Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,801)

Search Parameters:
Keywords = detrimental effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3573 KiB  
Article
Combining Time-Restricted Wheel Running and Feeding During the Light Phase Increases Running Intensity Under High-Fat Diet Conditions Without Altering the Total Amount of Daily Running
by Ayano Shiba, Roberta Tandari, Ewout Foppen, Chun-Xia Yi, Joram D. Mul, Dirk Jan Stenvers and Andries Kalsbeek
Int. J. Mol. Sci. 2025, 26(15), 7658; https://doi.org/10.3390/ijms26157658 (registering DOI) - 7 Aug 2025
Abstract
Excess caloric intake and insufficient physical activity are the two major drivers underlying the global obesity and type 2 diabetes mellitus epidemics. However, circadian misalignment of caloric intake and physical activity, as commonly experienced by nightshift workers, can also have detrimental effects on [...] Read more.
Excess caloric intake and insufficient physical activity are the two major drivers underlying the global obesity and type 2 diabetes mellitus epidemics. However, circadian misalignment of caloric intake and physical activity, as commonly experienced by nightshift workers, can also have detrimental effects on body weight and glucose homeostasis. We have previously reported that combined restriction of eating and voluntary wheel running to the inactive phase (i.e., a rat model for circadian misalignment) shifted liver and muscle clock rhythms by ~12 h and prevented the reduction in the amplitude of the muscle clock oscillation otherwise induced by light-phase feeding. Here, we extended on these findings and investigated how a high-fat diet (HFD) affects body composition and liver and muscle clock gene rhythms in male Wistar rats while restricting both eating and exercise to either the inactive or active phase. To do this, we used four experimental conditions: sedentary controls with no wheel access on a non-obesogenic diet (NR), sedentary controls with no wheel access on an HFD (NR-H), and two experimental groups on an HFD with simultaneous access to a running wheel and HFD time-restricted to either the light phase (light-run-light-fed + HFD, LRLF-H) or the dark phase (dark-run-dark-fed + HFD. DRDF-H). Consumption of an HFD did not alter the daily running distance of the time-restricted groups but did increase the running intensity in the LRLF-H group compared to a previously published LRLF chow fed group. However, no such increase was observed for the DRDF-H group. LRLF-H ameliorated light phase-induced disturbances in the soleus clock more effectively than under chow conditions and had a protective effect against HFD-induced changes in liver clock gene expression. Together with (our) previously published results, these data suggest that eating healthy and being active at the wrong time of the day can be as detrimental as eating unhealthy and being active at the right time of the day. Full article
(This article belongs to the Special Issue Molecular Research on Diabetes and Obesity)
22 pages, 4651 KiB  
Review
Potential Issues and Optimization Solutions for High-Compression-Ratio Utilization in Hybrid-Dedicated Gasoline Engines
by Qiuyu Liu, Baitan Ma, Zhiqiang Zhang, Chunyun Fu and Zhe Kang
Energies 2025, 18(15), 4204; https://doi.org/10.3390/en18154204 (registering DOI) - 7 Aug 2025
Abstract
This systematic review critically examines the benefits and challenges of high-compression-ratio (CR) implementation in hybrid-dedicated engines, recognizing CR increase as a pivotal strategy for enhancing the indicated thermal efficiency to achieve carbon peak and carbon neutrality goals. However, excessively high CRs face critical [...] Read more.
This systematic review critically examines the benefits and challenges of high-compression-ratio (CR) implementation in hybrid-dedicated engines, recognizing CR increase as a pivotal strategy for enhancing the indicated thermal efficiency to achieve carbon peak and carbon neutrality goals. However, excessively high CRs face critical constraints, including intensified knock propensity, increased heat transfer (HTR) losses, reduced combustion stability, augmented dissociation losses, and cold-start misfire risks. The feasibility and necessity of CR enhancement in hybrid systems were comprehensively evaluated based on these factors, with fundamental mechanisms of the detrimental effects elucidated. To address these challenges, optimized countermeasures were synthesized: knock suppression via high-octane fuels, EGR technology, lean combustion, and in-cylinder water injection; heat transfer reduction through thermal barrier coatings and independent CR/expansion-ratio control; misfire risk monitoring using ion current or cylinder pressure sensors. These approaches provide viable pathways to overcome high-CR limitations and optimize engine performance. Nevertheless, current research remains confined to isolated solutions, warranting future focus on integrated optimization mechanisms investigating synergistic interactions of multiple strategies under high-CR conditions. Full article
Show Figures

Figure 1

31 pages, 4843 KiB  
Review
Glucocorticoid-Mediated Skeletal Muscle Atrophy: Molecular Mechanisms and Potential Therapeutic Targets
by Uttapol Permpoon, Jiyeong Moon, Chul Young Kim and Tae-gyu Nam
Int. J. Mol. Sci. 2025, 26(15), 7616; https://doi.org/10.3390/ijms26157616 - 6 Aug 2025
Abstract
Skeletal muscle atrophy is a critical health issue affecting the quality of life of elderly individuals and patients with chronic diseases. These conditions induce dysregulation of glucocorticoid (GC) secretion. GCs play a critical role in maintaining homeostasis in the stress response and glucose [...] Read more.
Skeletal muscle atrophy is a critical health issue affecting the quality of life of elderly individuals and patients with chronic diseases. These conditions induce dysregulation of glucocorticoid (GC) secretion. GCs play a critical role in maintaining homeostasis in the stress response and glucose metabolism. However, prolonged exposure to GC is directly linked to muscle atrophy, which is characterized by a reduction in muscle size and weight, particularly affecting fast-twitch muscle fibers. The GC-activated glucocorticoid receptor (GR) decreases protein synthesis and facilitates protein breakdown. Numerous antagonists have been developed to mitigate GC-induced muscle atrophy, including 11β-HSD1 inhibitors and myostatin and activin receptor blockers. However, the clinical trial results have fallen short of the expected efficacy. Recently, several emerging pathways and targets have been identified. For instance, GC-induced sirtuin 6 isoform (SIRT6) expression suppresses AKT/mTORC1 signaling. Lysine-specific demethylase 1 (LSD1) cooperates with the GR for the transcription of atrogenes. The kynurenine pathway and indoleamine 2,3-dioxygenase 1 (IDO-1) also play crucial roles in protein synthesis and energy production in skeletal muscle. Therefore, a deeper understanding of the complexities of GR transactivation and transrepression will provide new strategies for the discovery of novel drugs to overcome the detrimental effects of GCs on muscle tissues. Full article
(This article belongs to the Special Issue Understanding Aging in Health and Disease)
Show Figures

Figure 1

20 pages, 1753 KiB  
Article
Vitamin E Enhances Immune Function and the Intestinal Histological Structure by Regulating the Nodal-Mediated Signaling Pathway: A Case Study on the Sea Cucumber Apostichopus japonicus
by Zitong Wang, Yan Wang, Xianyu Wang, Guangyao Zhao, Haiqing Zeng, Haoran Xiao, Lingshu Han, Jun Ding, Yaqing Chang and Rantao Zuo
Biology 2025, 14(8), 1008; https://doi.org/10.3390/biology14081008 - 6 Aug 2025
Abstract
The histological integrity of the intestine depends on the tight and orderly arrangement of epithelial cells within the intestinal villi. Nodal, a transforming growth factor-β (TGF-β) family member, has been reported to promote epithelial cell proliferation. Collagen not only establishes physical connections [...] Read more.
The histological integrity of the intestine depends on the tight and orderly arrangement of epithelial cells within the intestinal villi. Nodal, a transforming growth factor-β (TGF-β) family member, has been reported to promote epithelial cell proliferation. Collagen not only establishes physical connections between adjacent cells but also serves as an anchoring platform for cell adhesion and regeneration processes. Therefore, a 21-day feeding trial was conducted using RNA interference to investigate the role of the Nodal gene in regulating intestinal collagen synthesis and histological structure integrity in juvenile A. japonicus fed diets containing graded levels of vitamin E (VE) (0, 200, and 400 mg/kg). The results showed that the addition of 200 mg/kg VE significantly improved the growth rate, immune enzyme activities and related gene expression, as well as intestinal villus morphology. Additionally, the addition of 200 mg/kg VE upregulated the expression of Nodal, which activated the expression of collagen synthesis-related genes and promoted collagen deposition in the intestines of A. japonicus. After Nodal gene knockdown, A. japonicus presented a decreased growth rate, damage to the intestinal histological structure, and impaired collagen synthesis, with the most notable findings observed in A. japonicus fed diets without VE addition. However, these detrimental effects were eliminated to some extent by the addition of 200 mg/kg VE. These findings indicate that VE improves immune function and intestinal histological structure in A. japonicus through a Nodal-dependent pathway. Full article
(This article belongs to the Special Issue Current Advances in Echinoderm Research (2nd Edition))
Show Figures

Figure 1

52 pages, 3790 KiB  
Article
The Identification and Analysis of Novel Umami Peptides in Lager Beer and Their Multidimensional Effects on the Sensory Attributes of the Beer Body
by Yashuai Wu, Ruiyang Yin, Liyun Guo, Yumei Song, Xiuli He, Mingtao Huang, Yi Ren, Xian Zhong, Dongrui Zhao, Jinchen Li, Mengyao Liu, Jinyuan Sun, Mingquan Huang and Baoguo Sun
Foods 2025, 14(15), 2743; https://doi.org/10.3390/foods14152743 - 6 Aug 2025
Abstract
This study was designed to systematically identify novel umami peptides in lager beer, clarify their molecular interactions with the T1R1/T1R3 receptor, and determine their specific effects on multidimensional sensory attributes. The peptides were characterized by LC-MS/MS combined with de novo sequencing, and 906 [...] Read more.
This study was designed to systematically identify novel umami peptides in lager beer, clarify their molecular interactions with the T1R1/T1R3 receptor, and determine their specific effects on multidimensional sensory attributes. The peptides were characterized by LC-MS/MS combined with de novo sequencing, and 906 valid sequences were obtained. Machine-learning models (UMPred-FRL, Tastepeptides-Meta, and Umami-MRNN) predicted 76 potential umami peptides. These candidates were docked to T1R1/T1R3 with the CDOCKER protocol, producing 57 successful complexes. Six representative peptides—KSTEL, DELIK, DIGISSK, IEKYSGA, DEVR, and PVPL—were selected for 100 ns molecular-dynamics simulations and MM/GBSA binding-energy calculations. All six peptides stably occupied the narrow cleft at the T1R1/T1R3 interface. Their binding free energies ranked as DEVR (−44.09 ± 5.47 kcal mol−1) < KSTEL (−43.21 ± 3.45) < IEKYSGA (−39.60 ± 4.37) ≈ PVPL (−39.53 ± 2.52) < DELIK (−36.14 ± 3.11) < DIGISSK (−26.45 ± 4.52). Corresponding taste thresholds were 0.121, 0.217, 0.326, 0.406, 0.589, and 0.696 mmol L−1 (DEVR < KSTEL < IEKYSGA < DELIK < PVPL < DIGISSK). TDA-based sensory validation with single-factor additions showed that KSTEL, DELIK, DEVR, and PVPL increased umami scores by ≈21%, ≈22%, ≈17%, and ≈11%, respectively, while DIGISSK and IEKYSGA produced marginal changes (≤2%). The short-chain peptides thus bound with high affinity to T1R1/T1R3 and improved core taste and mouthfeel but tended to amplify certain off-flavors, and the long-chain peptides caused detrimental impacts. Future formulation optimization should balance flavor enhancement and off-flavor suppression, providing a theoretical basis for targeted brewing of umami-oriented lager beer. Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 312 KiB  
Article
Pimelea and Its Toxicity: A Survey of Landholder Experiences and Management Practices
by Rashid Saleem, Shane Campbell, Mary T. Fletcher, Sundaravelpandian Kalaipandian and Steve W. Adkins
Toxins 2025, 17(8), 393; https://doi.org/10.3390/toxins17080393 - 6 Aug 2025
Abstract
Pimelea is one of the highly toxic plants in Australia, particularly affecting cattle. It contains simplexin, a potent toxin that can cause Pimelea poisoning (St. George Disease) in livestock. A survey was conducted to assess the current impact of Pimelea on livestock production, [...] Read more.
Pimelea is one of the highly toxic plants in Australia, particularly affecting cattle. It contains simplexin, a potent toxin that can cause Pimelea poisoning (St. George Disease) in livestock. A survey was conducted to assess the current impact of Pimelea on livestock production, pasture systems, and financial losses among agricultural producers. In addition, information was also sought about the environmental conditions that facilitate its growth and the effectiveness of existing management strategies. The survey responses were obtained from producers affected by Pimelea across nine different Local Government Areas, through three States, viz., Queensland, New South Wales, and South Australia. Pimelea was reported to significantly affect animal production, with 97% of producers surveyed acknowledging its detrimental effects. Among livestock, cattle were the most severely affected (94%), when compared to sheep (13%), goats (3%), and horses (3%). The presence of Pimelea was mostly observed in spring (65%) and winter (48%), although 29% of respondents indicated that it could be present all year-round under favorable rainfall conditions. Germination was associated with light to moderate rainfall (52%), while only 24% linked it to heavy rainfall. Pimelea simplex F. Muell. was the most frequently encountered species (71%), followed by Pimelea trichostachya Lindl. (26%). Infestations were reported to occur annually by 47% of producers, with 41% noting occurrences every 2 to 5 years. Financially, producers estimated average annual losses of AUD 67,000, with 50% reporting an average of 26 cattle deaths per year, reaching up to 105 deaths in severe years. Some producers were spending up to AUD 2100 per annum to manage Pimelea. While chemical and physical controls were commonly employed, integrating competitive pastures and alternative livestock, such as sheep and goats, was considered as a potential management strategy. This study reiterates the need for further research on sustainable pasture management practices to reduce Pimelea-related risks to livestock and agricultural production systems. Full article
(This article belongs to the Special Issue Plant Toxin Emergency)
51 pages, 2489 KiB  
Review
Immunomodulatory Effects of Gold Nanoparticles: Impacts on Immune Cells and Mechanisms of Action
by Khadijeh Koushki, Prapannajeet Biswal, Geraldine Vidhya Vijay, Mahvash Sadeghi, Sajad Dehnavi, Ngoc Tuyet Tra, Sai Kumar Samala, Mahdieh Yousefi Taba, Arjun Balaji Vasan, Emily Han, Yuri Mackeyev and Sunil Krishnan
Nanomaterials 2025, 15(15), 1201; https://doi.org/10.3390/nano15151201 - 6 Aug 2025
Abstract
Traditional anti-inflammatory medications—such as corticosteroids, biological agents, and non-steroidal anti-inflammatory drugs—are commonly employed to mitigate inflammation, despite their potential for debilitating side effects. There is a growing need for alternative next-generation therapies for symptomatic, unchecked, and/or detrimental inflammation with more favorable adverse effect [...] Read more.
Traditional anti-inflammatory medications—such as corticosteroids, biological agents, and non-steroidal anti-inflammatory drugs—are commonly employed to mitigate inflammation, despite their potential for debilitating side effects. There is a growing need for alternative next-generation therapies for symptomatic, unchecked, and/or detrimental inflammation with more favorable adverse effect profiles. The long history of use of gold salts as anti-inflammatory agents and the more recent exploration of gold nanoparticle (AuNP) formulations for clinical indications suggest that the targeted delivery of nanoparticles to inflammatory sites may be a promising approach worth investigating. Coupled with peptides that specifically target immune cells, AuNPs could potently counteract inflammation. Here, we provide an overview of the selective infiltration of AuNPs into immune cells and summarize their interactions with and impact on these cells. Additionally, we provide a comprehensive mechanistic summary of how AuNPs exert their anti-inflammatory effects. Full article
(This article belongs to the Special Issue Roadmaps for Nanomaterials in Radiation Therapy)
Show Figures

Figure 1

15 pages, 7500 KiB  
Article
Large-Scale Spatiotemporal Patterns of Burned Areas and Fire-Driven Mortality in Boreal Forests (North America)
by Wendi Zhao, Qingchen Zhu, Qiuling Chen, Xiaohan Meng, Kexu Song, Diego I. Rodriguez-Hernandez, Manuel Esteban Lucas-Borja, Demetrio Antonio Zema, Tong Zhang and Xiali Guo
Forests 2025, 16(8), 1282; https://doi.org/10.3390/f16081282 - 6 Aug 2025
Abstract
Due to climate effects and human influences, wildfire regimes in boreal forests are changing, leading to profound ecological consequences, including shortened fire return intervals and elevated tree mortality. However, a critical knowledge gap exists concerning the spatiotemporal dynamics of fire-induced tree mortality specifically [...] Read more.
Due to climate effects and human influences, wildfire regimes in boreal forests are changing, leading to profound ecological consequences, including shortened fire return intervals and elevated tree mortality. However, a critical knowledge gap exists concerning the spatiotemporal dynamics of fire-induced tree mortality specifically within the vast North American boreal forest, as previous studies have predominantly focused on Mediterranean and tropical forests. Therefore, in this study, we used satellite observation data obtained by the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra MCD64A1 and related database data to study the spatial and temporal variability in burned area and forest mortality due to wildfires in North America (Alaska and Canada) over an 18-year period (2003 to 2020). By calculating the satellite reflectance data before and after the fire, fire-driven forest mortality is defined as the ratio of the area of forest loss in a given period relative to the total forest area in that period, i.e., the area of forest loss divided by the total forest area. Our findings have shown average values of burned area and forest mortality close to 8000 km2/yr and 40%, respectively. Burning and tree loss are mainly concentrated between May and September, with a corresponding temporal trend in the occurrence of forest fires and high mortality. In addition, large-scale forest fires were primarily concentrated in Central Canada, which, however, did not show the highest forest mortality (in contrast to the results recorded in Northern Canada). Critically, based on generalized linear models (GLMs), the results showed that fire size and duration, but not the burned area, had significant effects on post-fire forest mortality. Overall, this study shed light on the most sensitive forest areas and time periods to the detrimental effects of forest wildfire in boreal forests of North America, highlighting distinct spatial and temporal vulnerabilities within the boreal forest and demonstrating that fire regimes (size and duration) are primary drivers of ecological impact. These insights are crucial for refining models of boreal forest carbon dynamics, assessing ecosystem resilience under changing fire regimes, and informing targeted forest management and conservation strategies to mitigate wildfire impacts in this globally significant biome. Full article
(This article belongs to the Special Issue Forest Disturbance and Management)
Show Figures

Figure 1

19 pages, 4202 KiB  
Article
Effect of Plate Thickness on Residual Stress Distribution of GH3039 Superalloy Subjected to Laser Shock Peening
by Yandong Ma, Maozhong Ge and Yongkang Zhang
Materials 2025, 18(15), 3682; https://doi.org/10.3390/ma18153682 - 5 Aug 2025
Abstract
To accurately assess the effect of different plate thicknesses on the residual stress field of laser shock peened GH3039 superalloy, residual stress measurements were performed on GH3039 alloy plates with thicknesses of 2 mm and 5 mm after laser shock peening (LSP) treatment. [...] Read more.
To accurately assess the effect of different plate thicknesses on the residual stress field of laser shock peened GH3039 superalloy, residual stress measurements were performed on GH3039 alloy plates with thicknesses of 2 mm and 5 mm after laser shock peening (LSP) treatment. Both quasi-static and high strain rate mechanical tests of GH3039 were conducted, and the Johnson-Cook (J-C) constitutive equation for GH3039 alloy at specific strain rates was fitted based on the experimental results. To obtain the parameter C in the J-C constitutive equation of GH3039 alloy under ultra-high strain rates, a modified method was proposed based on LSP experiment and finite element simulation results. Using the modified GH3039 alloy J-C constitutive equation, numerical simulations and comparative analyses of the residual stress field of GH3039 alloy plates of different thicknesses under LSP were carried out using ABAQUS software. The simulated residual stress fields of laser-shocked GH3039 alloy plates of different thicknesses were in good agreement with the experimental measurements, indicating that the modified GH3039 alloy J-C constitutive equation can accurately predict the mechanical behavior of GH3039 alloy under ultra-high strain rates. Based on the modified GH3039 alloy J-C constitutive equation, the effect of different plate thicknesses on the residual stress distribution of laser-shocked GH3039 alloy was studied, along with the underlying mechanisms. The unique distribution characteristics of residual stresses in laser-shocked GH3039 plates with varying thicknesses are primarily attributed to differences in plate bending stiffness and the detrimental coupling effects of reflected tensile waves. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 357 KiB  
Article
Resilience and Mobbing Among Nurses in Emergency Departments: A Cross-Sectional Study
by Aristotelis Koinis, Ioanna V. Papathanasiou, Ioannis Moisoglou, Ioannis Kouroutzis, Vasileios Tzenetidis, Dimitra Anagnostopoulou, Pavlos Sarafis and Maria Malliarou
Healthcare 2025, 13(15), 1908; https://doi.org/10.3390/healthcare13151908 - 5 Aug 2025
Abstract
Background: Moral harassment (mobbing) in healthcare, particularly among nurses, remains a persistent issue with detrimental effects on mental health, resilience, and quality of life. Aim: We examine the relationship between the resilience of nurses working in Emergency Departments (EDs) and how these factors [...] Read more.
Background: Moral harassment (mobbing) in healthcare, particularly among nurses, remains a persistent issue with detrimental effects on mental health, resilience, and quality of life. Aim: We examine the relationship between the resilience of nurses working in Emergency Departments (EDs) and how these factors influence experiences of workplace mobbing. Methods: This cross-sectional study included 90 nurses from four public hospitals in Greece’s 5th Health District. Data were collected between October 2023 and March 2024 using the WHOQOL-BREF, Workplace Psychologically Violent Behaviors (WPVB) scale and the Connor–Davidson Resilience Scale (CD-RISC). The sample consisted primarily of full-time nurses (84.3% female; mean age = 43.1 years), with 21.1% reporting chronic conditions. Most participants were married (80.0%) and had children (74.4%), typically two (56.1%). Statistical analyses—conducted using SPSS version 27.0—included descriptive statistics, Pearson and Spearman correlations, multiple linear regression, and mediation analysis, with significance set at p < 0.05. Results: Resilience was moderate (mean = 66.38%; Cronbach’s α = 0.93) and positively correlated with all WHOQOL-BREF domains—physical, psychological, social, and environmental (r = 0.30–0.40)—but not with the overall WHOQOL-BREF. The mean overall WHOQOL-BREF score was 68.4%, with the lowest scores observed in the environmental domain (mean = 53.76%). Workplace mobbing levels were low to moderate (mean WPVB score = 17.87), with subscale reliabilities ranging from α = 0.78 to 0.95. Mobbing was negatively associated with social relationships and the environmental WHOQOL-BREF (ρ = –0.23 to –0.33). Regression analysis showed that cohabitation and higher resilience significantly predicted better WHOQOL-BREF outcomes, whereas mobbing was not a significant predictor. Mediation analysis (bootstrap N = 5000) indicated no significant indirect effect of resilience in the relationship between mobbing and WHOQOL-BREF. Conclusions: Resilience was identified as a key protective factor for nurses’ quality of life in emergency care settings. Although workplace mobbing was present at low-to-moderate levels, it was negatively associated with specific WHOQOL-BREF domains. Enhancing mental resilience among nurses may serve as a valuable strategy to mitigate the psychological effects of moral harassment in healthcare environments. Full article
(This article belongs to the Special Issue Health and Social Care Policy—2nd Edition)
Show Figures

Figure 1

29 pages, 2636 KiB  
Review
Review on Tribological and Vibration Aspects in Mechanical Bearings of Electric Vehicles: Effect of Bearing Current, Shaft Voltage, and Electric Discharge Material Spalling Current
by Rohan Lokhande, Sitesh Kumar Mishra, Deepak Ronanki, Piyush Shakya, Vimal Edachery and Lijesh Koottaparambil
Lubricants 2025, 13(8), 349; https://doi.org/10.3390/lubricants13080349 - 5 Aug 2025
Viewed by 69
Abstract
Electric motors play a decisive role in electric vehicles by converting electrical energy into mechanical motion across various drivetrain components. However, failures in these motors can interrupt the motor function, with approximately 40% of these failures stemming from bearing issues. Key contributors to [...] Read more.
Electric motors play a decisive role in electric vehicles by converting electrical energy into mechanical motion across various drivetrain components. However, failures in these motors can interrupt the motor function, with approximately 40% of these failures stemming from bearing issues. Key contributors to bearing degradation include shaft voltage, bearing current, and electric discharge material spalling current, especially in motors powered by inverters or variable frequency drives. This review explores the tribological and vibrational aspects of bearing currents, analyzing their mechanisms and influence on electric motor performance. It addresses the challenges faced by electric vehicles, such as high-speed operation, elevated temperatures, electrical conductivity, and energy efficiency. This study investigates the origins of bearing currents, damage linked to shaft voltage and electric discharge material spalling current, and the effects of lubricant properties on bearing functionality. Moreover, it covers various methods for measuring shaft voltage and bearing current, as well as strategies to alleviate the adverse impacts of bearing currents. This comprehensive analysis aims to shed light on the detrimental effects of bearing currents on the performance and lifespan of electric motors in electric vehicles, emphasizing the importance of tribological considerations for reliable operation and durability. The aim of this study is to address the engineering problem of bearing failure in inverter-fed EV motors by integrating electrical, tribological, and lubrication perspectives. The novelty lies in proposing a conceptual link between lubricant breakdown and damage morphology to guide mitigation strategies. The study tasks include literature review, analysis of bearing current mechanisms and diagnostics, and identification of technological trends. The findings provide insights into lubricant properties and diagnostic approaches that can support industrial solutions. Full article
(This article belongs to the Special Issue Tribology of Electric Vehicles)
Show Figures

Figure 1

19 pages, 14190 KiB  
Article
A Comprehensive Evaluation Method for Cement Slurry Systems to Enhance Zonal Isolation: A Case Study in Shale Oil Well Cementing
by Xiaoqing Zheng, Weitao Song, Xiutian Yang, Jian Liu, Tao Jiang, Xuning Wu and Xin Liu
Energies 2025, 18(15), 4138; https://doi.org/10.3390/en18154138 - 4 Aug 2025
Viewed by 169
Abstract
Due to post-cementing hydraulic fracturing and other operational stresses, inadequate mechanical properties or suboptimal design of the cement sheath can lead to tensile failure and microcrack development, compromising both hydrocarbon recovery and well integrity. In this study, three field-deployed cement slurry systems were [...] Read more.
Due to post-cementing hydraulic fracturing and other operational stresses, inadequate mechanical properties or suboptimal design of the cement sheath can lead to tensile failure and microcrack development, compromising both hydrocarbon recovery and well integrity. In this study, three field-deployed cement slurry systems were compared on the basis of their basic mechanical properties such as compressive and tensile strength. Laboratory-scale physical simulations of hydraulic fracturing during shale oil production were conducted, using dynamic permeability as a quantitative indicator of integrity loss. The experimental results show that evaluating only basic mechanical properties is insufficient for cement slurry system design. A more comprehensive mechanical assessment is re-quired. Incorporation of an expansive agent into the cement slurry system can alleviate the damage caused by the microannulus to the interfacial sealing performance of the cement sheath, while adding a toughening agent can alleviate the damage caused by tensile cracks to the sealing performance of the cement sheath matrix. Through this research, a microexpansive and toughened cement slurry system, modified with both expansive and toughening agents, was optimized. The expansive agent and toughening agent can significantly enhance the shear strength, the flexural strength, and the interfacial hydraulic isolation strength of cement stone. Moreover, the expansion agents mitigate the detrimental effects of microannulus generation on the interfacial sealing, while the toughening agents alleviate the damage caused by tensile cracking to the bulk sealing performance of the cement sheath matrix. This system has been successfully implemented in over 100 wells in the GL block of Daqing Oilfield. Field application results show that the proportion of high-quality well sections in the horizontal section reached 88.63%, indicating the system’s high performance in enhancing zonal isolation and cementing quality. Full article
Show Figures

Figure 1

15 pages, 726 KiB  
Article
Surgical Management of Pulmonary Typical Carcinoids: A Single-Centre Experience Comparing Anatomical and Non-Anatomical Resections
by Carmelina Cristina Zirafa, Beatrice Manfredini, Gaetano Romano, Ilaria Ceccarelli, Fabrizia Calabrò, Riccardo Morganti, Greta Alì, Franca Melfi and Federico Davini
J. Clin. Med. 2025, 14(15), 5488; https://doi.org/10.3390/jcm14155488 - 4 Aug 2025
Viewed by 159
Abstract
Background/Objectives: Pulmonary typical carcinoid (TC) is a rare type of primary neuroendocrine neoplasm of the lung with indolent behavior and a good prognosis. The main treatment strategy is surgery, the extent of which is controversial given the nature of the disease. The aim [...] Read more.
Background/Objectives: Pulmonary typical carcinoid (TC) is a rare type of primary neuroendocrine neoplasm of the lung with indolent behavior and a good prognosis. The main treatment strategy is surgery, the extent of which is controversial given the nature of the disease. The aim of this study is to assess whether the extent of resection influences survival and recurrence in patients undergoing lung resection and lymphadenectomy for TC and to investigate negative prognostic factors for OS. Methods: A single-centre retrospective study of 15 years’ experience was conducted. Data from all patients who underwent lung resection and lymphadenectomy for TC were collected. Patients were divided into two groups: anatomical and non-anatomical resections. Perioperative and long-term oncological results were analyzed. Results: In total, 115 patients were surgically treated for TC, of whom 83 (72%) underwent anatomical resection and 32 (28%) non-anatomical resection. Univariate analyses showed that age, left lower lobe, and many comorbidities had a detrimental effect on OS, whereas on multivariate analysis, only left lower lobe location and a high Charlson–Deyo comorbidity index (CCI) were confirmed as negative prognostic factors for OS. At a median follow-up of 93 months (IQR 57-129), the OS survival curves show a slightly lower trend for non-anatomical resections (p 0.152), while no differences were found for DFS. Conclusions: The results of this study confirm that in selected patients at risk for major resections, non-anatomical resection can be used to treat TC when R0 is achievable. These data, together with evidence from the literature, highlight the importance of patient-centred care in this rare disease. Full article
Show Figures

Figure 1

28 pages, 1032 KiB  
Systematic Review
Oral and Dental Sequelae After Oncological Treatment in Children: A Systematic Review
by Lidia Torrecillas-Quiles, Inmaculada Gómez-Ríos, Irene Jiménez-García, Ildefonso Serrano-Belmonte, Antonio José Ortiz-Ruiz and Clara Serna-Muñoz
J. Clin. Med. 2025, 14(15), 5479; https://doi.org/10.3390/jcm14155479 - 4 Aug 2025
Viewed by 132
Abstract
Background: Childhood cancer is considered one of the main causes of mortality and morbidity worldwide. There is strong evidence of the oral toxic effects of oncologic treatments, but their incidence is difficult to determine. The novel therapeutic strategies in Pediatric Oncology have [...] Read more.
Background: Childhood cancer is considered one of the main causes of mortality and morbidity worldwide. There is strong evidence of the oral toxic effects of oncologic treatments, but their incidence is difficult to determine. The novel therapeutic strategies in Pediatric Oncology have led to increased survival in this population, resulting in an increased incidence of long-term effects, which diminish the patient’s quality of life. Methods: The search for articles started on 5 November 2024 and ended on 5 December 2024. Following the PRISMA Statement, a total of 1266 articles were obtained, from which 13 were selected for review. All articles were considered to be of high quality. The antineoplastic treatments used in them were chemotherapy, radiotherapy, surgery and immune therapy. Results: Most articles were cohorts and case controls. Only one case report was obtained. The results revealed that the most prevalent sequelae in the pediatric population after antineoplastic treatment were enamel alterations, microdontia, dental caries, periodontal disease, gingivitis, hyposalivation, alteration of the oral microbiome, alteration of mandibular bone density and malocclusion. The lesions are different depending on the therapy used. Conclusions: Oncologic treatments in children with cancer cause multiple oral sequelae such as microdontia, dental caries, enamel alterations, salivary gland alterations, mucositis and root resorption. It cannot be concluded which therapy has the most detrimental effect as each has a different mechanism of action in the oral cavity. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

14 pages, 4870 KiB  
Article
Phase Transformation Principle and Magnetite Grain Growth Law in the Magnetization Sintering Process of Oolitic Hematite Ore
by Hanquan Zhang, Xunrui Liu, Lei Xie, Tiejun Chen, Fan Yang and Bona Deng
Materials 2025, 18(15), 3649; https://doi.org/10.3390/ma18153649 - 3 Aug 2025
Viewed by 196
Abstract
Oolitic hematite ore represents a significant iron resource, but its utilization is challenging due to the complex multi-layered circular structure of hematite ore, which makes it difficult to be reduced. This study systematically investigated the phase transformation principle and magnetite grain growth law [...] Read more.
Oolitic hematite ore represents a significant iron resource, but its utilization is challenging due to the complex multi-layered circular structure of hematite ore, which makes it difficult to be reduced. This study systematically investigated the phase transformation principle and magnetite grain growth law during the magnetization sintering of oolitic hematite ore, aiming to establish optimal conditions for efficient hematite ore to magnetite conversion. The results demonstrated that both elevated temperature and prolonged reduction duration significantly enhanced the reduction efficiency of hematite (Fe2O3) to magnetite. The optimal sintering conditions were determined to be 700 °C for 45 min, under which the magnetite content and Fe/O atomic ratio in the roasted products peaked at approximately 68% and 0.8%, respectively. However, temperatures exceeding 800 °C proved detrimental to magnetite formation, as further reduction to FeXO phases occurred. Notably, appropriate temperature elevation promoted substantial magnetite grain growth. When the sintering temperature increased from 600 °C to 700 °C, both the absolute and relative thickness of the magnetite layer exhibited remarkable enhancement, expanding from 9.52 μm to 76.76 μm and from 5.99% to 50.33%, respectively. Furthermore, comparative analysis revealed that a high sintering temperature for a short time was more effective for magnetite particle growth than a low temperature for a long time in the magnetization process of oolitic hematite ore. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop