalma, J.J.; Linssen, M.D.; Allende, P.B.G.; Koller, M.; Jorritsma-Smit, A.; Elias, S.G.; Karrenbeld, A.; de Vries, E.G.; Kleibeuker, J.H.; et al. Potential red-flag identification of colorectal adenomas with wide-field fluorescence molecular endoscopy. Theranostics 2018, 8, 1458. [Google Scholar] [CrossRef]
- Joshi, B.P.; Wang, T.D. Targeted optical imaging agents in cancer: Focus on clinical applications. Contrast Media Mol. Imaging 2018, 2018, 2015237. [Google Scholar] [CrossRef]
- Wallace, M.B.; Fockens, P. Probe-based confocal laser endomicroscopy. Gastroenterology 2009, 136, 1509–1513. [Google Scholar] [CrossRef]
- Sharma, P.; Meining, A.R.; Coron, E.; Lightdale, C.J.; Wolfsen, H.C.; Bansal, A.; Bajbouj, M.; Galmiche, J.P.; Abrams, J.A.; Rastogi, A.; et al. Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: Final results of an international multicenter, prospective, randomized, controlled trial. Gastrointest. Endosc. 2011, 74, 465–472. [Google Scholar] [CrossRef]
- Iacucci, M.; Furfaro, F.; Matsumoto, T.; Uraoka, T.; Smith, S.; Ghosh, S.; Kiesslich, R. Advanced endoscopic techniques in the assessment of inflammatory bowel disease: New technology, new era. Gut 2019, 68, 562–572. [Google Scholar] [CrossRef]
- De Palma, G.D.; Colavita, I.; Zambrano, G.; Giglio, M.C.; Maione, F.; Luglio, G.; Sarnelli, G.; Rispo, A.; Schettino, P.; D’Armiento, F.P.; et al. Detection of colonic dysplasia in patients with ulcerative colitis using a targeted fluorescent peptide and confocal laser endomicroscopy: A pilot study. PLoS ONE 2017, 12, e0180509. [Google Scholar] [CrossRef]
- Fugazza, A.; Gaiani, F.; Carra, M.C.; Brunetti, F.; Lévy, M.; Sobhani, I.; Azoulay, D.; Catena, F.; De’Angelis, G.L.; De’Angelis, N. Confocal laser endomicroscopy in gastrointestinal and pancreatobiliary diseases: A systematic review and meta-analysis. BioMed Res. Int. 2016, 2016, 4638683. [Google Scholar] [CrossRef]
- Sasajima, K.; Kudo, S.E.; Inoue, H.; Takeuchi, T.; Kashida, H.; Hidaka, E.; Kawachi, H.; Sakashita, M.; Tanaka, J.; Shiokawa, A. Real-time in vivo virtual histology of colorectal lesions when using the endocytoscopy system. Gastrointest. Endosc. 2006, 63, 1010–1017. [Google Scholar] [CrossRef]
- Kumagai, Y.; Kawada, K.; Yamazaki, S.; Iida, M.; Ochiai, T.; Momma, K.; Odajima, H.; Kawachi, H.; Nemoto, T.; Kawano, T.; et al. Endocytoscopic observation of esophageal squamous cell carcinoma. Dig. Endosc. 2010, 22, 10–16. [Google Scholar] [CrossRef]
- Kudo, S.E.; Misawa, M.; Mori, Y.; Hotta, K.; Ohtsuka, K.; Ikematsu, H.; Saito, Y.; Takeda, K.; Nakamura, H.; Ichimasa, K.; et al. Artificial intelligence-assisted system improves endoscopic identification of colorectal neoplasms. Clin. Gastroenterol. Hepatol. 2020, 18, 1874–1881. [Google Scholar] [CrossRef]
- Kikuchi, R.; Okamoto, K.; Ozawa, T.; Shibata, J.; Ishihara, S.; Tada, T. Endoscopic Artificial Intelligence for Image Analysis in Gastrointestinal Neoplasms. Digestion 2024, 105, 419–435. [Google Scholar] [CrossRef]
- Gora, M.J.; Suter, M.J.; Tearney, G.J.; Li, X. Endoscopic optical coherence tomography: Technologies and clinical applications. BioMed Opt. Express 2017, 8, 2405–2444. [Google Scholar] [CrossRef]
- Tsai, T.-H.; Fujimoto, J.G.; Mashimo, H. Endoscopic optical coherence tomography for clinical gastroenterology. Diagnostics 2014, 4, 57–93. [Google Scholar] [CrossRef]
- Rodriguez-Diaz, E.; Bigio, I.J.; Singh, S.K. Integrated optical tools for minimally invasive diagnosis and treatment at gastrointestinal endoscopy. Robot. Comput. Integr. Manuf. 2011, 27, 249–256. [Google Scholar] [CrossRef]
- Hatta, W.; Uno, K.; Koike, T.; Yokosawa, S.; Iijima, K.; Imatani, A.; Shimosegawa, T. Optical coherence tomography for the staging of tumor infiltration in superficial esophageal squamous cell carcinoma. Gastrointest. Endosc. 2010, 71, 899–906. [Google Scholar] [CrossRef]
- Struyvenberg, M.R.; De Groof, A.J.; Kahn, A.; Weusten, B.L.A.M.; Fleischer, D.E.; Ganguly, E.K.; Konda, V.J.A.; Lightdale, C.J.; Pleskow, D.K.; Sethi, A.; et al. Multicenter study on the diagnostic performance of multiframe volumetric laser endomicroscopy targets for Barrett’s esophagus neoplasia with histopathology correlation. Dis. Esophagus 2020, 33, doaa062. [Google Scholar] [CrossRef]
- Yin, F.; Zhang, X.; Fan, A.; Liu, X.; Xu, J.; Ma, X.; Yang, L.; Su, H.; Xie, H.; Wang, X.; et al. A novel detection technology for early gastric cancer based on Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 292, 122422. [Google Scholar] [CrossRef]
- Bergholt, M.S.; Lin, K.; Wang, J.; Zheng, W.; Xu, H.; Huang, Q.; Ren, J.L.; Ho, K.Y.; Teh, M.; Srivastava, S.; et al. Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy enhances real-time in vivo diagnosis of adenomatous polyps during colonoscopy. J. Biophotonics 2016, 9, 333–342. [Google Scholar] [CrossRef]
- Kralova, K.; Vrtelka, O.; Fouskova, M.; Hribek, P.; Bunganic, B.; Miskovicova, M.; Urbanek, P.; Zavoral, M.; Petruzelka, L.; Habartova, L.; et al. Raman spectroscopy and Raman optical activity of blood plasma for differential diagnosis of gastrointestinal cancers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 305, 123430. [Google Scholar] [CrossRef]
- Yang, J.M.; Favazza, C.; Chen, R.; Yao, J.; Cai, X.; Maslov, K.; Zhou, Q.; Shung, K.K.; Wang, L.V. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med. 2012, 18, 1297–1302. [Google Scholar] [CrossRef]
- Liang, Y.; Fu, W.; Li, Q.; Chen, X.; Sun, H.; Wang, L.; Jin, L.; Huang, W.; Guan, B.O. Optical-resolution functional gastrointestinal photoacoustic endoscopy based on optical heterodyne detection of ultrasound. Nat. Commun. 2022, 13, 7604. [Google Scholar] [CrossRef]
- Jiang, J.; Yuan, C.; Zhang, J.; Xie, Z.; Xiao, J. Spectroscopic photoacoustic/ultrasound/optical-microscopic multimodal intrarectal endoscopy for detection of centimeter-scale deep lesions. Front. Bioeng. Biotechnol. 2023, 11, 1136005. [Google Scholar] [CrossRef]
- Tsai, T.J.; Lee, K.H.; Chou, C.K.; Karmakar, R.; Mukundan, A.; Chen, T.H.; Gupta, D.; Ghosh, G.; Liu, T.Y.; Wang, H.C. Enhancing Early GI Disease Detection with Spectral Visualization and Deep Learning. Bioengineering 2025, 12, 828. [Google Scholar] [CrossRef]
- Huang, C.W.; Su, C.C.; Chou, C.K.; Mukundan, A.; Karmakar, R.; Chen, T.H.; Shukla, P.; Gupta, D.; Wang, H.C. Software-Based Transformation of White Light Endoscopy Images to Hyperspectral Images for Improved Gastrointestinal Disease Detection. Diagnostics 2025, 15, 1664. [Google Scholar] [CrossRef]
- Weng, W.C.; Huang, C.W.; Su, C.C.; Mukundan, A.; Karmakar, R.; Chen, T.H.; Avhad, A.R.; Chou, C.K.; Wang, H.C. Optimizing Esophageal Cancer Diagnosis with Computer-Aided Detection by YOLO Models Combined with Hyperspectral Imaging. Diagnostics 2025, 15, 1686. [Google Scholar] [CrossRef]
- Chang, L.J.; Chou, C.K.; Mukundan, A.; Karmakar, R.; Chen, T.H.; Syna, S.; Ko, C.Y.; Wang, H.C. Evaluation of Spectral Imaging for Early Esophageal Cancer Detection. Cancers 2025, 17, 2049. [Google Scholar] [CrossRef]
- Yan, J.; Zheng, X.; Liu, Z.; Liu, W.; Lin, D.; Chen, D.; Li, K.; Jiang, W.; Li, Z.; Zuo, N.; et al. Multiphoton imaging provides a superior optical biopsy to that of confocal laser endomicroscopy imaging for colorectal lesions. Endoscopy 2019, 51, 174–178. [Google Scholar] [CrossRef]
- Rivera, D.R.; Brown, C.M.; Ouzounov, D.G.; Webb, W.W.; Xu, C. Multifocal multiphoton endoscope. Opt. Lett. 2012, 37, 1349–1351. [Google Scholar] [CrossRef]
- Waterhouse, D.J.; Januszewicz, W.; Ali, S.; Fitzgerald, R.C.; Di Pietro, M.; Bohndiek, S.E. Spectral endoscopy enhances contrast for neoplasia in surveillance of Barrett’s esophagus. Cancer Res. 2021, 81, 3415–3425. [Google Scholar] [CrossRef]
- Rodriguez-Diaz, E.; Huang, Q.; Cerda, S.R.; O’Brien, M.J.; Bigio, I.J.; Singh, S.K. Endoscopic histological assessment of colonic polyps by using elastic scattering spectroscopy. Gastrointest. Endosc. 2015, 81, 539–547. [Google Scholar] [CrossRef]
- Wan, M.; Li, G.C.; Ma, M.J.; Liu, J.; Li, Z.; Zuo, X.L.; Li, Y.Q. Optical enhancement with magnification versus white-light endoscopy for detecting gastric intestinal metaplasia and neoplasia: A randomized controlled trial. Gastrointest. Endosc. 2025, 102, 337–344.e1. [Google Scholar] [CrossRef]
- Li, M.; Ali, S.M.; Umm-a-OmarahGilani, S.; Liu, J.; Li, Y.Q.; Zuo, X.L. Kudo’s pit pattern classification for colorectal neoplasms: A meta-analysis. World J. Gastroenterol. 2014, 20, 12649. [Google Scholar] [CrossRef]
- Kolb, J.M.; Wani, S. Barrett’s esophagus: Current standards in advanced imaging. Transl. Gastroenterol. Hepatol. 2021, 6, 14. [Google Scholar] [CrossRef]
- Chiam, K.H.; Shin, S.H.; Choi, K.C.; Leiria, F.; Militz, M.; Singh, R. Current status of mucosal imaging with narrow-band imaging in the esophagus. Gut Liver 2020, 15, 492. [Google Scholar] [CrossRef]
- Wolfsen, H.C.; Crook, J.E.; Krishna, M.; Achem, S.R.; Devault, K.R.; Bouras, E.P.; Loeb, D.S.; Stark, M.E.; Woodward, T.A.; Hemminger, L.L.; et al. Prospective, controlled tandem endoscopy study of narrow band imaging for dysplasia detection in Barrett’s Esophagus. Gastroenterology 2008, 135, 24–31. [Google Scholar] [CrossRef]
- Song, J.; Zhang, J.; Wang, J.; Guo, X.; Yu, S.; Wang, J.; Liu, Y.; Dong, W. Meta-analysis of the effects of endoscopy with narrow band imaging in detecting dysplasia in Barrett’s esophagus. Dis. Esophagus 2015, 28, 560–566. [Google Scholar] [CrossRef]
- Thosani, N.; Dayyeh, B.K.A.; Sharma, P.; Aslanian, H.R.; Enestvedt, B.K.; Komanduri, S.; Manfredi, M.; Navaneethan, U.; Maple, J.T.; Pannala, R.; et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE Preservation and Incorporation of Valuable Endoscopic Innovations thresholds for adopting real-time imaging–assisted endoscopic targeted biopsy during endoscopic surveillance of Barrett’s esophagus. Gastrointest. Endosc. 2016, 83, 684–698. [Google Scholar]
- Qumseya, B.J.; Wang, H.; Badie, N.; Uzomba, R.N.; Parasa, S.; White, D.L.; Wolfsen, H.; Sharma, P.; Wallace, M.B. Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with Barrett’s esophagus: A meta-analysis and systematic review. Clin. Gastroenterol. Hepatol. 2013, 11, 1562–1570. [Google Scholar] [CrossRef]
- Weusten, B.L.; Bisschops, R.; Dinis-Ribeiro, M.; Di Pietro, M.; Pech, O.; Spaander, M.C.; Baldaque-Silva, F.; Barret, M.; Coron, E.; Fernández-Esparrach, G.; et al. Diagnosis and management of Barrett esophagus: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy 2023, 55, 1124–1146. [Google Scholar] [CrossRef]
- Longcroft-Wheaton, G.; Fogg, C.; Chedgy, F.; Kandiah, K.; Murray, L.; Dewey, A.; Barr, H.; Higgins, B.; Poller, D.; Jankowski, J.; et al. A feasibility trial of acetic acid-targeted biopsies versus nontargeted quadrantic biopsies during Barrett’s surveillance: The ABBA trial. Endoscopy 2020, 52, 29–36. [Google Scholar] [CrossRef]
- Weusten, B.; Bisschops, R.; Coron, E.; Dinis-Ribeiro, M.; Dumonceau, J.M.; Esteban, J.M.; Hassan, C.; Pech, O.; Repici, A.; Bergman, J.; et al. Endoscopic management of Barrett’s esophagus: European Society of Gastrointestinal Endoscopy (ESGE) position statement. Endoscopy 2017, 49, 191–198. [Google Scholar] [CrossRef]
- Dunbar, K.B.; Canto, M.I. Confocal laser endomicroscopy in Barrett’s esophagus and endoscopically inapparent Barrett’s neoplasia: A prospective, randomized, double-blind, controlled, crossover trial. Gastrointest. Endosc. 2010, 72, 668. [Google Scholar] [CrossRef]
- Wallace, M.B.; Crook, J.E.; Saunders, M.; Lovat, L.; Coron, E.; Waxman, I.; Sharma, P.; Hwang, J.H.; Banks, M.; DePreville, M.; et al. Multicenter, randomized, controlled trial of confocal laser endomicroscopy assessment of residual metaplasia after mucosal ablation or resection of GI neoplasia in Barrett’s esophagus. Gastrointest. Endosc. 2012, 76, 539–547. [Google Scholar] [CrossRef]
- Canto, M.I.; Anandasabapathy, S.; Brugge, W.; Falk, G.W.; Dunbar, K.B.; Zhang, Z.; Woods, K.; Almario, J.A.; Schell, U.; Goldblum, J.; et al. In vivo endomicroscopy improves detection of Barrett’s esophagus–related neoplasia: A multicenter international randomized controlled trial (with video). Gastrointest. Endosc. 2014, 79, 211–221. [Google Scholar] [CrossRef]
- Houston, T.; Sharma, P. Volumetric laser endomicroscopy in Barrett’s esophagus: Ready for primetime. Transl. Gastroenterol. Hepatol. 2020, 5, 27. [Google Scholar] [CrossRef]
- Trindade, A.J.; Leggett, C.L.; Chang, K.J. Volumetric laser endomicroscopy in the management of Barrett’s esophagus. Curr. Opin. Gastroenterol. 2017, 33, 254–260. [Google Scholar] [CrossRef]
- Zhou, C.; Tsai, T.H.; Lee, H.C.; Kirtane, T.; Figueiredo, M.; Tao, Y.K.; Ahsen, O.O.; Adler, D.C.; Schmitt, J.M.; Huang, Q.; et al. Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos). Gastrointest. Endosc. 2012, 76, 32–40. [Google Scholar] [CrossRef]
- Leggett, C.L.; Gorospe, E.; Owens, V.L.; Anderson, M.; Lutzke, L.; Wang, K.K. Volumetric laser endomicroscopy detects subsquamous Barrett’s adenocarcinoma. Off. J. Am. Coll. Gastroenterol. 2014, 109, 298–299. [Google Scholar] [CrossRef]
- Curvers, W.L.; Herrero, L.A.; Wallace, M.B.; Song, L.M.W.K.; Ragunath, K.; Wolfsen, H.C.; Prasad, G.A.; Wang, K.K.; Subramanian, V.; Weusten, B.L.; et al. Endoscopic tri-modal imaging is more effective than standard endoscopy in identifying early-stage neoplasia in Barrett’s esophagus. Gastroenterology 2010, 139, 1106–1114. [Google Scholar] [CrossRef]
- Bird-Lieberman, E.L.; Neves, A.A.; Lao-Sirieix, P.; O’donovan, M.; Novelli, M.; Lovat, L.B.; Eng, W.S.; Mahal, L.K.; Brindle, K.M.; Fitzgerald, R.C. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Nat. Med. 2012, 18, 315–321. [Google Scholar] [CrossRef]
- Gabriels, R.Y.; van Heijst, L.E.; Hooghiemstra, W.T.; van der Waaij, A.M.; Kats-Ugurlu, G.; Karrenbeld, A.; Robinson, D.J.; Tenditnaya, A.; Ntziachristos, V.; Gorpas, D.; et al. Detection of early esophageal neoplastic Barrett lesions with quantified fluorescence molecular endoscopy using cetuximab-800CW. J. Nucl. Med. 2023, 64, 803–808. [Google Scholar] [CrossRef]
- Zuo, X.L.; Li, Z.; Li, C.Q.; Zheng, Y.Y.; Xu, L.D.; Chen, J.; Lin, R.; Song, J.; Yu, C.H.; Yue, M.; et al. Probe-based endomicroscopy for in vivo detection of gastric intestinal metaplasia and neoplasia: A multicenter randomized controlled trial. Endoscopy 2017, 49, 1033–1042. [Google Scholar] [CrossRef]
- Yao, K.; Doyama, H.; Gotoda, T.; Ishikawa, H.; Nagahama, T.; Yokoi, C.; Oda, I.; Machida, H.; Uchita, K.; Tabuchi, M. Diagnostic performance and limitations of magnifying narrow-band imaging in screening endoscopy of early gastric cancer: A prospective multicenter feasibility study. Gastric Cancer 2014, 17, 669–679. [Google Scholar] [CrossRef]
- Ji, R.; Liu, J.; Zhang, M.M.; Li, Y.Y.; Zuo, X.L.; Wang, X.; Li, Y.Q. Optical enhancement imaging versus acetic acid for detecting gastric intestinal metaplasia: A randomized, comparative trial. Dig. Liver Dis. 2020, 52, 651–657. [Google Scholar] [CrossRef]
- Rokkas, T.; Ekmektzoglou, K. Current role of narrow band imaging in diagnosing gastric intestinal metaplasia: A systematic review and meta-analysis of its diagnostic accuracy. Ann. Gastroenterol. 2023, 36, 149. [Google Scholar] [CrossRef]
- Zhou, Y.W.; Zhang, L.Y.; Ding, S.N.; Zhang, A.L.; Zhu, Y.; Chen, Y.X.; Zhang, Q.C.; Sun, L.T.; Yu, J.R. Hesitate between confocal laser endomicroscopy and narrow-band imaging: How to choose a better method in the detection of focal precancerous state of gastric cancer. Am. J. Transl. Res. 2022, 14, 55. [Google Scholar]
- Li, Z.; Zuo, X.L.; Yu, T.; Gu, X.M.; Zhou, C.J.; Li, C.Q.; Ji, R.; Li, Y.Q. Confocal laser endomicroscopy for in vivo detection of gastric intestinal metaplasia: A randomized controlled trial. Endoscopy 2014, 46, 282–290. [Google Scholar] [CrossRef]
- He, X.-k.; Liu, D.; Sun, L.-m. Diagnostic performance of confocal laser endomicroscopy for optical diagnosis of gastric intestinal metaplasia: A meta-analysis. BMC Gastroenterol. 2016, 16, 109. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Ueyama, H.; Yao, T.; Abe, D.; Oki, S.; Suzuki, N.; Ikeda, A.; Yatagai, N.; Akazawa, Y.; Komori, H.; et al. Diagnostic limitations of magnifying endoscopy with narrow-band imaging in early gastric cancer. Endosc. Int. Open 2020, 8, E1233–E1242. [Google Scholar] [CrossRef]
- Be, L. Acetic acid-indigo carmine chromoendoscopy for delineating early gastric cancers: Its usefulness according to histological type. BMC Gastroenterol. 2010, 10, 97. [Google Scholar] [CrossRef]
- Hong, S.M.; Kim, G.H.; Lee, B.E.; Lee, M.W.; Kim, D.M.; Baek, D.H.; Song, G.A. Association between mucin phenotype and lesion border detection using acetic acid–indigo carmine chromoendoscopy in early gastric cancers. Surg. Endosc. 2022, 36, 3183–3191. [Google Scholar] [CrossRef]
- Numata, N.; Oka, S.; Tanaka, S.; Yoshifuku, Y.; Miwata, T.; Sanomura, Y.; Arihiro, K.; Shimamoto, F.; Chayama, K. Useful condition of chromoendoscopy with indigo carmine and acetic acid for identifying a demarcation line prior to endoscopic submucosal dissection for early gastric cancer. BMC Gastroenterol. 2016, 16, 72. [Google Scholar] [CrossRef]
- Laine, L.; Kaltenbach, T.; Barkun, A.; McQuaid, K.R.; Subramanian, V.; Soetikno, R.; East, J.E.; Farraye, F.A.; Feagan, B.; Ioannidis, J.; et al. SCENIC international consensus statement on surveillance and management of dysplasia in inflammatory bowel disease. Gastrointest. Endosc. 2015, 81, 489–501. [Google Scholar] [CrossRef]
- Iacucci, M.; Nardone, O.M.; Ditonno, I.; Capobianco, I.; Pugliano, C.L.; Maeda, Y.; Majumder, S.; Zammarchi, I.; Santacroce, G.; Ghosh, S. Advancing Inflammatory Bowel Disease-Driven Colorectal Cancer Management: Molecular Insights and Endoscopic Breakthroughs Towards Precision Medicine. Clin. Gastroenterol. Hepatol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, L.G.; Kumta, N.A.; Marion, J.F. Beyond the SCENIC route: Updates in chromoendoscopy and dysplasia screening in patients with inflammatory bowel disease. Gastrointest. Endosc. 2022, 95, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Kiesslich, R.; Fritsch, J.; Holtmann, M.; Koehler, H.H.; Stolte, M.; Kanzler, S.; Nafe, B.; Jung, M.; Galle, P.R.; Neurath, M.F. Methylene blue-aided chromoendoscopy for the detection of intraepithelial neoplasia and colon cancer in ulcerative colitis. Gastroenterology 2003, 124, 880–888. [Google Scholar] [CrossRef]
- Iannone, A.; Ruospo, M.; Wong, G.; Principi, M.; Barone, M.; Strippoli, G.F.; Di Leo, A. Chromoendoscopy for surveillance in ulcerative colitis and Crohn’s disease: A systematic review of randomized trials. Clin. Gastroenterol. Hepatol. 2017, 15, 1684–1697. [Google Scholar] [CrossRef]
- Bisschops, R.; Bessissow, T.; Joseph, J.A.; Baert, F.; Ferrante, M.; Ballet, V.; Willekens, H.; Demedts, I.; Geboes, K.; De Hertogh, G.; et al. Chromoendoscopy versus narrow band imaging in UC: A prospective randomised controlled trial. Gut 2018, 67, 1087–1094. [Google Scholar] [CrossRef]
- Kamiński, M.F.; Hassan, C.; Bisschops, R.; Pohl, J.; Pellisé, M.; Dekker, E.; Ignjatovic-Wilson, A.; Hoffman, A.; Longcroft-Wheaton, G.; Heresbach, D.; et al. Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2014, 46, 435–457. [Google Scholar] [CrossRef]
- Efthymiou, M.; Allen, P.B.; Taylor, A.C.; Desmond, P.V.; Jayasakera, C.; De Cruz, P.; Kamm, M.A. Chromoendoscopy versus narrow band imaging for colonic surveillance in inflammatory bowel disease. Inflamm. Bowel Dis. 2013, 19, 2132–2138. [Google Scholar] [CrossRef]
- van den Broek, F.J.; Fockens, P.; van Eeden, S.; Reitsma, J.B.; Hardwick, J.C.; Stokkers, P.C.; Dekker, E. Endoscopic tri-modal imaging for surveillance in ulcerative colitis: Randomised comparison of high-resolution endoscopy and autofluorescence imaging for neoplasia detection; and evaluation of narrow-band imaging for classification of lesions. Gut 2008, 57, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- van den Broek, F.J.; Fockens, P.; van Eeden, S.; Stokkers, P.C.; Ponsioen, C.Y.; Reitsma, J.B.; Dekker, E. Narrow-band imaging versus high-definition endoscopy for the diagnosis of neoplasia in ulcerative colitis. Endoscopy 2011, 43, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Kudo, T.; Jo, Y.; Esaki, M.; Yao, T.; Iida, M. Magnifying colonoscopy with narrow band imaging system for the diagnosis of dysplasia in ulcerative colitis: A pilot study. Gastrointest. Endosc. 2007, 66, 957–965. [Google Scholar] [CrossRef]
- Vleugels, J.L.; Rutter, M.D.; Ragunath, K.; Rees, C.J.; Ponsioen, C.Y.; Lahiff, C.; Ket, S.N.; Wanders, L.K.; Samuel, S.; Butt, F.; et al. Diagnostic accuracy of endoscopic trimodal imaging and chromoendoscopy for lesion characterization in ulcerative colitis. J. Crohn’s Colitis 2018, 12, 1438–1447. [Google Scholar] [CrossRef]
- Lv, X.-H.; Wang, B.-L.; Cao, G.-W. Narrow band imaging for surveillance in inflammatory bowel disease: A systematic review and meta-analysis. J. Clin. Gastroenterol. 2019, 53, 607–615. [Google Scholar] [CrossRef]
- Sinopoulou, V.; Nigam, G.B.; Gordon, M.; Ganeshan, M.; Tokonyai, M.R.; Dolwani, S.; Iacucci, M.; Rutter, M.; Subramanian, V.; Wilson, A.; et al. Comparative efficacy and safety of endoscopic modalities for colorectal cancer screening in inflammatory bowel disease: A systematic review and network meta-analysis. Clin. Gastroenterol. Hepatol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Iacucci, M.; Bonovas, S.; Bazarova, A.; Cannatelli, R.; Ingram, R.J.; Labarile, N.; Nardone, O.M.; Parigi, T.L.; Piovani, D.; Siau, K.; et al. Validation of a new optical diagnosis training module to improve dysplasia characterization in inflammatory bowel disease: A multicenter international study. Gastrointest. Endosc. 2024, 99, 756–766. [Google Scholar] [CrossRef]
- Jans, A.; Sinonquel, P.; Bisschops, R. Advanced Endoscopic Imaging for Dysplasia Characterization in Inflammatory Bowel Disease. Gastrointest. Endosc. Clin. 2025, 35, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.J. Current status of image-enhanced endoscopy in inflammatory bowel disease. Clin. Endosc. 2023, 56, 563–577. [Google Scholar] [CrossRef]
- Buchner, A.M. Challenges in detection and real-time diagnosis of dysplasia in Crohn’s colitis: The search still continues. Gastrointest. Endosc. 2016, 83, 972–974. [Google Scholar] [CrossRef] [PubMed]
- Pohl, J.; Schneider, A.; Vogell, H.; Mayer, G.; Kaiser, G.; Ell, C. Pancolonic chromoendoscopy with indigo carmine versus standard colonoscopy for detection of neoplastic lesions: A randomised two-centre trial. Gut 2011, 60, 485–490. [Google Scholar] [CrossRef]
- Corley, D.A.; Jensen, C.D.; Marks, A.R.; Zhao, W.K.; Lee, J.K.; Doubeni, C.A.; Zauber, A.G.; De Boer, J.; Fireman, B.H.; Schottinger, J.E.; et al. Adenoma detection rate and risk of colorectal cancer and death. N. Engl. J. Med. 2014, 370, 1298–1306. [Google Scholar] [CrossRef]
- Hewett, D.G.; Kaltenbach, T.; Sano, Y.; Tanaka, S.; Saunders, B.P.; Ponchon, T.; Soetikno, R.; Rex, D.K. Validation of a simple classification system for endoscopic diagnosis of small colorectal polyps using narrow-band imaging. Gastroenterology 2012, 143, 599–607. [Google Scholar] [CrossRef]
- Sano, Y.; Tanaka, S.; Kudo, S.E.; Saito, S.; Matsuda, T.; Wada, Y.; Fujii, T.; Ikematsu, H.; Uraoka, T.; Kobayashi, N.; et al. Narrow-band imaging (NBI) magnifying endoscopic classification of colorectal tumors proposed by the Japan NBI Expert Team. Dig. Endosc. 2016, 28, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Minoda, Y.; Ogino, H.; Chinen, T.; Ihara, E.; Haraguchi, K.; Akiho, H.; Takizawa, N.; Aso, A.; Tomita, Y.; Esaki, M.; et al. Objective validity of the Japan Narrow-Band Imaging Expert Team classification system for the differential diagnosis of colorectal polyps. Dig. Endosc. 2019, 31, 544–551. [Google Scholar] [CrossRef]
- McGill, S.K.; Evangelou, E.; Ioannidis, J.P.; Soetikno, R.M.; Kaltenbach, T. Narrow band imaging to differentiate neoplastic and non-neoplastic colorectal polyps in real time: A meta-analysis of diagnostic operating characteristics. Gut 2013, 62, 1704–1713. [Google Scholar] [CrossRef]
- Patrun, J.; Okreša, L.; Iveković, H.; Rustemović, N. Diagnostic accuracy of NICE classification system for optical recognition of predictive morphology of colorectal polyps. Gastroenterol. Res. Pract. 2018, 2018, 7531368. [Google Scholar] [CrossRef]
- Utsumi, T.; Iwatate, M.; Sano, W.; Sunakawa, H.; Hattori, S.; Hasuike, N.; Sano, Y. Polyp detection, characterization, and management using narrow-band imaging with/without magnification. Clin. Endosc. 2015, 48, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, E.M.; Turgeon, D.K.; Stockwell, D.H.; Normolle, D.P.; Tuck, M.K.; Marcon, N.E.; Baron, J.A.; Bresalier, R.S.; Arber, N.; Ruffin, M.T.; et al. Chromoendoscopy detects more adenomas than colonoscopy using intensive inspection without dye spraying. Cancer Prev. Res. 2008, 1, 507–513. [Google Scholar] [CrossRef]
- European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2014, 46, 435–457. [CrossRef]
- Sanduleanu, S.; Driessen, A.; Gomez–Garcia, E.; Hameeteman, W.; de Bruïne, A.; Masclee, A. In vivo diagnosis and classification of colorectal neoplasia by chromoendoscopy-guided confocal laser endomicroscopy. Clin. Gastroenterol. Hepatol. 2010, 8, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.J.; Li, C.Q.; Zuo, X.L.; Yu, T.; Gu, X.M.; Li, Z.; Ji, R.; Wang, Q.; Li, Y.Q. Differentiation of colonic polyps by confocal laser endomicroscopy. Endoscopy 2011, 43, 87–93. [Google Scholar] [CrossRef]
- Dong, Y.Y.; Li, Y.Q.; Yu, Y.B.; Liu, J.; Li, M.; Luan, X.R. Meta-analysis of confocal laser endomicroscopy for the detection of colorectal neoplasia. Color. Dis. 2013, 15, e488–e495. [Google Scholar]
- Zhang, H.; Yang, X.; Tao, Y.; Zhang, X.; Huang, X. Diagnostic accuracy of endocytoscopy via artificial intelligence in colorectal lesions: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0294930. [Google Scholar]
- Nagai, M.; Suzuki, S.; Minato, Y.; Ishibashi, F.; Mochida, K.; Ohata, K.; Morishita, T. Detecting colorectal lesions with image-enhanced endoscopy: An updated review from clinical trials. Clin. Endosc. 2023, 56, 553–562. [Google Scholar] [CrossRef]
- Park, D.K.; Kim, E.J.; Im, J.P.; Lim, H.; Lim, Y.J.; Byeon, J.S.; Kim, K.O.; Chung, J.W.; Kim, Y.J. A prospective multicenter randomized controlled trial on artificial intelligence assisted colonoscopy for enhanced polyp detection. Sci. Rep. 2024, 14, 25453. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, R.; Liu, C.; Liu, H.; Cui, Z.; Guo, Z.; Zhao, W.; Zhong, X.; Zhang, X.; Li, J.; et al. Automatic Quality Control System and Adenoma Detection Rates During Routine Colonoscopy: A Randomized Clinical Trial. JAMA Netw. Open 2025, 8, e2457241. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Luo, H.; Lamm, V.; Li, S.; Thakur, S.; Zhou, C.; Hollander, T.; Cho, D.; Sloan, E.; Liu, J.; et al. In vivo evaluation of complex polyps with endoscopic optical coherence tomography and deep learning during routine colonoscopy: A feasibility study. Sci. Rep. 2024, 14, 27930. [Google Scholar] [CrossRef] [PubMed]
- Rees, C.J.; Rajasekhar, P.T.; Wilson, A.; Close, H.; Rutter, M.D.; Saunders, B.P.; East, J.E.; Maier, R.; Moorghen, M.; Muhammad, U.; et al. Narrow band imaging optical diagnosis of small colorectal polyps in routine clinical practice: The Detect Inspect Characterise Resect and Discard 2 (DISCARD 2) study. Gut 2017, 66, 887–895. [Google Scholar]
- Cotter, J.; Magalhães, J.; de Castro, F.D.; Barbosa, M.; Carvalho, P.B.; Leite, S.; Moreira, M.J.; Rosa, B. Virtual chromoendoscopy in small bowel capsule endoscopy: New light or a cast of shadow? World J. Gastrointest. Endosc. 2014, 6, 359. [Google Scholar] [CrossRef]
- Imagawa, H.; Oka, S.; Tanaka, S.; Noda, I.; Higashiyama, M.; Sanomura, Y.; Shishido, T.; Yoshida, S.; Chayama, K. Improved detectability of small-bowel lesions via capsule endoscopy with computed virtual chromoendoscopy: A pilot study. Scand. J. Gastroenterol. 2011, 46, 1133–1137. [Google Scholar] [CrossRef]
- Krystallis, C.; Koulaouzidis, A.; Douglas, S.; Plevris, J.N. Chromoendoscopy in small bowel capsule endoscopy: Blue mode or Fuji Intelligent Colour Enhancement? Dig. Liver Dis. 2011, 43, 953–957. [Google Scholar] [CrossRef]
- Toskas, A.; Laskaratos, F.-M.; Coda, S. Virtual chromoendoscopy in capsule endoscopy: A narrative review. Diagnostics 2022, 12, 1818. [Google Scholar] [CrossRef]
- Shi, H.; Pang, S.; Ming, F.; Yangdai, T.; Tian, S.; Lin, R. A novel intelligent chromo capsule endoscope for the diagnosis of neoplastic lesions in the gastrointestinal tract. Gastroenterol. Rep. 2023, 11, goad021. [Google Scholar] [CrossRef] [PubMed]
- Ogata, N.; Ohtsuka, K.; Ogawa, M.; Maeda, Y.; Ishida, F.; Kudo, S.E. Image-enhanced capsule endoscopy improves the identification of small intestinal lesions. Diagnostics 2021, 11, 2122. [Google Scholar] [CrossRef]
- Smith, I.; Kline, P.E.; Gaidhane, M.; Kahaleh, M. A review on the use of confocal laser endomicroscopy in the bile duct. Gastroenterol. Res. Pract. 2012, 2012, 454717. [Google Scholar] [CrossRef] [PubMed]
- Meining, A.; Shah, R.J.; Slivka, A.; Pleskow, D.; Chuttani, R.; Stevens, P.D.; Becker, V.; Chen, Y.K. Classification of probe-based confocal laser endomicroscopy findings in pancreaticobiliary strictures. Endoscopy 2012, 44, 251–257. [Google Scholar] [CrossRef]
- Matar, A.; Charville, G.; Lam, M.; El-Dika, S. Pancreas cystic lesion with surprise findings on confocal laser endomicroscopy. VideoGIE 2025, 10, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Rogowska, J.; Semeradt, J.; Durko, Ł.; Małecka-Wojciesko, E. Diagnostics and Management of Pancreatic Cystic Lesions—New Techniques and Guidelines. J. Clin. Med. 2024, 13, 4644. [Google Scholar] [CrossRef] [PubMed]
- Krishna, S.; Abdelbaki, A.; Hart, P.A.; Machicado, J.D. Endoscopic ultrasound-guided needle-based confocal endomicroscopy as a diagnostic imaging biomarker for intraductal papillary mucinous neoplasms. Cancers 2024, 16, 1238. [Google Scholar] [CrossRef] [PubMed]
- Caillol, F.; Filoche, B.; Gaidhane, M.; Kahaleh, M. Refined probe-based confocal laser endomicroscopy classification for biliary strictures: The Paris Classification. Dig. Dis. Sci. 2013, 58, 1784–1789. [Google Scholar] [CrossRef]
- Wen, L.J.; Chen, J.H.; Xu, H.J.; Yu, Q.; Liu, K. Efficacy and safety of digital single-operator cholangioscopy in the diagnosis of indeterminate biliary strictures by targeted biopsies: A systematic review and meta-analysis. Diagnostics 2020, 10, 666. [Google Scholar] [CrossRef]
- Robles-Medranda, C.; Baquerizo-Burgos, J.; Puga-Tejada, M.; Cunto, D.; Egas-Izquierdo, M.; Mendez, J.C.; Arevalo-Mora, M.; Vasquez, J.A.; Lukashok, H.; Tabacelia, D. Cholangioscopy-based convoluted neuronal network vs. confocal laser endomicroscopy in identification of neoplastic biliary strictures. Endosc. Int. Open 2024, 12, E1118–E1126. [Google Scholar] [CrossRef]
Modality | Principle | Manufacturer/Platform | Clinical Role | Evidence Level | Key Limitations |
---|---|---|---|---|---|
White-Light Endoscopy (WLE) | Broad-spectrum visible light illumination | Universal | Baseline endoscopic imaging for all GI disorders | Gold standard, foundation | Limited sensitivity for subtle/flat lesions, no subsurface detail |
Narrow-Band Imaging (NBI) | Optical filters (blue/green narrow bands) accentuate hemoglobin absorption | Olympus | Barrett’s surveillance, early gastric cancer, colon polyp detection | Strong RCTs and guideline-endorsed | Platform-specific; learning curve |
FICE (Fuji Intelligent Color Enhancement) | Digital spectral post-processing | Fujifilm | Colon polyp characterization, gastric lesion assessment | Moderate; smaller clinical studies | Less validated vs. NBI; platform-specific |
i-SCAN | Digital image post-processing (surface, contrast, tone enhancement) | Pentax | Barrett’s esophagus, IBD assessment, colon polyps | Moderate; clinical feasibility data | Limited RCT evidence; adoption tied to platform |
Autofluorescence Imaging (AFI) | Excites intrinsic mucosal fluorophores | Olympus (integrated in some systems) | Early neoplasia detection (Barrett’s, gastric, lung) | High sensitivity but poor specificity | False positives (40–80%), reduced adoption |
Fluorescence Molecular Imaging (FMI) | Exogenous fluorescent probes (antibodies, peptides) | Experimental | Targeted dysplasia/neoplasia detection | Early-phase, pilot human studies | Regulatory barriers, probe approval |
Confocal Laser Endomicroscopy (CLE) | Laser scanning confocal optics for cellular imaging | Mauna Kea (Cellvizio) | Optical biopsy in Barrett’s, gastric IM, IBD surveillance | RCTs show high accuracy | Cost, training, limited availability |
Endocytoscopy | Ultra-high magnification endoscopy | Olympus (prototype) | In vivo nuclear/cellular visualization | Early clinical studies | Niche use, training-intensive |
Optical Coherence Tomography (OCT/VLE) | Low-coherence interferometry, cross-sectional “optical ultrasound” | NinePoint, others | Barrett’s staging, biliary/pancreatic strictures | Feasibility and pilot studies | Complex workflow, niche adoption |
Raman Spectroscopy | Inelastic light scattering → molecular fingerprint | Experimental | Differentiation of benign vs. malignant lesions | Pilot studies | Weak signal, technical complexity |
Photoacoustic Imaging (PAI) | Laser-induced ultrasound emission | Experimental | Functional and structural GI imaging | Preclinical/early clinical | Limited translation, device miniaturization |
Hyperspectral/Multispectral Imaging | Captures wide/multiple wavelength bands | Experimental | Tissue “spectral mapping” for neoplasia detection | Pilot human studies | Still experimental, workflow issues |
Multiphoton Microscopy | Two-photon excitation, deep 3D imaging | Experimental | High-resolution “optical biopsy” | Preclinical studies | Not miniaturized, limited to labs |
Modality | Performance | Guideline Status | Advantages | Limitations |
---|---|---|---|---|
NBI | Sensitivity ~91%, specificity ~85%; fewer biopsies (3.6 vs. 7.6); higher dysplasia yield (30% vs. 21%) | ASGE and ESGE endorsed as alternative to Seattle in expert centers | Most validated; reduces biopsy burden, improves dysplasia detection | Requires expertise; guidelines still recommend combining with random biopsies outside expert centers |
Acetic Acid CE | ~10-fold fewer biopsies; maintained HGD/CA detection | ESGE validated in expert centers; not routine | Inexpensive; safe; effective for dysplasia detection | Extra procedure time (2–8 min); learning curve; not widely adopted |
CLE | Mixed RCT results; sensitivity up to 96%; some trials negative | Not guideline-endorsed | Provides real-time, high-resolution imaging | Costly; fluorescein required; limited availability; narrow field of view |
OCT/VLE | Detects buried glands; sensitivity ~92%, low specificity | Investigational | Adds subsurface imaging, staging value | High cost; complex workflow; expert interpretation required |
AFI | Minimal yield (+2%); false positives 70–80% | Not recommended | Initially promising for neoplasia detection | Very poor specificity; abandoned in practice |
FMI | Feasible in pilot studies; targeted probe-based detection | Investigational | Early-stage research only | Potential for molecular targeting |
Modality | Performance | Guideline Status | Advantages | Limitations |
---|---|---|---|---|
NBI (magnification) | Accuracy >90%; pooled sensitivity/specificity ~85–90% | ESGE and Asian guidelines endorsed | First-line, practical tool; widely available; high accuracy | Operator dependent; reduced sensitivity in subtle/patchy GIM |
CLE | Sensitivity 97%, specificity 94%; reduced biopsy burden by ~68% | Not guideline-endorsed | Optical biopsy; reduces need for random biopsies | High cost; fluorescein use; limited to expert centers |
Acetic Acid/FICE/i-SCAN | Modest incremental accuracy; improves when combined with CLE | Limited evidence | Useful adjuncts in some contexts | Not reliable stand-alone tools; lack widespread validation |
OCT, AFI, Raman | Feasibility data only | Investigational | Potential for early-stage research | Not validated; no established clinical application |
Modality | Performance (Evidence) | Guideline Status | Advantages | Limitations |
---|---|---|---|---|
NBI (magnification) | Accuracy up to 98%; sensitivity ~86%, specificity ~99% | ESGE and Japanese guidelines endorsed | First-line for detection and characterization | Requires expertise; reduced sensitivity for fundic gland-type cancers |
Acetic Acid Chromoendoscopy | Improves margin delineation; reduces positive lateral margins after ESD | ESGE endorsed in expert centers | Gold standard for resection planning | adds 2–8 min; requires training; limited use outside expert centers |
CLE | Confirms neoplasia but limited for margin mapping | Not guideline-endorsed | Adjunct for histology-like confirmation | High cost; narrow field; limited availability |
OCT/AFI | Limited pilot data | Investigational | Potential research applications | Not validated; no established clinical role |
Modality | Performance (Evidence) | Guideline Status | Advantages | Limitations |
---|---|---|---|---|
Dye-spray CE (indigo carmine/methylene blue) | 2–3x higher dysplasia detection vs. WLE; fewer biopsies | SCENIC and ESGE: Preferred strategy | Reference standard; highest yield | Adds 10–15 min; requires training; limited uptake outside expert centers |
Virtual CE (NBI, FICE, i-SCAN) | Equivalent to HD-WLE; inferior to CE for flat lesions; faster and dye-free | SCENIC and ESGE: Acceptable alternative if dye CE impractical | Widely available; practical alternative; reduces random biopsies | Lower sensitivity for flat lesions; generally not superior to dye CE |
CLE | Real-time histology-like imaging; sensitivity ~90%, | Not guideline-endorsed | reduces need for random biopsies | High cost; fluorescein use; narrow field; requires expertise |
AFI | High false positives (50–80%); minimal incremental yield | Not recommended | Initially explored as adjunct | Abandoned due to poor specificity |
OCT, Raman, others | Feasibility only | Investigational | Potential research applications | Not validated; research use only |
Modality | Performance | Guideline Status | Advantages | Limitations |
---|---|---|---|---|
NBI (NICE/JNET/WASP) | Sensitivity up to 93%, specificity 83%; accuracy ~90% in experts, ~89% in community; WASP improves SSL detection; PIVI met in expert hands | ASGE PIVI thresholds met in expert centers; guideline-endorsed for optical diagnosis | First-line for real-time characterization; supports resect-and-discard and diagnose-and-leave strategies | Performance lower in non-expert settings; less accurate for SSLs |
Dye-based CE | ADR ↑ 11% vs. HD-WLE; superior for flat and serrated lesions; adds 10–15 min | ESGE endorsed in high-risk/flat lesion surveillance | Most sensitive for flat/serrated lesions | Extra procedure time; requires training; limited uptake outside tertiary centers |
CLE | Diagnostic accuracies >90% in trials; meta-analysis: sens 81%, spec 88% | Not guideline-endorsed | Enables in-vivo histology; reduces random biopsies | High cost, fluorescein required, limited to expert centers |
Endocytoscopy (EC) | Accuracy >95% in expert series; AI-assisted meta-analysis: acc 93%, sens 94% | Not guideline-endorsed | Ultra-high magnification; promising for AI-assisted diagnosis | Technically demanding; limited to research/expert use |
LCI | ADR 58.7% vs. 46.7% with HD-WLE | Investigational | Emerging tool; may improve ADR | Limited evidence |
AI-assisted colonoscopy | Significant ADR gains without added time | Not guideline-endorsed (evidence growing) | Improves ADR efficiently; practical adjunct | Still investigational; generalizability and training data evolving |
OCT | Feasible for in vivo invasion depth and lesion differentiation | Investigational | Subsurface staging | Limited availability; confined to expert centers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bidani, K.; Moond, V.; Nagar, M.; Broder, A.; Thosani, N. Optical Imaging Technologies and Clinical Applications in Gastrointestinal Endoscopy. Diagnostics 2025, 15, 2625. https://doi.org/10.3390/diagnostics15202625
Bidani K, Moond V, Nagar M, Broder A, Thosani N. Optical Imaging Technologies and Clinical Applications in Gastrointestinal Endoscopy. Diagnostics. 2025; 15(20):2625. https://doi.org/10.3390/diagnostics15202625
Chicago/Turabian StyleBidani, Khyati, Vishali Moond, Madhvi Nagar, Arkady Broder, and Nirav Thosani. 2025. "Optical Imaging Technologies and Clinical Applications in Gastrointestinal Endoscopy" Diagnostics 15, no. 20: 2625. https://doi.org/10.3390/diagnostics15202625
APA StyleBidani, K., Moond, V., Nagar, M., Broder, A., & Thosani, N. (2025). Optical Imaging Technologies and Clinical Applications in Gastrointestinal Endoscopy. Diagnostics, 15(20), 2625. https://doi.org/10.3390/diagnostics15202625