Neural Architecture Search for Hyperspectral Image Classification: A Comprehensive Review and Future Perspectives
Abstract
1. Introduction
1.1. Literature Selection Criteria
1.2. Main Contributions
2. Neural Architecture Search
2.1. Search Space
2.1.1. Global Search Space
2.1.2. Local Search Space
2.1.3. Addressing HSIC Challenges Through Search Space Design
2.2. Search Strategy
2.2.1. Evolutionary Algorithm
2.2.2. Reinforcement Learning
2.2.3. Gradient Descent
2.2.4. Efficiency Considerations Under HSIC Challenges
2.3. Performance Evaluation Strategy
2.3.1. Low-Fidelity Evaluation
2.3.2. Early Stopping
2.3.3. Surrogate Model
2.3.4. Weight Sharing
2.3.5. Analysis of Evaluation Methods Tailored for HSIC
3. Algorithmic Advancements of NAS in HSIC
3.1. CNN-Based NAS for HSIC
3.1.1. The General Structure of CNNs
1D Auto-CNN-Based Methods
2D Auto-CNN-Based Methods
3D Auto-CNN-Based Methods
4. Experiments
4.1. Experimental Datasets
4.2. Overview of Representative Methods
4.3. Classification Results
5. Challenges of NAS in HSIC
5.1. Search Efficiency
5.2. Computational Cost
5.3. The Interpretability Dilemma of NAS-Generated Networks
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burns, P.D.; Berns, R.S. Analysis multispectral image capture. In Proceedings of the Color and Imaging Conference, Scottsdale, AZ, USA, 19–22 November 1996. [Google Scholar]
- Ghamisi, P.; Yokoya, N.; Li, J.; Liao, W.; Liu, S.; Plaza, J.; Rasti, B.; Plaza, A. Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 2017, 5, 37–78. [Google Scholar] [CrossRef]
- Govender, M.; Chetty, K.; Bulcock, H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water Sa 2007, 33, 145–151. [Google Scholar] [CrossRef]
- Liang, L.; Di, L.; Zhang, L.; Deng, M.; Qin, Z.; Zhao, S.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 2015, 165, 123–134. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y. Estimating soil salinity under various moisture conditions: An experimental study. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2525–2533. [Google Scholar] [CrossRef]
- Cai, X.; Wu, L.; Li, Y.; Lei, S.; Xu, J.; Lyu, H.; Li, J.; Wang, H.; Dong, X.; Zhu, Y. Remote sensing identification of urban water pollution source types using hyperspectral data. J. Hazard. Mater. 2023, 459, 132080. [Google Scholar] [CrossRef] [PubMed]
- Shafique, N.A.; Fulk, F.; Autrey, B.C.; Flotemersch, J. Hyperspectral remote sensing of water quality parameters for large rivers in the Ohio River basin. In Proceedings of the First interagency conference on research in the watershed, Benson, AZ, USA, 27–30 October 2003. [Google Scholar]
- Dalponte, M.; Ørka, H.O.; Gobakken, T.; Gianelle, D.; Næsset, E.J.I.T.o.G.; Sensing, R. Tree species classification in boreal forests with hyperspectral data. IEEE Trans. Geosci. Remote. Sens. 2012, 51, 2632–2645. [Google Scholar] [CrossRef]
- Tao, H.; Feng, H.; Xu, L.; Miao, M.; Long, H.; Yue, J.; Li, Z.; Yang, G.; Yang, X.; Fan, L. Estimation of crop growth parameters using UAV-based hyperspectral remote sensing data. Sensors 2020, 20, 1296. [Google Scholar] [CrossRef]
- Yokoya, N.; Chan, J.C.-W.; Segl, K. Potential of resolution-enhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images. Remote Sens. 2016, 8, 172. [Google Scholar] [CrossRef]
- Chutia, D.; Bhattacharyya, D.; Sarma, K.K.; Kalita, R.; Sudhakar, S. Hyperspectral remote sensing classifications: A perspective survey. Trans. GIS 2016, 20, 463–490. [Google Scholar] [CrossRef]
- Manolakis, D.G.; Marden, D.; Kerekes, J.P.; Shaw, G.A. Statistics of hyperspectral imaging data. In Proceedings of the Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, Orlando, FL, USA, 16–19 April 2001. [Google Scholar]
- Ma, L.; Crawford, M.M.; Tian, J. Local manifold learning-based k-nearest neighbor for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4099–4109. [Google Scholar] [CrossRef]
- Ge, H.; Pan, H.; Wang, L.; Liu, M.; Li, C. Self-training algorithm for hyperspectral imagery classification based on mixed measurement k-nearest neighbor and support vector machine. J. Appl. Remote Sens. 2021, 15, 042604. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Okwuashi, O.; Ndehedehe, C. Deep support vector machine for hyperspectral image classification. Pattern Recognit. 2020, 103, 107298. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4085–4098. [Google Scholar] [CrossRef]
- Ghamisi, P.; Maggiori, E.; Li, S.; Souza, R.; Tarablaka, Y.; Moser, G.; De Giorgi, A.; Fang, L.; Chen, Y.; Chi, M. New frontiers in spectral-spatial hyperspectral image classification: The latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation, and deep learning. IEEE Geosci. Remote Sens. Mag. 2018, 6, 10–43. [Google Scholar] [CrossRef]
- Peng, J.; Li, L.; Tang, Y.Y. Maximum likelihood estimation-based joint sparse representation for the classification of hyperspectral remote sensing images. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 1790–1802. [Google Scholar] [CrossRef]
- Wan, S.; Gong, C.; Zhong, P.; Pan, S.; Li, G.; Yang, J. Hyperspectral image classification with context-aware dynamic graph convolutional network. IEEE Trans. Geosci. Remote Sens. 2020, 59, 597–612. [Google Scholar] [CrossRef]
- Cao, X.; Zhou, F.; Xu, L.; Meng, D.; Xu, Z.; Paisley, J. Hyperspectral Image Classification with Markov Random Fields and a Convolutional Neural Network. IEEE Trans. Image Process. 2018, 27, 2354–2367. [Google Scholar] [CrossRef]
- Gu, Y.; Liu, T.; Jia, X.; Benediktsson, J.A.; Chanussot, J. Nonlinear Multiple Kernel Learning with Multiple-Structure-Element Extended Morphological Profiles for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3235–3247. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [Google Scholar] [CrossRef]
- Bhatti, U.A.; Yu, Z.; Chanussot, J.; Zeeshan, Z.; Yuan, L.; Luo, W.; Nawaz, S.A.; Bhatti, M.A.; Ain, Q.U.; Mehmood, A. Local Similarity-Based Spatial–Spectral Fusion Hyperspectral Image Classification with Deep CNN and Gabor Filtering. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5514215. [Google Scholar] [CrossRef]
- Li, J.; Xi, B.; Li, Y.; Du, Q.; Wang, K. Hyperspectral Classification Based on Texture Feature Enhancement and Deep Belief Networks. Remote. Sens. 2018, 10, 396. [Google Scholar] [CrossRef]
- Ahmad, M. Hyperspectral Image Classification—Traditional to Deep Models: A Survey for Future Prospects. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 968–999. [Google Scholar] [CrossRef]
- Yang, X.; Ye, Y.; Li, X.; Lau, R.Y.K.; Zhang, X.; Huang, X. Hyperspectral Image Classification with Deep Learning Models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5408–5423. [Google Scholar] [CrossRef]
- Fang, L.; Liu, Z.; Song, W. Deep Hashing Neural Networks for Hyperspectral Image Feature Extraction. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1412–1416. [Google Scholar] [CrossRef]
- Zhouhan, L.; Yushi, C.; Xing, Z.; Gang, W. Spectral-spatial classification of hyperspectral image using autoencoders. In Proceedings of the 2013 9th International Conference on Information, Communications & Signal Processing, Tainan, China, 10–13 December 2013; pp. 1–5. [Google Scholar]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep Learning-Based Classification of Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef]
- Lee, H.; Kwon, H. Contextual deep CNN based hyperspectral classification. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3322–3325. [Google Scholar]
- Yu, S.; Jia, S.; Xu, C. Convolutional neural networks for hyperspectral image classification. Neurocomputing 2017, 219, 88–98. [Google Scholar] [CrossRef]
- Lee, H.; Kwon, H. Going Deeper with Contextual CNN for Hyperspectral Image Classification. IEEE Trans. Image Process. 2017, 26, 4843–4855. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Fang, H.; Zhangjin, Q.; Mi, C.; Feng, X.; He, Y. Hyperspectral imaging technology combined with deep learning for hybrid okra seed identification. Biosyst. Eng. 2021, 212, 46–61. [Google Scholar] [CrossRef]
- Khan, A.; Vibhute, A.D.; Mali, S.; Patil, C.H. A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications. Ecol. Inform. 2022, 69, 101678. [Google Scholar] [CrossRef]
- Jia, P.; Zhang, M.; Yu, W.; Shen, F.; Shen, Y. Convolutional neural network based classification for hyperspectral data. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5075–5078. [Google Scholar]
- Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep supervised learning for hyperspectral data classification through convolutional neural networks. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962. [Google Scholar]
- Wang, C.; Liu, B.; Liu, L.; Zhu, Y.; Hou, J.; Liu, P.; Li, X. A review of deep learning used in the hyperspectral image analysis for agriculture. Artif. Intell. Rev. 2021, 54, 5205–5253. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for Hyperspectral Image Classification: An Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef]
- Zhu, K.; Chen, Y.; Ghamisi, P.; Jia, X.; Benediktsson, J.A. Deep Convolutional Capsule Network for Hyperspectral Image Spectral and Spectral-Spatial Classification. Remote. Sens. 2019, 11, 223. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph Convolutional Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5966–5978. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.; Zhao, X.; Hong, D.; Cai, W.; Yu, C.; Yang, N.; Cai, W. Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification. Neurocomputing 2022, 501, 246–257. [Google Scholar] [CrossRef]
- Ye, H.; Huang, X.; Zhu, H.; Cao, F. An enhanced network with parallel graph node diffusion and node similarity contrastive loss for hyperspectral image classification. Digit. Signal Process. 2025, 158, 104965. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, J.; Shen, T.; Gu, Y. EHGNN: Enhanced Hypergraph Neural Network for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2024, 21, 5504405. [Google Scholar] [CrossRef]
- Haseena Rahmath, P.; Chaurasia, K. Adaptive Early-Exit Inference inGraph Neural Networks Based Hyperspectral Image Classification. In Intelligent Systems Design and Applications; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Tong, L.; Liu, J.; Du, B. SceneFormer: Neural Architecture Search of Transformers for Remote Sensing Scene Classification. IEEE Trans. Geosci. Remote Sens. 2025, 63, 3000415. [Google Scholar] [CrossRef]
- Yang, J.X.; Zhou, J.; Wang, J.; Tian, H.; Liew, A.W.C. HSIMamba: Hyperpsectral Imaging Efficient Feature Learning with Bidirectional State Space for Classification. arXiv 2024, arXiv:2404.00272. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, J.; Shen, H.; Dou, Z.; Zhang, X.; Huang, K. Discrete Wavelet Transform-Based Capsule Network for Hyperspectral Image Classification. arXiv 2025, arXiv:2501.04643. [Google Scholar] [CrossRef]
- Li, B.; Wang, X.; Xu, H. HSR-KAN: Efficient Hyperspectral Image Super-Resolution via Kolmogorov-Arnold Networks. arXiv 2024, arXiv:2409.06705. [Google Scholar]
- Ren, P.; Xiao, Y.; Chang, X.; Huang, P.-Y.; Li, Z.; Chen, X.; Wang, X. A comprehensive survey of neural architecture search: Challenges and solutions. ACM Comput. Surv. (CSUR) 2021, 54, 1–34. [Google Scholar] [CrossRef]
- Elsken, T.; Metzen, J.H.; Hutter, F. Neural architecture search: A survey. J. Mach. Learn. Res. 2019, 20, 1–21. [Google Scholar]
- Zoph, B. Neural architecture search with reinforcement learning. arXiv 2016, arXiv:1611.01578. [Google Scholar]
- Mellor, J.; Turner, J.; Storkey, A.; Crowley, E.J. Neural architecture search without training. In Proceedings of the International Conference on Machine Learning, Online, 18–24 July 2021; pp. 7588–7598. [Google Scholar]
- Kumar, B.; Dikshit, O.; Gupta, A.; Singh, M.K. Feature extraction for hyperspectral image classification: A review. Int. J. Remote Sens. 2020, 41, 6248–6287. [Google Scholar] [CrossRef]
- Datta, D.; Mallick, P.K.; Bhoi, A.K.; Ijaz, M.F.; Shafi, J.; Choi, J. Hyperspectral image classification: Potentials, challenges, and future directions. Comput. Intell. Neurosci. 2022, 2022, 3854635. [Google Scholar] [CrossRef]
- Gu, Y.; Chanussot, J.; Jia, X.; Benediktsson, J.A. Multiple kernel learning for hyperspectral image classification: A review. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6547–6565. [Google Scholar] [CrossRef]
- Imani, M.; Ghassemian, H. An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges. Inf. Fusion 2020, 59, 59–83. [Google Scholar] [CrossRef]
- He, L.; Li, J.; Liu, C.; Li, S. Recent advances on spectral–spatial hyperspectral image classification: An overview and new guidelines. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1579–1597. [Google Scholar] [CrossRef]
- Jaafra, Y.; Laurent, J.L.; Deruyver, A.; Naceur, M.S. Reinforcement learning for neural architecture search: A review. Image Vis. Comput. 2019, 89, 57–66. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G.; Tan, K.C. A survey on evolutionary neural architecture search. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 550–570. [Google Scholar] [CrossRef]
- Wistuba, M.; Rawat, A.; Pedapati, T. A survey on neural architecture search. arXiv 2019, arXiv:1905.01392. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710. [Google Scholar]
- Cai, H.; Yang, J.; Zhang, W.; Han, S.; Yu, Y. Path-level network transformation for efficient architecture search. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 678–687. [Google Scholar]
- Rawal, A.; Miikkulainen, R. From nodes to networks: Evolving recurrent neural networks. arXiv 2018, arXiv:1803.04439. [Google Scholar] [CrossRef]
- Liu, H.; Simonyan, K.; Yang, Y. Darts: Differentiable architecture search. arXiv 2018, arXiv:1806.09055. [Google Scholar]
- Huang, H.; Shen, L.; He, C.; Dong, W.; Liu, W. Differentiable neural architecture search for extremely lightweight image super-resolution. IEEE Trans. Circuits Syst. Video Technol. 2022, 33, 2672–2682. [Google Scholar] [CrossRef]
- Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2820–2828. [Google Scholar]
- Ma, A.; Wan, Y.; Zhong, Y.; Wang, J.; Zhang, L. SceneNet: Remote sensing scene classification deep learning network using multi-objective neural evolution architecture search. ISPRS J. Photogramm. Remote Sens. 2021, 172, 171–188. [Google Scholar] [CrossRef]
- Chen, T.; Goodfellow, I.; Shlens, J. Net2net: Accelerating learning via knowledge transfer. arXiv 2015, arXiv:1511.05641. [Google Scholar]
- Suganuma, M.; Shirakawa, S.; Nagao, T. A genetic programming approach to designing convolutional neural network architectures. In Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Germany, 15–19 July 2017; pp. 497–504. [Google Scholar]
- Elsken, T.; Metzen, J.-H.; Hutter, F. Simple and efficient architecture search for convolutional neural networks. arXiv 2017, arXiv:1711.04528. [Google Scholar] [CrossRef]
- Xie, L.; Yuille, A. Genetic cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1379–1388. [Google Scholar]
- Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized Evolution for Image Classifier Architecture Search. Proc. AAAI Conf. Artif. Intell. 2019, 33, 4780–4789. [Google Scholar] [CrossRef]
- Wistuba, M. Deep learning architecture search by neuro-cell-based evolution with function-preserving mutations. In Proceedings of the Machine Learning and Knowledge Discovery in Databases: European Conference, Dublin, Ireland, 10–14 September 2018; pp. 243–258. [Google Scholar]
- Li, X.; Zhou, Y.; Pan, Z.; Feng, J. Partial order pruning: For best speed/accuracy trade-off in neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9145–9153. [Google Scholar]
- Chu, X.; Zhang, B.; Xu, R. Multi-objective reinforced evolution in mobile neural architecture search. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 99–113. [Google Scholar]
- Zhong, Z.; Yan, J.; Wu, W.; Shao, J.; Liu, C.-L. Practical block-wise neural network architecture generation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2423–2432. [Google Scholar]
- Wu, B.; Wang, Y.; Zhang, P.; Tian, Y.; Vajda, P.; Keutzer, K. Mixed precision quantization of convnets via differentiable neural architecture search. arXiv 2018, arXiv:1812.00090. [Google Scholar] [CrossRef]
- Xie, S.; Zheng, H.; Liu, C.; Lin, L. SNAS: Stochastic neural architecture search. arXiv 2018, arXiv:1812.09926. [Google Scholar]
- Dong, X.; Yang, Y. Searching for a robust neural architecture in four gpu hours. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 1761–1770. [Google Scholar]
- Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.; Keutzer, K. Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10734–10742. [Google Scholar]
- He, C.; Ye, H.; Shen, L.; Zhang, T. Milenas: Efficient neural architecture search via mixed-level reformulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–29 June 2020; pp. 11993–12002. [Google Scholar]
- Ahmed, K.; Torresani, L. Maskconnect: Connectivity learning by gradient descent. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 349–365. [Google Scholar]
- Chen, X.; Xie, L.; Wu, J.; Tian, Q. Progressive differentiable architecture search: Bridging the depth gap between search and evaluation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1294–1303. [Google Scholar]
- Snoek, J.; Rippel, O.; Swersky, K.; Kiros, R.; Satish, N.; Sundaram, N.; Patwary, M.; Prabhat, M.; Adams, R. Scalable bayesian optimization using deep neural networks. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 2171–2180. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Chrabaszcz, P.; Loshchilov, I.; Hutter, F. A downsampled variant of imagenet as an alternative to the cifar datasets. arXiv 2017, arXiv:1707.08819. [Google Scholar] [CrossRef]
- Klein, A.; Falkner, S.; Springenberg, J.T.; Hutter, F. Learning curve prediction with Bayesian neural networks. In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017. [Google Scholar]
- Domhan, T.; Springenberg, J.T.; Hutter, F. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In Proceedings of the IJCAI, Buenos Aires, Argentina, 25–31 July 2015; pp. 3460–3468. [Google Scholar]
- Zheng, X.; Ji, R.; Tang, L.; Zhang, B.; Liu, J.; Tian, Q. Multinomial distribution learning for effective neural architecture search. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1304–1313. [Google Scholar]
- Cai, H.; Zhu, L.; Han, S. Proxylessnas: Direct neural architecture search on target task and hardware. arXiv 2018, arXiv:1812.00332. [Google Scholar]
- Yang, J.; Liu, Y.; Xu, H. HOTNAS: Hierarchical optimal transport for neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 11990–12000. [Google Scholar]
- Baker, B.; Gupta, O.; Raskar, R.; Naik, N. Accelerating neural architecture search using performance prediction. arXiv 2017, arXiv:1705.10823. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, Z.; Zhu, Z.; Zhou, J.; Lu, J. Shapley-NAS: Discovering operation contribution for neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11892–11901. [Google Scholar]
- Mills, K.G.; Han, F.X.; Zhang, J.; Chudak, F.; Mamaghani, A.S.; Salameh, M.; Lu, W.; Jui, S.; Niu, D. Gennape: Towards generalized neural architecture performance estimators. In Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; pp. 9190–9199. [Google Scholar]
- Sun, Y.; Wang, H.; Xue, B.; Jin, Y.; Yen, G.G.; Zhang, M. Surrogate-assisted evolutionary deep learning using an end-to-end random forest-based performance predictor. IEEE Trans. Evol. Comput. 2019, 24, 350–364. [Google Scholar] [CrossRef]
- Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.-J.; Fei-Fei, L.; Yuille, A.; Huang, J.; Murphy, K. Progressive neural architecture search. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 19–34. [Google Scholar]
- Cai, H.; Gan, C.; Wang, T.; Zhang, Z.; Han, S. Once-for-all: Train one network and specialize it for efficient deployment. arXiv 2019, arXiv:1908.09791. [Google Scholar]
- Duan, Y.; Chen, X.; Xu, H.; Chen, Z.; Liang, X.; Zhang, T.; Li, Z. Transnas-bench-101: Improving transferability and generalizability of cross-task neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 5251–5260. [Google Scholar]
- Elsken, T.; Metzen, J.H.; Hutter, F. Efficient multi-objective neural architecture search via lamarckian evolution. arXiv 2018, arXiv:1804.09081. [Google Scholar]
- Wei, T.; Wang, C.; Rui, Y.; Chen, C.W. Network morphism. In Proceedings of the International conference on machine learning, New York, NY, USA, 20–22 June 2016; pp. 564–572. [Google Scholar]
- Jin, H.; Song, Q.; Hu, X. Auto-keras: An efficient neural architecture search system. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1946–1956. [Google Scholar]
- Pham, H.; Guan, M.; Zoph, B.; Le, Q.; Dean, J. Efficient neural architecture search via parameters sharing. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 4095–4104. [Google Scholar]
- Gaier, A.; Ha, D. Weight agnostic neural networks. Adv. Neural Inf. Process. Syst. 2019, 32, 5364–5378. [Google Scholar]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Wang, B.; Sun, Y.; Xue, B.; Zhang, M. A hybrid differential evolution approach to designing deep convolutional neural networks for image classification. In Proceedings of the AI 2018: Advances in Artificial Intelligence: 31st Australasian Joint Conference, Wellington, New Zealand, 11–14 December 2018; Proceedings 31, 2018. pp. 237–250. [Google Scholar]
- Mendoza, H.; Klein, A.; Feurer, M.; Springenberg, J.T.; Hutter, F. Towards automatically-tuned neural networks. In Proceedings of the Workshop on Automatic Machine Learning, New York, NY, USA, 24 June 2016; pp. 58–65. [Google Scholar]
- Zhang, H.; Li, Y.; Zhang, Y.; Shen, Q. Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network. Remote Sens. Lett. 2017, 8, 438–447. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J. Photogramm. Remote Sens. 2018, 145, 120–147. [Google Scholar] [CrossRef]
- Amoako, P.Y.O.; Kyei, E.Y. Deep Learning Models for Small Sample Hyperspectral Image Classification. In Proceedings of the 2024 IEEE SmartBlock4Africa, Accra, Ghana, 30 September–4 October 2024. [Google Scholar]
- Liu, S.; Fu, C.; Duan, Y.; Wang, X.; Luo, F. Spatial–Spectral Enhancement and Fusion Network for Hyperspectral Image Classification With Few Labeled Samples. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5502414. [Google Scholar] [CrossRef]
- Yang, Z.; Hao, S.; Li, E.; Zhao, K. Hierarchical spatial–spectral enhancement network for hyperspectral image and light detection and ranging data classification. J. Appl. Remote Sens. 2025, 19, 016513. [Google Scholar] [CrossRef]
- Li, M.; Fu, Y.; Zhang, T.; Liu, J. Latent Diffusion Enhanced Rectangle Transformer for Hyperspectral Image Restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2025, 47, 549–564. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, L.; Tian, Y.; He, J.; Chen, C.L.P. Spatially Enhanced Refined Classifier for Cross-Scene Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5502215. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, X.; Liu, T.; Gu, Y. Few-Shot Open-Set Collaborative Classification of Multispectral and Hyperspectral Images With Adaptive Joint Similarity Metric. IEEE Trans. Geosci. Remote Sens. 2024, 62. [Google Scholar] [CrossRef]
- Dang, Y.; Li, H.; Liu, B.; Zhang, X. Cross-Domain Few-Shot Learning for Hyperspectral Image Classification Based on Global-to-Local Enhanced Channel Attention. IEEE Geosci. Remote Sens. Lett. 2025, 22, 5540418. [Google Scholar] [CrossRef]
- Shi, Z.; Lai, X.; Deng, J.; Liu, J. Content-Biased and Style-Assisted Transfer Network for Cross-Scene Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5532217. [Google Scholar] [CrossRef]
- Song, W.; Li, S.; Fang, L.; Lu, T. Hyperspectral Image Classification With Deep Feature Fusion Network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3173–3184. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, K.; Zhu, L.; He, X.; Ghamisi, P.; Benediktsson, J.A. Automatic design of convolutional neural network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7048–7066. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Moreno-Álvarez, S.; Xue, Y.; Haut, J.M.; Plaza, A. AAtt-CNN: Automatic Attention-Based Convolutional Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5511118. [Google Scholar] [CrossRef]
- Hu, Z.; Bao, W.; Qu, K.; Liang, H. Image-based neural architecture automatic search method for hyperspectral image classification. J. Appl. Remote Sens. 2022, 16, 016501. [Google Scholar] [CrossRef]
- He, W.; Yao, Q.; Yokoya, N.; Uezato, T.; Zhang, H.; Zhang, L. Spectrum-aware and transferable architecture search for hyperspectral image restoration. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 19–37. [Google Scholar]
- Han, Z.; Hong, D.; Gao, L.; Zhang, B.; Huang, M.; Chanussot, J. AutoNAS: Automatic Neural Architecture Search for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Han, X.H.; Jiang, H.; Chen, Y.W. Hyperspectral Image Reconstruction Using Hierarchical Neural Architecture Search from A Snapshot Image. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024. [Google Scholar]
- Liu, X.; Zhang, C.; Cai, Z.; Yang, J.; Zhou, Z.; Gong, X. Continuous particle swarm optimization-based deep learning architecture search for hyperspectral image classification. Remote Sens. 2021, 13, 1082. [Google Scholar] [CrossRef]
- Wang, A.; Song, Y.; Wu, H.; Liu, C.; Iwahori, Y. A hybrid neural architecture search for hyperspectral image classification. Front. Phys. 2023, 11, 1159266. [Google Scholar] [CrossRef]
- Feng, S.; Li, Z.; Zhang, B.; Chen, T.; Wang, B. DSF2-NAS: Dual-Stage Feature Fusion via Network Architecture Search for Classification of Multimodal Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 7207–7220. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Guo, Y.; Li, Y. Lightweight Spatial–Spectral Shift Module With Multihead MambaOut for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2025, 18, 921–934. [Google Scholar] [CrossRef]
- Li, C.; Rasti, B.; Tang, X.; Duan, P.; Li, J.; Peng, Y. Channel-Layer-Oriented Lightweight Spectral–Spatial Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–14. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Peng, M.; Rasti, B.; Duan, P.; Tang, X.; Ma, X. Low-Latency Neural Network for Efficient Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 7374–7390. [Google Scholar] [CrossRef]
- Zhang, H.; Gong, C.; Bai, Y.; Bai, Z.; Li, Y. 3-D-ANAS: 3-D Asymmetric Neural Architecture Search for Fast Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–19. [Google Scholar] [CrossRef]
- Wang, J.; Hu, J.; Liu, Y.; Hua, Z.; Hao, S.; Yao, Y. El-nas: Efficient lightweight attention cross-domain architecture search for hyperspectral image classification. Remote Sens. 2023, 15, 4688. [Google Scholar] [CrossRef]
- Wang, D.; Du, B.; Zhang, L.; Tao, D. HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel Neural Architecture Search. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 13631–13645. [Google Scholar] [CrossRef]
- Cao, C.; Yi, H.; Xiang, H.; He, P.; Hu, J.; Xiao, F.; Gao, X. Accelerated Sparse-Coding-Inspired Feedback Neural Architecture Search for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–14. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Gong, M.; Liu, J.; Wu, Y.; Zhang, M.; Shi, J. Evolutionary Multitasking CNN Architecture Search for Hyperspectral Image Classification. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–8. [Google Scholar]
- Cao, C.; Xiang, H.; Song, W.; Yi, H.; Xiao, F.; Gao, X. Lightweight Multiscale Neural Architecture Search With Spectral–Spatial Attention for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5505315. [Google Scholar] [CrossRef]
- Song, Y.; Wang, A.; Zhao, Y.; Wu, H.; Iwahori, Y. Multi-Scale Spatial–Spectral Attention-Based Neural Architecture Search for Hyperspectral Image Classification. Electronics 2023, 12, 3641. [Google Scholar] [CrossRef]
- Xiao, F.; Xiang, H.; Cao, C.; Gao, X. Neural Architecture Search-Based Few-Shot Learning for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5513715. [Google Scholar] [CrossRef]
- Wang, J.; Huang, R.; Guo, S.; Li, L.; Zhu, M.; Yang, S.; Jiao, L. NAS-guided lightweight multiscale attention fusion network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8754–8767. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, Y.; Lu, Y. Neural Architecture Search Based on Simple and Parameter-Free Attention for Hyperspectral Image Classification. In Proceedings of the 2024 IEEE 2nd International Conference on Image Processing and Computer Applications (ICIPCA), Shenyang, China, 28–30 June 2024; pp. 236–240. [Google Scholar]
- Zhang, Z.; Liu, S.; Zhang, Y.; Chen, W. RS-DARTS: A Convolutional Neural Architecture Search for Remote Sensing Image Scene Classification. Remote Sens. 2022, 14, 141. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, K.; Wu, H.; Dai, S.; Iwahori, Y.; Yu, X. Noise-Disruption-Inspired Neural Architecture Search with Spatial–Spectral Attention for Hyperspectral Image Classification. Remote Sens. 2024, 16, 3123. [Google Scholar] [CrossRef]
- Yamasaki, T.; Wang, Z.; Luo, T.; Chen, N.; Wang, B. RBFleX-NAS: Training-Free Neural Architecture Search Using Radial Basis Function Kernel and Hyperparameter Detection. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 10057–10071. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Li, Y.; Ma, L.; Li, J.; Zheng, W.S. Spectral–Spatial Transformer Network for Hyperspectral Image Classification: A Factorized Architecture Search Framework. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5514715. [Google Scholar] [CrossRef]
- Xue, X.; Zhang, H.; Fang, B.; Bai, Z.; Li, Y. Grafting Transformer on Automatically Designed Convolutional Neural Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5531116. [Google Scholar] [CrossRef]
- Zhou, F.; Kilickaya, M.; Vanschoren, J.; Piao, R. HyTAS: A Hyperspectral Image Transformer Architecture Search Benchmark and Analysis. arXiv 2024, arXiv:2407.16269. [Google Scholar] [CrossRef]
- Zhan, L.; Ye, P.; Fan, J.; Chen, T. UConvFormer: Marrying and Evolving Nested U-Net and Scale-Aware Transformer for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5517114. [Google Scholar] [CrossRef]
- Li, K.; Wan, Y.; Ma, A.; Zhong, Y. A Lightweight Multiscale and Multiattention Hyperspectral Image Classification Network Based on Multistage Search. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5509418. [Google Scholar] [CrossRef]
Network Framework Model | Backbone | Highlights |
---|---|---|
I-NAS [128] | 2D-CNN | Processes both spatial and spectral information while prioritizing spatial feature extraction |
AutoNAS [130] | 2D-CNN | Multi-size convolution kernel configuration improves hyperspectral unmixing accuracy |
CPSO-Net [132] | 2D-CNN | Uses PSO to accelerate architecture search and share parameters to reduce search time |
CK-βNAS-CLR [133] | 2D-CNN | Stabilizes the NAS search process, enhances model generalization ability, and solves the problem of discretization differences in traditional NAS |
Network Framework Model | Backbone | Highlights |
---|---|---|
3D-ANAS [138] | 3D-CNN | Decomposing convolution operations reduce computational complexity and parameter count |
EL-NAS [139] | 3D-CNN | Attention mechanism enhances the model’s ability to focus on important information |
LMSS-NAS [143] | 3D-CNN | Captures multi-scale spatial information and reduces computational complexity and parameter count; suitable for small target classification |
HyT-NAS [152] | 3D-CNN | Combining Transformer’s global dependency modeling with CNN’s spatial spectral feature learning |
Method | SVM | 3D-CNN | 3D-Auto-CNN | HyT-NAS | RFSS-NAS |
---|---|---|---|---|---|
1 | 86.93 ± 5.45 | 93.45 ± 2.29 | 95.08 ± 1.20 | 94.94 ± 1.56 | 97.86 ± 1.22 |
2 | 93.48 ± 3.66 | 95.98 ± 3.49 | 97.94 ± 1.64 | 98.87 ± 1.13 | 99.65 ± 0.13 |
3 | 85.36 ± 3.97 | 76.94 ± 7.22 | 93.24 ± 0.75 | 99.12 ± 0.88 | 99.35 ± 0.16 |
4 | 95.68 ± 1.54 | 95.68 ± 2.13 | 85.97 ± 1.21 | 98.16 ± 1.44 | 98.44 ± 1.46 |
5 | 98.33 ± 1.01 | 97.45 ± 1.42 | 96.49 ± 0.68 | 99.06 ± 0.68 | 100 ± 0.00 |
6 | 91.19 ± 3.24 | 96.02 ± 1.50 | 96.68 ± 1.06 | 99.55 ± 0.38 | 99.91 ± 0.07 |
7 | 64.02 ± 15.68 | 78.49 ± 8.12 | 95.92 ± 2.13 | 98.97 ± 1.01 | 99.63 ± 0.33 |
8 | 87.68 ± 3.37 | 93.64 ± 0.98 | 94.98 ± 3.60 | 96.79 ± 1.23 | 95.69 ± 3.67 |
9 | 97.56 ± 1.67 | 93.48 ± 2.42 | 84.69 ± 4.25 | 97.84 ± 1.76 | 98.86 ± 1.05 |
OA (%) | 91.97 ± 1.98 | 95.58 ± 1.99 | 97.34 ± 0.84 | 98.72 ± 0.44 | 98.37 ± 0.40 |
AA (%) | 92.25 ± 2.03 | 91.24 ± 1.37 | 93.44 ± 0.73 | 98.14 ± 0.48 | 98.27 ± 0.48 |
Kappa × 100 | 89.01 ± 2.70 | 94.10 ± 2.81 | 96.50 ± 1.10 | 98.82 ± 0.60 | 97.80 ± 0.50 |
Method | SVM | 3D-CNN | 3D-Auto-CNN | HyT-NAS | RFSS-NAS |
---|---|---|---|---|---|
1 | 83.41 ± 4.44 | 93.41 ± 2.42 | 90.18 ± 3.20 | 90.24 ± 2.11 | 99.46 ± 0.12 |
2 | 93.01 ± 0.86 | 90.91 ± 1.52 | 87.65 ± 4.60 | 84.95 ± 6.51 | 91.45 ± 1.33 |
3 | 90.28 ± 6.97 | 98.86 ± 0.36 | 88.66 ± 6.28 | 93.26 ± 4.78 | 97.35 ± 2.60 |
4 | 98.00 ± 0.54 | 98.65 ± 1.07 | 90.10 ± 2.97 | 88.46 ± 0.79 | 99.44 ± 0.04 |
5 | 90.87 ± 3.01 | 93.25 ± 0.32 | 96.90 ± 2.48 | 96.47 ± 3.71 | 98.03 ± 1.99 |
6 | 89.58 ± 0.22 | 97.36 ± 0.08 | 86.68 ± 6.01 | 88.69 ± 8.34 | 98.00 ± 1.76 |
7 | 60.02 ± 6.89 | 92.49 ± 3.12 | 81.82 ± 6.17 | 76.99 ± 6.01 | 98.13 ± 0.63 |
8 | 68.76 ± 7.35 | 96.91 ± 0.98 | 90.25 ± 5.49 | 86.79 ± 7.13 | 98.62 ± 1.27 |
9 | 67.50 ± 8.04 | 93.21 ± 4.72 | 84.27 ± 4.25 | 79.84 ± 4.86 | 97.94 ± 0.95 |
10 | 57.96 ± 8.67 | 85.02 ± 7.04 | 90.34 ± 3.99 | 85.79 ± 6.48 | 95.47 ± 1.34 |
11 | 55.74 ± 10.16 | 92.26 ± 5.45 | 98.63 ± 1.94 | 96.44 ± 2.54 | 99.14 ± 0.62 |
12 | 58.91 ± 5.64 | 90.28 ± 3.41 | 89.21 ± 4.38 | 87.99 ± 3.86 | 95.97 ± 1.14 |
13 | 57.94 ± 18.43 | 97.31 ± 2.04 | 96.24 ± 3.86 | 88.14 ± 11.16 | 99.22 ± 0.51 |
14 | 80.66 ± 12.11 | 98.11 ± 0.73 | 88.94 ± 3.32 | 91.73 ± 6.77 | 91.36 ± 5.94 |
15 | 98.87 ± 0.05 | 99.53 ± 0.06 | 90.73 ± 6.48 | 91.18 ± 6.74 | 93.32 ± 2.88 |
OA (%) | 75.56 ± 2.58 | 93.23 ± 1.47 | 88.67 ± 0.81 | 88.72 ± 1.54 | 96.88 ± 0.19 |
AA (%) | 77.89 ± 0.33 | 93.99 ± 1.64 | 89.88 ± 0.74 | 89.48 ± 0.87 | 96.78 ± 0.08 |
Kappa × 100 | 73.62 ± 2.88 | 93.16 ± 1.81 | 88.64 ± 1.19 | 86.98 ± 1.61 | 96.54 ± 0.32 |
Network Framework Model | Year | Core Innovations | Scalability | Limitations |
---|---|---|---|---|
RFSS-NAS [149] | 2024 | Noise disruption-Inspired | CNN architecture only | Manual selection of the number and type of search units is required |
RBFleX-NAS [150] | 2024 | Superparameter detection | Support for activation function exploration | Unproven feasibility on large-scale modeling tasks |
SceneFormer [48] | 2025 | Heterogeneous layer design | Support Transformer | Dependency on pre-training |
L3M [155] | 2025 | Lightweight and multi-scale | CNN architecture only | Unproven feasibility on cross-modal tasks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, A.; Liu, X.; Zhang, K.; Lv, H.; Wu, H.; Chen, X.; Yao, M. Neural Architecture Search for Hyperspectral Image Classification: A Comprehensive Review and Future Perspectives. Remote Sens. 2025, 17, 2727. https://doi.org/10.3390/rs17152727
Wang A, Liu X, Zhang K, Lv H, Wu H, Chen X, Yao M. Neural Architecture Search for Hyperspectral Image Classification: A Comprehensive Review and Future Perspectives. Remote Sensing. 2025; 17(15):2727. https://doi.org/10.3390/rs17152727
Chicago/Turabian StyleWang, Aili, Xinyu Liu, Kang Zhang, Haoran Lv, Haibin Wu, Xing Chen, and Manman Yao. 2025. "Neural Architecture Search for Hyperspectral Image Classification: A Comprehensive Review and Future Perspectives" Remote Sensing 17, no. 15: 2727. https://doi.org/10.3390/rs17152727
APA StyleWang, A., Liu, X., Zhang, K., Lv, H., Wu, H., Chen, X., & Yao, M. (2025). Neural Architecture Search for Hyperspectral Image Classification: A Comprehensive Review and Future Perspectives. Remote Sensing, 17(15), 2727. https://doi.org/10.3390/rs17152727