Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,509)

Search Parameters:
Keywords = design key issues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 502 KiB  
Article
A Blockchain-Based Secure Data Transaction and Privacy Preservation Scheme in IoT System
by Jing Wu, Zeteng Bian, Hongmin Gao and Yuzhe Wang
Sensors 2025, 25(15), 4854; https://doi.org/10.3390/s25154854 (registering DOI) - 7 Aug 2025
Abstract
With the explosive growth of Internet of Things (IoT) devices, massive amounts of heterogeneous data are continuously generated. However, IoT data transactions and sharing face multiple challenges such as limited device resources, untrustworthy network environment, highly sensitive user privacy, and serious data silos. [...] Read more.
With the explosive growth of Internet of Things (IoT) devices, massive amounts of heterogeneous data are continuously generated. However, IoT data transactions and sharing face multiple challenges such as limited device resources, untrustworthy network environment, highly sensitive user privacy, and serious data silos. How to achieve fine-grained access control and privacy protection for massive devices while ensuring secure and reliable data circulation has become a key issue that needs to be urgently addressed in the current IoT field. To address the above challenges, this paper proposes a blockchain-based data transaction and privacy protection framework. First, the framework builds a multi-layer security architecture that integrates blockchain and IPFS and adapts to the “end–edge–cloud” collaborative characteristics of IoT. Secondly, a data sharing mechanism that takes into account both access control and interest balance is designed. On the one hand, the mechanism uses attribute-based encryption (ABE) technology to achieve dynamic and fine-grained access control for massive heterogeneous IoT devices; on the other hand, it introduces a game theory-driven dynamic pricing model to effectively balance the interests of both data supply and demand. Finally, in response to the needs of confidential analysis of IoT data, a secure computing scheme based on CKKS fully homomorphic encryption is proposed, which supports efficient statistical analysis of encrypted sensor data without leaking privacy. Security analysis and experimental results show that this scheme is secure under standard cryptographic assumptions and can effectively resist common attacks in the IoT environment. Prototype system testing verifies the functional completeness and performance feasibility of the scheme, providing a complete and effective technical solution to address the challenges of data integrity, verifiable transactions, and fine-grained access control, while mitigating the reliance on a trusted central authority in IoT data sharing. Full article
(This article belongs to the Special Issue Blockchain-Based Solutions to Secure IoT)
Show Figures

Figure 1

19 pages, 548 KiB  
Article
Facing Challenges in Higher Education: Enhancing Accessibility and Inclusion Through Flexible Learning Design
by Ana Afonso, Lina Morgado, Isabel Cristina Carvalho and Maria João Spilker
Educ. Sci. 2025, 15(8), 1013; https://doi.org/10.3390/educsci15081013 (registering DOI) - 7 Aug 2025
Abstract
The increasing cultural and demographic diversity among higher education students highlights the challenges regarding accessibility and inclusion. The COVID-19 pandemic has accelerated the shift toward flexible, technology-based teaching practices. However, inclusive, and accessible pedagogical practices lack consistency, particularly when supporting students with disabilities [...] Read more.
The increasing cultural and demographic diversity among higher education students highlights the challenges regarding accessibility and inclusion. The COVID-19 pandemic has accelerated the shift toward flexible, technology-based teaching practices. However, inclusive, and accessible pedagogical practices lack consistency, particularly when supporting students with disabilities or diverse learning needs. This study evaluates the effectiveness of the Learning Design for Flexible Education (FLeD) Tool—a web-based platform developed to support teachers in designing flexible and inclusive learning scenarios. The research adopts a qualitative approach, featuring semi-structured interviews with two Portuguese experts in accessibility and inclusion. The experts analyzed three learning scenarios designed using the FLeD Tool, through the lens of Universal Design for Learning standards. The collected dataset was analyzed using thematic analysis to identify common issues, strengths, and opportunities for improvement. The findings show a gap between institutional policies and their practical application, mainly due to inconsistent teacher training and technical limitations. While the FLeD Tool supports more flexible and inclusive pedagogical designs, experts have identified key shortcomings such as the lack of automated accessibility checks and limited support for specific disabilities. Despite the reduced number of participants (two experts) and dataset (three learning scenarios), which limits the study’s generalisability, the conclusions draw attention to the pivotal role of systematic teacher training, embedded accessibility features and solid institutional policies in bridging the gap between policy aspiration and effective inclusive practice. Full article
(This article belongs to the Special Issue Teachers and Teaching in Inclusive Education)
Show Figures

Figure 1

44 pages, 5169 KiB  
Review
Neural Architecture Search for Hyperspectral Image Classification: A Comprehensive Review and Future Perspectives
by Aili Wang, Xinyu Liu, Kang Zhang, Haoran Lv, Haibin Wu, Xing Chen and Manman Yao
Remote Sens. 2025, 17(15), 2727; https://doi.org/10.3390/rs17152727 - 7 Aug 2025
Abstract
Hyperspectral image classification (HSIC) is a key task in the field of remote sensing, but the complex nature of hyperspectral data poses a serious challenge to traditional methods. Although deep learning significantly improves classification performance through automatic feature extraction, manually designed network architectures [...] Read more.
Hyperspectral image classification (HSIC) is a key task in the field of remote sensing, but the complex nature of hyperspectral data poses a serious challenge to traditional methods. Although deep learning significantly improves classification performance through automatic feature extraction, manually designed network architectures suffer from issues such as dependence on expert experience and lack of flexibility. Neural architecture search (NAS) provides new ideas for HSIC through automated network structure optimization. This article systematically reviews the application progress of NAS in HSIC: firstly, the core components of NAS are analyzed, and the characteristics of various methods are compared from three aspects: search space, search strategy, and performance evaluation. Furthermore, the focus is on exploring NAS technology based on convolutional neural networks, covering 1D, 2D, and 3D convolutional architectures and their innovative integration with various technologies, revealing the advantages of NAS in HSIC. However, NAS still faces challenges such as high computing resource requirements and insufficient interpretability. This article systematically reviews the application of NAS in the field of HSIC for the first time, facilitating readers to quickly understand the development process of NAS in HSIC and the advantages and disadvantages of various technologies, proposing possible future research directions. Full article
Show Figures

Figure 1

38 pages, 10941 KiB  
Review
Recent Advances in Numerical Modeling of Aqueous Redox Flow Batteries
by Yongfu Liu and Yi He
Energies 2025, 18(15), 4170; https://doi.org/10.3390/en18154170 - 6 Aug 2025
Abstract
Aqueous redox flow batteries (ARFBs) have attracted significant attention in the field of electrochemical energy storage due to their high intrinsic safety, low cost, and flexible system configuration. However, the advancement of this technology is still hindered by several critical challenges, including capacity [...] Read more.
Aqueous redox flow batteries (ARFBs) have attracted significant attention in the field of electrochemical energy storage due to their high intrinsic safety, low cost, and flexible system configuration. However, the advancement of this technology is still hindered by several critical challenges, including capacity decay, structural optimization, and the design and application of key materials as well as their performance within battery systems. Addressing these issues requires systematic theoretical foundations and scientific guidance. Numerical modeling has emerged as a powerful tool for investigating the complex physical and electrochemical processes within flow batteries across multiple spatial and temporal scales. It also enables predictive performance analysis and cost-effective optimization at both the component and system levels, thus accelerating research and development. This review provides a comprehensive overview of recent progress in the modeling of ARFBs. Taking the all-vanadium redox flow battery as a representative example, we summarize the key multiphysics phenomena involved and introduce corresponding multi-scale modeling strategies. Furthermore, specific modeling considerations are discussed for phase-change ARFBs, such as zinc-based ones involving solid–liquid phase transition, and hydrogen–bromine systems characterized by gas–liquid two-phase flow, highlighting their distinctive features compared to vanadium systems. Finally, this paper explores the major challenges and potential opportunities in the modeling of representative ARFB systems, aiming to provide theoretical guidance and technical support for the continued development and practical application of ARFB technology. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

22 pages, 734 KiB  
Article
An Assembly Accuracy Analysis Method for Weak Rigid Components
by Dongping Zhao, Zhe Yuan, Xiaosong Zhao and Gangfeng Wang
Machines 2025, 13(8), 694; https://doi.org/10.3390/machines13080694 - 6 Aug 2025
Abstract
Most existing assembly accuracy analysis methods focus on rigid assemblies or assume assemblies to be rigid bodies, neglecting the influence of assembly deformation in weak rigid components (WRCs) such as thin-walled structures, cantilever structures, etc. As a result, the assembly accuracy analysis becomes [...] Read more.
Most existing assembly accuracy analysis methods focus on rigid assemblies or assume assemblies to be rigid bodies, neglecting the influence of assembly deformation in weak rigid components (WRCs) such as thin-walled structures, cantilever structures, etc. As a result, the assembly accuracy analysis becomes inaccurate, and the accuracy of key components cannot be effectively controlled. This may lead to serious issues such as forced assembly, repair, and rework. To address these problems, this study proposes a rigid–flexible coupling-based assembly accuracy analysis method for WRCs. The stiffness matrix and assembly deformation of WRCs are calculated, and by coupling assembly deformation with other assembly deviations, a rigid–flexible coupling assembly accuracy data model is established. This model incorporates multiple deviation sources, including assembly process variations, design tolerances, and assembly deformations. Assembly deviation transfer modeling and accumulation calculation methods for WRCs are investigated, enabling assembly accuracy simulation and statistical analysis. A case study on WRC assembly accuracy analysis is conducted, and the results demonstrate that the proposed method improves the accuracy of assembly analysis for WRCs, verifying its reliability. Full article
31 pages, 18795 KiB  
Review
Timber Architecture for Sustainable Futures: A Critical Review of Design and Research Challenges in the Era of Environmental and Social Transition
by Agnieszka Starzyk, Nuno D. Cortiços, Carlos C. Duarte and Przemysław Łacek
Buildings 2025, 15(15), 2774; https://doi.org/10.3390/buildings15152774 - 6 Aug 2025
Abstract
This article provides a critical review of the current design and research challenges in contemporary timber architecture. Conducted from the perspective of a designer-researcher, the review focuses on the role of wood as a material at the intersection of environmental performance, cultural meaning, [...] Read more.
This article provides a critical review of the current design and research challenges in contemporary timber architecture. Conducted from the perspective of a designer-researcher, the review focuses on the role of wood as a material at the intersection of environmental performance, cultural meaning, and spatial practice. The study adopts a conceptual, problem-oriented approach, eschewing the conventional systematic aggregation of existing data. The objective of this study is to identify, interpret and categorise the key issues that are shaping the evolving discourse on timber architecture. The analysis is based on peer-reviewed literature published between 2020 and 2025, sourced from the Scopus and Web of Science Core Collection databases. Fifteen thematic challenges have been identified and classified according to their recognition level in academic and design contexts. The subjects under discussion include well-established topics, such as life cycle assessment and carbon storage, as well as less commonly explored areas, such as symbolic durability, social acceptance, traceability, and the upcycling of low-grade wood. The review under consideration places significant emphasis on the importance of integrating technical, cultural, and perceptual dimensions when evaluating timber architecture. The article proposes an interpretive framework combining design thinking and transdisciplinary insights. This framework aims to bridge disciplinary gaps and provide a coherent structure for understanding the complexity of timber-related challenges. The framework under discussion here encourages a broader understanding of wood as not only a sustainable building material but also a vehicle for systemic transformation in architectural culture and practice. The study’s insights may support designers, educators, and policymakers in identifying strategic priorities for the development of future-proof timber-based design practices. Full article
Show Figures

Figure 1

17 pages, 3870 KiB  
Review
Eco-Friendly, Biomass-Derived Materials for Electrochemical Energy Storage Devices
by Yeong-Seok Oh, Seung Woo Seo, Jeong-jin Yang, Moongook Jeong and Seongki Ahn
Coatings 2025, 15(8), 915; https://doi.org/10.3390/coatings15080915 (registering DOI) - 5 Aug 2025
Abstract
This mini-review emphasizes the potential of biomass-derived materials as sustainable components for next-generation electrochemical energy storage systems. Biomass obtained from abundant and renewable natural resources can be transformed into carbonaceous materials. These materials typically possess hierarchical porosities, adjustable surface functionalities, and inherent heteroatom [...] Read more.
This mini-review emphasizes the potential of biomass-derived materials as sustainable components for next-generation electrochemical energy storage systems. Biomass obtained from abundant and renewable natural resources can be transformed into carbonaceous materials. These materials typically possess hierarchical porosities, adjustable surface functionalities, and inherent heteroatom doping. These physical and chemical characteristics provide the structural and chemical flexibility needed for various electrochemical applications. Additionally, biomass-derived materials offer a cost-effective and eco-friendly alternative to traditional components, promoting green chemistry and circular resource utilization. This review provides a systematic overview of synthesis methods, structural design strategies, and material engineering approaches for their use in lithium-ion batteries (LIBs), lithium–sulfur batteries (LSBs), and supercapacitors (SCs). It also highlights key challenges in these systems, such as the severe volume expansion of anode materials in LIBs and the shuttle effect in LSBs and discusses how biomass-derived carbon can help address these issues. Full article
Show Figures

Figure 1

19 pages, 29727 KiB  
Review
A Review of Methods for Increasing the Durability of Hot Forging Tools
by Jan Turek and Jacek Cieślik
Materials 2025, 18(15), 3669; https://doi.org/10.3390/ma18153669 - 4 Aug 2025
Viewed by 144
Abstract
The article presents a comprehensive review of key issues and challenges related to enhancing the durability of hot forging tools. It discusses modern strategies aimed at increasing tool life, including modifications to tool materials, heat treatment, surface engineering, tool and die design, die [...] Read more.
The article presents a comprehensive review of key issues and challenges related to enhancing the durability of hot forging tools. It discusses modern strategies aimed at increasing tool life, including modifications to tool materials, heat treatment, surface engineering, tool and die design, die geometry, tribological conditions, and lubrication. The review is based on extensive literature data, including recent publications and the authors’ own research, which has been implemented under industrial conditions at the modern forging facility in Forge Plant “Glinik” (Poland). The study introduces original design and technological solutions, such as an innovative concept for manufacturing forging dies from alloy structural steels with welded impressions, replacing traditional hot-work tool steel dies. It also proposes a zonal hardfacing approach, which involves applying welds with different chemical compositions to specific surface zones of the die impressions, selected according to the dominant wear mechanisms in each zone. General guidelines for selecting hardfacing material compositions are also provided. Additionally, the article presents technological processes for die production and regeneration. The importance and application of computer simulations of forging processes are emphasized, particularly in predicting wear mechanisms and intensity, as well as in optimizing tool and forging geometry. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

37 pages, 3005 KiB  
Review
Printed Sensors for Environmental Monitoring: Advancements, Challenges, and Future Directions
by Amal M. Al-Amri
Chemosensors 2025, 13(8), 285; https://doi.org/10.3390/chemosensors13080285 - 4 Aug 2025
Viewed by 227
Abstract
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors [...] Read more.
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors enable the real-time monitoring of air, water, soil, and climate, providing significant data for data-driven decision-making technologies and policy development to improve the quality of the environment. The development of new materials, such as graphene, conductive polymers, and biodegradable substrates, has significantly enhanced the environmental applications of printed sensors by improving sensitivity, enabling flexible designs, and supporting eco-friendly and disposable solutions. The development of inkjet, screen, and roll-to-roll printing technologies has also contributed to the achievement of mass production without sacrificing quality or performance. This review presents the current progress in printed sensors for environmental applications, with a focus on technological advances, challenges, applications, and future directions. Moreover, the paper also discusses the challenges that still exist due to several issues, e.g., sensitivity, stability, power supply, and environmental sustainability. Printed sensors have the potential to revolutionize ecological monitoring, as evidenced by recent innovations such as Internet of Things (IoT) integration, self-powered designs, and AI-enhanced data analytics. By addressing these issues, printed sensors can develop a better understanding of environmental systems and help promote the UN sustainable development goals. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

20 pages, 4135 KiB  
Article
A PSO-XGBoost Model for Predicting the Compressive Strength of Cement–Soil Mixing Pile Considering Field Environment Simulation
by Jiagui Xiong, Yangqing Gong, Xianghua Liu, Yan Li, Liangjie Chen, Cheng Liao and Chaochao Zhang
Buildings 2025, 15(15), 2740; https://doi.org/10.3390/buildings15152740 - 4 Aug 2025
Viewed by 256
Abstract
Cement–Soil Mixing (CSM) Pile is an important technology for soft ground reinforcement, and its as-formed compressive strength directly affects engineering design and construction quality. To address the significant discrepancy between laboratory-tested strength and field as-formed strength arising from differing environmental conditions, this study [...] Read more.
Cement–Soil Mixing (CSM) Pile is an important technology for soft ground reinforcement, and its as-formed compressive strength directly affects engineering design and construction quality. To address the significant discrepancy between laboratory-tested strength and field as-formed strength arising from differing environmental conditions, this study conducted modified laboratory experiments simulating key field formation characteristics. A cement–soil preparation system considering actual immersion conditions was established, based on controlling the initial water content state of the foundation soil before pile formation and applying submerged conditions post-formation. Utilizing data mining on 84 sets of experimental data with various preparation parameter combinations, a prediction model for the as-formed strength of CSM Pile was developed based on the Particle Swarm Optimization-Extreme Gradient Boosting (PSO-XGBoost) algorithm. Engineering validation demonstrated that the model achieved an RMSE of 0.138, an MAE of 0.112, and an R2 of 0.961. It effectively addresses the issue of large prediction deviations caused by insufficient environmental simulation in traditional mix proportion tests. The research findings establish a quantitative relationship between as-formed strength and preparation parameters, providing an effective experimental improvement and strength prediction method for the engineering design of CSM Pile. Full article
Show Figures

Graphical abstract

18 pages, 1317 KiB  
Article
A Stackelberg Game for Co-Optimization of Distribution System Operator Revenue and Virtual Power Plant Costs with Integrated Data Center Flexibility
by Qi Li, Shihao Liu, Bokang Zou, Yulong Jin, Yi Ge, Yan Li, Qirui Chen, Xinye Du, Feng Li and Chenyi Zheng
Energies 2025, 18(15), 4123; https://doi.org/10.3390/en18154123 - 3 Aug 2025
Viewed by 290
Abstract
The increasing penetration of distributed renewable energy and the emergence of large-scale, flexible loads such as data centers pose significant challenges to the economic and secure operation of distribution systems. Traditional static pricing mechanisms are often inadequate, leading to inefficient resource dispatch and [...] Read more.
The increasing penetration of distributed renewable energy and the emergence of large-scale, flexible loads such as data centers pose significant challenges to the economic and secure operation of distribution systems. Traditional static pricing mechanisms are often inadequate, leading to inefficient resource dispatch and curtailment of renewable generation. To address these issues, this paper proposes a hierarchical pricing and dispatch framework modeled as a tri-level Stackelberg game that coordinates interactions among an upstream grid, a distribution system operator (DSO), and multiple virtual power plants (VPPs). At the upper level, the DSO acts as the leader, formulating dynamic time-varying purchase and sale prices to maximize its revenue based on upstream grid conditions. In response, at the lower level, each VPP acts as a follower, optimally scheduling its portfolio of distributed energy resources—including microturbines, energy storage, and interruptible loads—to minimize its operating costs under the announced tariffs. A key innovation is the integration of a schedulable data center within one VPP, which responds to a specially designed wind-linked incentive tariff by shifting computational workloads to periods of high renewable availability. The resulting high-dimensional bilevel optimization problem is solved using a Kriging-based surrogate methodology to ensure computational tractability. Simulation results verify that, compared to a static-pricing baseline, the proposed strategy increases DSO revenue by 18.9% and reduces total VPP operating costs by over 28%, demonstrating a robust framework for enhancing system-wide economic and operational efficiency. Full article
Show Figures

Figure 1

27 pages, 9910 KiB  
Article
Predicting the Next Location of Urban Individuals via a Representation-Enhanced Multi-View Learning Network
by Maoqi Lun, Peixiao Wang, Sheng Wu, Hengcai Zhang, Shifen Cheng and Feng Lu
ISPRS Int. J. Geo-Inf. 2025, 14(8), 302; https://doi.org/10.3390/ijgi14080302 - 2 Aug 2025
Viewed by 160
Abstract
Accurately predicting the next location of urban individuals is a central issue in human mobility research. Human mobility exhibits diverse patterns, requiring the integration of spatiotemporal contexts for location prediction. In this context, multi-view learning has become a prominent method in location prediction. [...] Read more.
Accurately predicting the next location of urban individuals is a central issue in human mobility research. Human mobility exhibits diverse patterns, requiring the integration of spatiotemporal contexts for location prediction. In this context, multi-view learning has become a prominent method in location prediction. Despite notable advances, current methods still face challenges in effectively capturing non-spatial proximity of regional preferences, complex temporal periodicity, and the ambiguity of location semantics. To address these challenges, we propose a representation-enhanced multi-view learning network (ReMVL-Net) for location prediction. Specifically, we propose a community-enhanced spatial representation that transcends geographic proximity to capture latent mobility patterns. In addition, we introduce a multi-granular enhanced temporal representation to model the multi-level periodicity of human mobility and design a rule-based semantic recognition method to enrich location semantics. We evaluate the proposed model using mobile phone data from Fuzhou. Experimental results show a 2.94% improvement in prediction accuracy over the best-performing baseline. Further analysis reveals that community space plays a key role in narrowing the candidate location set. Moreover, we observe that prediction difficulty is strongly influenced by individual travel behaviors, with more regular activity patterns being easier to predict. Full article
Show Figures

Figure 1

24 pages, 90648 KiB  
Article
An Image Encryption Method Based on a Two-Dimensional Cross-Coupled Chaotic System
by Caiwen Chen, Tianxiu Lu and Boxu Yan
Symmetry 2025, 17(8), 1221; https://doi.org/10.3390/sym17081221 - 2 Aug 2025
Viewed by 283
Abstract
Chaotic systems have demonstrated significant potential in the field of image encryption due to their extreme sensitivity to initial conditions, inherent unpredictability, and pseudo-random behavior. However, existing chaos-based encryption schemes still face several limitations, including narrow chaotic regions, discontinuous chaotic ranges, uneven trajectory [...] Read more.
Chaotic systems have demonstrated significant potential in the field of image encryption due to their extreme sensitivity to initial conditions, inherent unpredictability, and pseudo-random behavior. However, existing chaos-based encryption schemes still face several limitations, including narrow chaotic regions, discontinuous chaotic ranges, uneven trajectory distributions, and fixed pixel processing sequences. These issues substantially hinder the security and efficiency of such algorithms. To address these challenges, this paper proposes a novel hyperchaotic map, termed the two-dimensional cross-coupled chaotic map (2D-CFCM), derived from a newly designed 2D cross-coupled chaotic system. The proposed 2D-CFCM exhibits enhanced randomness, greater sensitivity to initial values, a broader chaotic region, and a more uniform trajectory distribution, thereby offering stronger security guarantees for image encryption applications. Based on the 2D-CFCM, an innovative image encryption method was further developed, incorporating efficient scrambling and forward and reverse random multidirectional diffusion operations with symmetrical properties. Through simulation tests on images of varying sizes and resolutions, including color images, the results demonstrate the strong security performance of the proposed method. This method has several remarkable features, including an extremely large key space (greater than 2912), extremely high key sensitivity, nearly ideal entropy value (greater than 7.997), extremely low pixel correlation (less than 0.04), and excellent resistance to differential attacks (with the average values of NPCR and UACI being 99.6050% and 33.4643%, respectively). Compared to existing encryption algorithms, the proposed method provides significantly enhanced security. Full article
(This article belongs to the Special Issue Symmetry in Chaos Theory and Applications)
Show Figures

Figure 1

20 pages, 1907 KiB  
Article
Multi-Innovation-Based Parameter Identification for Vertical Dynamic Modeling of AUV Under High Maneuverability and Large Attitude Variations
by Jianping Yuan, Zhixun Luo, Lei Wan, Cenan Wang, Chi Zhang and Qingdong Chen
J. Mar. Sci. Eng. 2025, 13(8), 1489; https://doi.org/10.3390/jmse13081489 - 1 Aug 2025
Viewed by 231
Abstract
The parameter identification of Autonomous Underwater Vehicles (AUVs) serves as a fundamental basis for achieving high-precision motion control, state monitoring, and system development. Currently, AUV parameter identification typically relies on the complete motion information obtained from onboard sensors. However, in practical applications, it [...] Read more.
The parameter identification of Autonomous Underwater Vehicles (AUVs) serves as a fundamental basis for achieving high-precision motion control, state monitoring, and system development. Currently, AUV parameter identification typically relies on the complete motion information obtained from onboard sensors. However, in practical applications, it is often challenging to accurately measure key state variables such as velocity and angular velocity, resulting in incomplete measurement data that compromises identification accuracy and model reliability. This issue is particularly pronounced in vertical motion tasks involving low-speed, large pitch angles, and highly maneuverable conditions, where the strong coupling and nonlinear characteristics of underwater vehicles become more significant. Traditional hydrodynamic models based on full-state measurements often suffer from limited descriptive capability and difficulties in parameter estimation under such conditions. To address these challenges, this study investigates a parameter identification method for AUVs operating under vertical, large-amplitude maneuvers with constrained measurement information. A control autoregressive (CAR) model-based identification approach is derived, which requires only pitch angle, vertical velocity, and vertical position data, thereby reducing the dependence on complete state observations. To overcome the limitations of the conventional Recursive Least Squares (RLS) algorithm—namely, its slow convergence and low accuracy under rapidly changing conditions—a Multi-Innovation Least Squares (MILS) algorithm is proposed to enable the efficient estimation of nonlinear hydrodynamic characteristics in complex dynamic environments. The simulation and experimental results validate the effectiveness of the proposed method, demonstrating high identification accuracy and robustness in scenarios involving large pitch angles and rapid maneuvering. The results confirm that the combined use of the CAR model and MILS algorithm significantly enhances model adaptability and accuracy, providing a solid data foundation and theoretical support for the design of AUV control systems in complex operational environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 1063 KiB  
Article
A Digital Identity Blockchain Ecosystem: Linking Government-Certified and Uncertified Tokenized Objects
by Juan-Carlos López-Pimentel, Javier Gonzalez-Sanchez and Luis Alberto Morales-Rosales
Appl. Sci. 2025, 15(15), 8577; https://doi.org/10.3390/app15158577 (registering DOI) - 1 Aug 2025
Viewed by 271
Abstract
This paper presents a novel digital identity ecosystem built upon a hierarchical structure of Blockchain tokens, where both government-certified and uncertified tokens can coexist to represent various attributes of an individual’s identity. At the core of this system is the government, which functions [...] Read more.
This paper presents a novel digital identity ecosystem built upon a hierarchical structure of Blockchain tokens, where both government-certified and uncertified tokens can coexist to represent various attributes of an individual’s identity. At the core of this system is the government, which functions as a trusted authority capable of creating entities and issuing a unique, non-replicable digital identity token for each one. Entities are the exclusive owners of their identity tokens and can attach additional tokens—such as those issued by the government, educational institutions, or financial entities—to form a verifiable, token-based digital identity tree. This model accommodates a flexible identity framework that enables decentralized yet accountable identity construction. Our contributions include the design of a digital identity system (supported by smart contracts) that enforces uniqueness through state-issued identity tokens while supporting user-driven identity formation. The model differentiates between user types and certifies tokens according to their source, enabling a scalable and extensible structure. We also analyze the economic, technical, and social feasibility of deploying this system, including a breakdown of transaction costs for key stakeholders such as governments, end-users, and institutions like universities. Considering the benefits of blockchain, implementing a digital identity ecosystem in this technology is economically viable for all involved stakeholders. Full article
(This article belongs to the Special Issue Advanced Blockchain Technology and Its Applications)
Show Figures

Figure 1

Back to TopTop