Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (445)

Search Parameters:
Keywords = desalination plant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1093 KB  
Article
Boron Toxicity Alters Yield, Mineral Nutrition and Metabolism in Tomato Plants: Limited Mitigation by a Laminaria digitata-Derived Biostimulant
by Valeria Navarro-Perez, Erika Fernandez-Martinez, Francisco García-Sánchez, Silvia Simón-Grao and Vicente Gimeno-Nieves
Agronomy 2026, 16(2), 247; https://doi.org/10.3390/agronomy16020247 - 20 Jan 2026
Viewed by 153
Abstract
The use of unconventional water sources, such as those from marine desalination plants, is challenging for agriculture due to boron concentrations exceeding 0.5 mg L−1, which can impact crop yield and quality. To ensure sustainability, it is crucial to understand crop [...] Read more.
The use of unconventional water sources, such as those from marine desalination plants, is challenging for agriculture due to boron concentrations exceeding 0.5 mg L−1, which can impact crop yield and quality. To ensure sustainability, it is crucial to understand crop responses to high boron levels and to develop strategies to mitigate its toxic effects. This study evaluated the impact of irrigation with a nutrient solution containing 15 mg L−1 of boron on tomato plants (Solanum lycopersicum L.). To modulate the physiological effects of boron toxicity, two biostimulant products based on an extract from the brown alga Laminaria digitata and other active ingredients were applied foliarly. Agronomic, nutritional, and metabolic parameters were analyzed, including total yield, number of fruits per plant, and fruit quality. Additionally, mineral analysis and metabolomic profiling of leaves and fruits were performed, focusing on amino acids, organic acids, sugars, and other metabolites. A control treatment was irrigated with a nutrient solution containing 0.25 mg L−1 of boron. The results showed that a boron concentration of 15 mg L−1 significantly reduced total yield by 45% and significantly decreased fruit size and firmness. Mineral and metabolomic analyses showed significant reductions in Mg and Ca concentrations, significant increases in P and Zn levels, excessive boron accumulation in leaves and fruits, and significant changes in metabolites associated with nitrogen metabolism and the Krebs cycle. Biostimulant application did not significantly improve agronomic performance, likely due to high boron accumulation in the leaves, although significant changes were detected in leaf nutritional status and metabolic profiles. Full article
Show Figures

Figure 1

19 pages, 3154 KB  
Article
Subsurface Irrigation Depth Affects High-Yield Triticum aestivum Cultivation in Saline-Alkali Soils: Evidence from Soil–Microbe–Crop Interaction
by Tieqiang Wang, Hanbo Wang, Kai Guo, Xiaobin Li, Weidong Li, Zhenxing Yan and Wenbin Chen
Agronomy 2026, 16(2), 245; https://doi.org/10.3390/agronomy16020245 - 20 Jan 2026
Viewed by 265
Abstract
Drip irrigation burial depth is a critical management factor for saline-alkali agriculture, yet its mechanisms of influencing crop productivity through soil–microbe–plant interactions remain poorly understood. To explore the regulatory effects of drip irrigation burial depth on the growth and rhizosphere microenvironment of dryland [...] Read more.
Drip irrigation burial depth is a critical management factor for saline-alkali agriculture, yet its mechanisms of influencing crop productivity through soil–microbe–plant interactions remain poorly understood. To explore the regulatory effects of drip irrigation burial depth on the growth and rhizosphere microenvironment of dryland wheat in saline-alkali soil, three treatments (no irrigation control, CK; 5 cm shallow-buried drip irrigation, T5; 25 cm deep-buried drip irrigation, T25) were set up, with soil physicochemical properties, microbial community characteristics, and crop yield analyzed. The results showed that drip irrigation significantly improved soil environment and yield, and T25 exhibited superior comprehensive benefits: soil electrical conductivity was reduced by 63%, organic matter content increased by 44%, and water-salt status was significantly optimized; meanwhile, microbial community structure was altered and root nutrient uptake capacity was enhanced, ultimately achieving a yield of 5347.1 kg ha−1, 55.0% higher than CK. In conclusion, 25 cm deep-buried drip irrigation may provide advantages for wheat cultivation primarily through improved water distribution, desalination, and soil structure enhancement. Full article
Show Figures

Figure 1

37 pages, 1680 KB  
Review
Renewable Energy-Driven Pumping Systems and Application for Desalination: A Review of Technologies and Future Directions
by Levon Gevorkov, Ehsan Saebnoori, José Luis Domínguez-García and Lluis Trilla
Appl. Sci. 2026, 16(2), 862; https://doi.org/10.3390/app16020862 - 14 Jan 2026
Viewed by 224
Abstract
Desalination is a vital solution to global water scarcity, yet its substantial energy demand persists as a major challenge. As the core energy-consuming components, pumps are fundamental to both membrane and thermal desalination processes. This review provides a comprehensive analysis of renewable energy [...] Read more.
Desalination is a vital solution to global water scarcity, yet its substantial energy demand persists as a major challenge. As the core energy-consuming components, pumps are fundamental to both membrane and thermal desalination processes. This review provides a comprehensive analysis of renewable energy source (RES)-driven pumping systems for desalination, focusing on the integration of solar photovoltaic and wind technologies. It examines the operational principles and efficiency of key pump types, such as high-pressure feed pumps for reverse osmosis, and underscores the critical role of energy recovery devices (ERDs) in minimizing net energy consumption. Furthermore, the paper highlights the importance of advanced control and energy management systems (EMS) in mitigating the intermittency of renewable sources. It details essential control strategies, including maximum power point tracking (MPPT), motor drive control, and supervisory EMS, that optimize the synergy between pumps, ERDs, and variable power inputs. By synthesizing current technologies and control methodologies, this review aims to identify pathways for designing more resilient, energy-efficient, and cost-effective desalination plants, supporting a sustainable water future. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

20 pages, 4269 KB  
Article
Feasibility of Multi-Use Ocean Thermal Energy Conversion (OTEC) Platforms
by Andrea Copping, Hayley Farr, Christopher Rumple, Kyungmin Park and Zhaoqing Yang
J. Mar. Sci. Eng. 2026, 14(1), 64; https://doi.org/10.3390/jmse14010064 - 30 Dec 2025
Viewed by 443
Abstract
Many tropical islands and coastal communities suffer from high energy costs, unreliable electrical supplies, poverty, and underemployment, which are all exacerbated by climate change. Multi-use Ocean Thermal Energy Conversion (OTEC) systems could align with the goals and values of these underserved and remote [...] Read more.
Many tropical islands and coastal communities suffer from high energy costs, unreliable electrical supplies, poverty, and underemployment, which are all exacerbated by climate change. Multi-use Ocean Thermal Energy Conversion (OTEC) systems could align with the goals and values of these underserved and remote communities. Developing multi-use OTEC systems could help meet the United Nations’ Sustainable Development Goals #7 (Affordable and Clean Energy) and #13 (Climate Action). Multiple uses of OTEC water and power are explored in this study, including seawater air conditioning, desalination, support for aquaculture in tropical regions, and other uses. A use case for an onshore OTEC plant at the location of the existing OTEC plant in Kona, Hawaii, is examined to determine if sufficient thermal resources exist for OTEC power generation year-round, and to determine the potential for each value-added use. Potential environmental effects are evaluated using a new open-source numerical model for determining the risk from the discharge of large volumes of cold deep seawater in the ocean. Companies currently using the cold deep seawater pumped ashore at the Kona location were surveyed to determine their dependence on and interest in expanded OTEC and cold-water availability at the site. The analysis indicates that multi-use OTEC is feasible, with seawater air conditioning (SWAC), aquaculture, and desalination being the most compatible immediate additions, while future potential exists for adding extraction of critical minerals from seawater and e-fuel generation. Full article
(This article belongs to the Special Issue Ocean Thermal Energy Conversion and Utilization)
Show Figures

Figure 1

21 pages, 4915 KB  
Article
Performance Analysis of Seawater Desalination Using Reverse Osmosis and Energy Recovery Devices in Nouadhibou
by Ahmed Ghadhy, Amine Lilane, Hamza Faraji, Said Ettami, Abdelkader Boulezhar and Dennoun Saifaoui
Liquids 2026, 6(1), 2; https://doi.org/10.3390/liquids6010002 - 24 Dec 2025
Viewed by 792
Abstract
Arid zones, such as the MENA regions and the Sahara countries, are experiencing significant water stress. To address this global challenge, desalination technologies provide a crucial solution, particularly the reverse osmosis (RO) technique, which is widely used to treat Seawater or Brackish water. [...] Read more.
Arid zones, such as the MENA regions and the Sahara countries, are experiencing significant water stress. To address this global challenge, desalination technologies provide a crucial solution, particularly the reverse osmosis (RO) technique, which is widely used to treat Seawater or Brackish water. Mauritania is among the countries facing a scarcity of potable water resources and relies on desalination technologies to meet its water demand. In this work, a numerical and experimental study was carried out on the functional and productive parameters of the Nouadhibou desalination plant in Mauritania using MATLAB/Simulink (R2016a). The study considered two operating scenarios: with and without the energy recovery unit. The objective of this paper is to perform an analytical study of the operating procedures of the Nouadhibou RO desalination plant by varying several parameters, such as the pressure exchanger, and the feed water mixing ratio in the pressure exchanger unit, etc., in order to determine the system’s optimal operating point. This paper analyzes the system’s performance under different conditions, including recovery rate, feed water temperature, and PEX splitter ratio. In Case No. 1 (without a pressure recovery unit), and with a recovery rate of 20%, doubling the plant’s productivity from 400 to 800 m3/d requires 400 kW of power. In contrast, in Case No. 2 (with a pressure recovery unit), achieving the same productivity requires only 100 kW, with a 75% of energy saving. When the desalination plant operates at a productivity of 400 m3/d@40%, the SPC decreases from 6 kWh/m3 (Case No. 1) to 2.7 kWh/m3 (Case No. 2), resulting in a 55% specific power consumption saving. The results also indicate that power consumption increases with both feed water temperature and PEX splitter ratio, while variations in these parameters have a negligible effect on permeate salinity. Full article
(This article belongs to the Special Issue Energy Transfer in Liquids)
Show Figures

Figure 1

21 pages, 10584 KB  
Article
Effect of Natural Seawater Salinity on Stainless Steel Corrosion: Enhanced Resistance in Seawater Bittern
by Senka Gudić, Mislav Ćorić, Ladislav Vrsalović, Aleš Nagode, Jure Krolo and Jelena Jakić
Appl. Sci. 2026, 16(1), 109; https://doi.org/10.3390/app16010109 - 22 Dec 2025
Viewed by 334
Abstract
Stainless steels are commonly used in coastal structures and in seawater desalination and treatment systems, so understanding their corrosion behaviour under different salinity conditions is important to ensure the durability and reliability of the material. In this study, the behaviour of AISI 304L, [...] Read more.
Stainless steels are commonly used in coastal structures and in seawater desalination and treatment systems, so understanding their corrosion behaviour under different salinity conditions is important to ensure the durability and reliability of the material. In this study, the behaviour of AISI 304L, AISI 316L, and 2205 duplex stainless steels (DSS) was tested in three media with different salinities: brackish water (BSW), seawater (SW), and concentrated seawater bittern (CSW). Testing was conducted using classical electrochemical methods (open circuit potential, linear, and potentiodynamic polarization) supplemented by surface analyses (optical microscopy, SEM/EDS, and optical profilometry). Corrosion resistance increased in the order AISI 304L < AISI 316L < 2205 DSS. Duplex steel 2205 performed best in all media: it exhibited the most positive open circuit potential, the highest polarization resistance, the lowest corrosion current density, and the widest passive range. Unexpectedly, CSW showed improved corrosion resistance compared to SW, which is explained by the reduced chloride content characteristic of seawater bittern after NaCl crystallisation and the presence of magnesium, calcium, and sulphate ions that promote the formation of protective deposits on the metal surface. Pronounced pitting was observed on AISI 304L steel in seawater, while surface degradation in brackish and concentrated seawater was significantly less, and 2205 DSS remained almost unchanged. The results obtained can serve as guidelines for the design and selection of materials for equipment and structures in industries operating in aggressive marine and coastal environments, such as desalination plants, shipbuilding, and energy systems. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

18 pages, 903 KB  
Article
Solar-Powered RO–Hydroponic Net House: A Scalable Model for Water-Efficient Tomato Production in Arid Regions
by Arash Nejatian, Abdul Aziz Niane, Mohamed Makkawi, Khaled Al-Sham'aa, Shamma Abdulla Rahma Al Shamsi, Tahra Saeed Ali Mohamed Al Naqbi, Haliema Yousif Hassan Ibrahim and Jassem Essa Juma
Sustainability 2025, 17(24), 11298; https://doi.org/10.3390/su172411298 - 17 Dec 2025
Cited by 1 | Viewed by 461
Abstract
This study assessed six tomato (Solanum lycopersicum L.) cultivars within an integrated solar-powered closed hydroponic system in Al Dhaid, UAE (25°16′11.2″ N, 55°55′52.2″ E). The system combined an insect-proof net house, closed hydroponics, root-zone cooling, ultra-low-energy drip irrigation, and a cost-effective solar-powered [...] Read more.
This study assessed six tomato (Solanum lycopersicum L.) cultivars within an integrated solar-powered closed hydroponic system in Al Dhaid, UAE (25°16′11.2″ N, 55°55′52.2″ E). The system combined an insect-proof net house, closed hydroponics, root-zone cooling, ultra-low-energy drip irrigation, and a cost-effective solar-powered reverse osmosis (RO) desalination unit to address salinity constraints. The cultivars, selected for their adaptability to controlled environments in the UAE, were evaluated for yield, water-use efficiency (WUE), and fertilizer-use efficiency (FUE). Among them, Torcida recorded the highest mean yield (0.619 kg/m2/harvest), WUE (27.1 kg/m3), FUE (26.5 kg fruit/kg fertilizer), and marketable fruit ratio (66.3%), followed by Roenza, Eviva, and SV 4129 TH; Lamina was intermediate, while Saley, a bushy type, produced the lowest yield. The top cultivars achieved cumulative yields exceeding 7 kg/m2—surpassing regional open-field benchmarks (4–5 kg/m2; 3–6 kg/m3). Compared with conventional cooled hydroponic greenhouses (3.5 kg/plant; 8 kg/m3), the system demonstrated similar productivity using three times less water. The RO unit produced water at baseline 1.05 USD/m3—58–68% below regional tariffs—while minimizing reliance on grid electricity and mechanical cooling. Overall, the integrated solar-powered hydroponic–RO model proved technically reliable, resource-efficient, and economically viable, offering a scalable solution for sustainable vegetable production in hyper-arid regions. Full article
(This article belongs to the Special Issue Advanced Control for Sustainable Renewable Energy and Power Systems)
Show Figures

Figure 1

15 pages, 603 KB  
Article
Seawater Desalination in California: A Proposed Framework for Streamlining Permitting and Facilitating Implementation
by Thomas M. Missimer, Michael C. Kavanaugh, Robert G. Maliva, Janet Clements, Jennifer R. Stokes-Draut, John L. Largier and Julie Chambon
Water 2025, 17(24), 3533; https://doi.org/10.3390/w17243533 - 13 Dec 2025
Viewed by 780
Abstract
Construction of new seawater reverse osmosis desalination (SWRO) plants in the state of California (USA) requires environmental permits containing rather strict conditions. The California Ocean Plan requires the use of subsurface intake systems (SSIs) unless they are deemed to be not feasible. The [...] Read more.
Construction of new seawater reverse osmosis desalination (SWRO) plants in the state of California (USA) requires environmental permits containing rather strict conditions. The California Ocean Plan requires the use of subsurface intake systems (SSIs) unless they are deemed to be not feasible. The Governor of California requested that the State Water Resources Control Board (State Board) study the issue of accelerating the desalination plant permitting process and making it more efficient. The State Board formed an independent scientific Panel to study the issue of SSI feasibility and to submit a report. The Panel recommendations included the following: the feasibility assessment (FA) for SSIs should be streamlined for completion within a maximum of three years, and this requirement should be added to the Ocean Plan; applicants need to perform a financial feasibility study before pursuing SSI capacities exceeding 38,000 m3/d (10 MGD) for wells or 100,000 m3/d (25 MGD) for galleries because project financing may be denied for such larger capacity systems; the mitigation options for each site–SSI combination in the screening process should be addressed by both the project proponent and regulatory agencies as early as practicable in the overall permitting process; and the impacts of SSIs on local aquifers and associated wetland systems must be assessed during the analyses conducted during the FA and during post-construction monitoring. The Panel further concluded that the design and evaluation of SSI–site combinations are highly site-specific, involving technically complex issues, which require both the applicant and the reviewing state agencies to have the expertise to design and review the applications. Economic feasibility must consider cost to the consumer and the engineering risk that can preclude project financing. Projected capacities exceeding the above noted limits may not by financed due to risks of failure or could require government guarantees to lenders. The current permitting system in California is likely to preclude construction of large seawater desalination facilities that can provide another source of potable water for coastal communities in California during severe droughts. Without seawater desalination, the potable water supply in California would suffer a greater sustainability and resilience risk during future periods of extended drought. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

25 pages, 3616 KB  
Article
A Deep Learning-Driven Semantic Mapping Strategy for Robotic Inspection of Desalination Facilities
by Albandari Alotaibi, Reem Alrashidi, Hanan Alatawi, Lamaa Duwayriat, Aseel Binnouh, Tareq Alhmiedat and Ahmad Al-Qerem
Machines 2025, 13(12), 1129; https://doi.org/10.3390/machines13121129 - 8 Dec 2025
Viewed by 479
Abstract
The area of robot autonomous navigation has become essential for reducing labor-intensive tasks. These robots’ current navigation systems are based on sensed geometrical structures of the environment, with the engagement of an array of sensor units such as laser scanners, range-finders, and light [...] Read more.
The area of robot autonomous navigation has become essential for reducing labor-intensive tasks. These robots’ current navigation systems are based on sensed geometrical structures of the environment, with the engagement of an array of sensor units such as laser scanners, range-finders, and light detection and ranging (LiDAR) in order to obtain the environment layout. Scene understanding is an important task in the development of robots that need to act autonomously. Hence, this paper presents an efficient semantic mapping system that integrates LiDAR, RGB-D, and odometry data to generate precise and information-rich maps. The proposed system enables the automatic detection and labeling of critical infrastructure components, while preserving high spatial accuracy. As a case study, the system was applied to a desalination plant, where it interactively labeled key entities by integrating Simultaneous Localization and Mapping (SLAM) with vision-based techniques in order to determine the location of installed pipes. The developed system was validated using an efficient development environment known as Robot Operating System (ROS) and a two-wheel-drive robot platform. Several simulations and real-world experiments were conducted to validate the efficiency of the developed semantic mapping system. The obtained results are promising, as the developed semantic map generation system achieves an average object detection accuracy of 84.97% and an average localization error of 1.79 m. Full article
Show Figures

Figure 1

28 pages, 5903 KB  
Article
Waves as Energy Source for Desalination Plants in Islands
by B. Del Río-Gamero, Ancor José Yánez-Rivero, P. Yánez Rosales and Julieta Schallenberg-Rodríguez
J. Mar. Sci. Eng. 2025, 13(12), 2320; https://doi.org/10.3390/jmse13122320 - 6 Dec 2025
Viewed by 678
Abstract
The rapid increase in the global demand for electricity and the resulting emission of polluting gases, together with the limited availability of land suitable for renewable energy installations in some areas, are the motivation for this study. The Canary Islands, characterized by rugged [...] Read more.
The rapid increase in the global demand for electricity and the resulting emission of polluting gases, together with the limited availability of land suitable for renewable energy installations in some areas, are the motivation for this study. The Canary Islands, characterized by rugged terrain and limited water resources, provide the context for this research in which the interconnection between water and energy is the central focus. This work examines the technical viability of meeting the annual energy requirements of island-based desalination facilities by wave energy, with the objective of diminishing dependence on fossil fuels and ensuring the water supply. Five wave energy converters were compared under three scenarios with increasing levels of constraints, including single-device installations and wave farm configurations. The first scenario evaluated the unit performance of each device, showing WaveStar to be the most operationally robust option. The second and third scenarios shifted the analysis to a wave farm layout with and without environmental restrictions. The results showed that Wave Dragon and WaveStar farms achieve the highest production levels and best installed power densities. Each offers different advantages, with Wave Dragon concentrating high power in a few units and WaveStar presenting greater modularity and better resistance to adverse conditions. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

23 pages, 5008 KB  
Article
Analysis of Fouling in Hollow Fiber Membrane Distillation Modules for Desalination Brine Reduction
by Hyeongrak Cho, Seoyeon Lee, Yongjun Choi, Sangho Lee and Seung-Hyun Kim
Membranes 2025, 15(12), 371; https://doi.org/10.3390/membranes15120371 - 2 Dec 2025
Viewed by 671
Abstract
Membrane distillation (MD) is a promising technology for reducing the volume of high-salinity brines generated from desalination plants, yet limited knowledge exists regarding its fouling behavior under long-term operation. In this study, fouling was investigated through the autopsy of a hollow fiber MD [...] Read more.
Membrane distillation (MD) is a promising technology for reducing the volume of high-salinity brines generated from desalination plants, yet limited knowledge exists regarding its fouling behavior under long-term operation. In this study, fouling was investigated through the autopsy of a hollow fiber MD module operated for 120 days in a direct contact membrane distillation (DCMD) configuration using real desalination brine. Despite stable salt rejection exceeding 99%, a gradual decline in flux and permeability was observed, indicating progressive fouling and partial wetting. Post-operation analyses, including SEM, EDS, ICP-OES, and FT-IR, revealed that the dominant foulants were inorganic scales, particularly calcium carbonate (CaCO3), with minor contributions from suspended particles (SiO2, Fe) and organic matter. Fouling was more severe in the inlet and inner regions of the module due to intensified temperature and concentration polarization, which promoted supersaturation and scale deposition. These combined effects led to a reduction in membrane hydrophobicity and liquid entry pressure, ultimately accelerating partial wetting and performance deterioration. The findings provide valuable insights into the spatial fouling behavior and mechanisms in MD systems, highlighting the importance of hydrodynamic optimization and fouling mitigation strategies for long-term brine concentration applications. Full article
(This article belongs to the Special Issue Membrane Distillation: Module Design and Application Performance)
Show Figures

Figure 1

37 pages, 4381 KB  
Review
Enabling Reliable Freshwater Supply: A Review of Fuel Cell and Battery Hybridization for Solar- and Wind-Powered Desalination
by Levon Gevorkov, Hector del Pozo Gonzalez, Paula Arias, José Luis Domínguez-García and Lluis Trilla
Appl. Sci. 2025, 15(22), 12145; https://doi.org/10.3390/app152212145 - 16 Nov 2025
Viewed by 1100
Abstract
The global water crisis, intensified by climate change and population growth, underscores the critical need for sustainable water production. Desalination is a pivotal solution, but its energy-intensive nature demands a transition from fossil fuels to renewable sources. However, the inherent intermittency of solar [...] Read more.
The global water crisis, intensified by climate change and population growth, underscores the critical need for sustainable water production. Desalination is a pivotal solution, but its energy-intensive nature demands a transition from fossil fuels to renewable sources. However, the inherent intermittency of solar and wind power poses a fundamental challenge to the stable operation of desalination plants. This review provides a comprehensive analysis of a specifically tailored solution: hybrid energy storage systems (HESS) that synergistically combine batteries and hydrogen fuel cells (FC). Moving beyond a general description of hybridization, this study delves into the strategic complementarity of this pairing, where the high-power density and rapid response of lithium-ion batteries manage short-term fluctuations, while the high-energy density and steady output of fuel cells ensure long-duration, stable baseload power. This operational synergy is crucial for maintaining consistent pressure in processes like reverse osmosis (RO), thereby reducing membrane stress and improving system uptime. A central focus of this review is the critical role of advanced energy management systems (EMS). We synthesize findings on how intelligent control strategies, from fuzzy logic to metaheuristic optimization algorithms, are essential for managing the power split between components. These sophisticated EMS strategies do not merely ensure reliability, they actively optimize the system to minimize hydrogen consumption, reduce operational costs, and extend the lifespan of the hybrid energy storage components. The analysis confirms that a lithium-ion battery-fuel cell HESS, governed by an advanced EMS, effectively mitigates renewable intermittency to significantly enhance freshwater yield and overall system reliability. By integrating component-specific hybridization with smart control, this review establishes a framework for researchers and engineers to achieve significant levels of energy efficiency, economic viability, and sustainability in renewable-powered desalination. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

20 pages, 6854 KB  
Article
PumpSpectra: An MCSA-Based Platform for Fault Detection in Centrifugal Pump Systems
by Hamza Adaika, Zoheir Tir, Mohamed Sahraoui and Khaled Laadjal
Sensors 2025, 25(22), 6916; https://doi.org/10.3390/s25226916 - 12 Nov 2025
Viewed by 671
Abstract
Reliable detection of faults in centrifugal pump systems is challenging in industrial environments due to harsh operating conditions, limited sensor access, and the need for fast, explainable decisions. We developed PumpSpectra, an industrial Motor Current Signature Analysis (MCSA) platform that processes uploaded stator-current [...] Read more.
Reliable detection of faults in centrifugal pump systems is challenging in industrial environments due to harsh operating conditions, limited sensor access, and the need for fast, explainable decisions. We developed PumpSpectra, an industrial Motor Current Signature Analysis (MCSA) platform that processes uploaded stator-current CSV files using FFT/STFT with transparent, rule-based models designed to identify mechanical faults including misalignment, bearing defects, and impeller anomalies; field validation demonstrated misalignment detection. In a case study at the El Oued desalination plant (Algeria; n=40 operating points), PumpSpectra achieved 91.2% diagnostic accuracy with a 95% reduction in analysis time compared to manual MCSA post-processing, and a false-positive rate of 3.8% at 0.1 Hz resolution. These results suggest that current-only, explainable analytics can support predictive maintenance programs by accelerating fault triage, improving traceability of decisions, and reducing avoided maintenance costs in pump-driven industrial assets. Full article
(This article belongs to the Special Issue Sensors, Systems and Methods for Power Quality Measurements)
Show Figures

Figure 1

20 pages, 1073 KB  
Article
Developing Insights into Pretreatment Optimization: Effects of Eliminating Lime and Soda Ash in Groundwater RO Desalination
by Yazeed Algurainy, Ashraf Refaat and Omar Alrehaili
Water 2025, 17(22), 3186; https://doi.org/10.3390/w17223186 - 7 Nov 2025
Viewed by 999
Abstract
In arid and water-stressed regions, groundwater desalination plants are critical for ensuring reliable potable water supplies, making improvements in their operational efficiency and cost effectiveness a priority for utilities. In many such facilities, lime and soda ash softening remain common pretreatment practices, which [...] Read more.
In arid and water-stressed regions, groundwater desalination plants are critical for ensuring reliable potable water supplies, making improvements in their operational efficiency and cost effectiveness a priority for utilities. In many such facilities, lime and soda ash softening remain common pretreatment practices, which increase chemical consumption and sludge generation, prompting the need for alternative low-chemical strategies. This study evaluates the technical, operational, and economic implications of transitioning a full-scale brackish groundwater desalination plant, from lime–soda ash softening (old plan) to a low-chemical pretreatment strategy based on antiscalant dosing (new plan) upstream of reverse osmosis (RO). Key parameters, including pH, total hardness, calcium and magnesium hardness, silica, iron, alkalinity, and total dissolved solids (TDS), were measured and compared at multiple locations within the treatment plant under both the old and new plans. Removing lime and soda ash caused higher levels of hardness, alkalinity, and silica in the water before RO treatment, increasing the risk of scaling. Operationally, the feed pressure increased from 11.43 ± 0.16 bar (old plan) to a peak of 25.50 ± 0.10 bar in the new plan, accompanied by a decline in water production. Chemical cleaning effectively restored performance, reducing feed pressure to 13.13 ± 0.05 bar, confirming that fouling and scaling were the primary, reversible causes. Despite these challenges, the plant consistently produced water that complied with Saudi Standards for Unbottled Drinking Water (e.g., pH = 7.18 ± 0.09, TDS = 978.27 ± 9.26 mg/L). Economically, the new strategy reduced operating expenditure by approximately 54% (0.295 → 0.135 $/m3), largely due to substantial reductions in chemical and sludge handling costs, although these savings were partially offset by higher energy consumption and more frequent membrane maintenance. Overall, the findings emphasize the importance of systematic performance evaluation during operational transitions, providing guidance for utilities seeking to optimize pretreatment design while maintaining compliance, long-term membrane protection, and environmental sustainability. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

34 pages, 1946 KB  
Review
Innovative Recovery Methods for Metals and Salts from Rejected Brine and Advanced Extraction Processes—A Pathway to Commercial Viability and Sustainability in Seawater Reverse Osmosis Desalination
by Olufisayo E. Ojo and Olanrewaju A. Oludolapo
Water 2025, 17(21), 3141; https://doi.org/10.3390/w17213141 - 1 Nov 2025
Cited by 2 | Viewed by 4509
Abstract
Seawater desalination has emerged as a crucial solution for addressing global freshwater scarcity. However, it generates significant volumes of concentrated brine waste. This brine is rich in dissolved salts and minerals, primarily, chloride (55%), sodium (30%), sulfate (8%), magnesium (4%), calcium (1%), potassium [...] Read more.
Seawater desalination has emerged as a crucial solution for addressing global freshwater scarcity. However, it generates significant volumes of concentrated brine waste. This brine is rich in dissolved salts and minerals, primarily, chloride (55%), sodium (30%), sulfate (8%), magnesium (4%), calcium (1%), potassium (1%), bicarbonate (0.4%), and bromide (0.2%), which are often discharged into marine environments, posing ecological challenges. This study presents a comprehensive global review of innovative technologies for recovering these constituents as valuable products, thereby enhancing the sustainability and economic viability of desalination. The paper evaluates a range of proven and emerging recovery methods, including membrane separation, nanofiltration, electrodialysis, thermal crystallization, solar evaporation, chemical precipitation, and electrochemical extraction. Each technique is analyzed for its effectiveness in isolating salts (NaCl, KCl, and CaSO4) and minerals (Mg(OH)2 and Br2), with a discussion of process-specific constraints, recovery efficiencies, and product purities. Furthermore, the study incorporates a detailed techno-economic assessment, highlighting revenue potential, capital and operational expenditures, and breakeven timelines. Simulated case studies of a 100,000 m3/day seawater reverse osmosis (SWRO) facility demonstrates that a sequential brine recovery process and associated energy balances, supported by pilot-scale data from ongoing global initiatives, can achieve over 90% total salt recovery while producing marketable products such as NaCl, Mg(OH)2, and Br2. The estimated revenue from recovered materials ranges between USD 4.5 and 6.8 million per year, offsetting 65–90% of annual desalination operating costs. The analysis indicates a payback period of 3–5 years, depending on recovery efficiency and product pricing, underscoring the economic viability of large-scale brine valorization alongside its environmental benefits. By transforming waste brine into a source of commercial commodities, desalination facilities can move toward circular economy models and achieve greater sustainability. A practical integration framework is proposed for both new and existing SWRO plants, with a focus on aligning with the principles of a circular economy. By transforming waste brine into a resource stream for commercial products, desalination facilities can reduce environmental discharge and generate additional revenue. The study concludes with actionable recommendations and insights to guide policymakers, engineers, and investors in advancing brine mining toward full-scale implementation. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

Back to TopTop