Behavior of Osteoblastic Lineage Cells When in the Presence of Tamoxifen: In Vitro and In Vivo Studies on Osseointegration
Abstract
1. Introduction
2. Methods
2.1. In Vitro Evaluation
2.1.1. Experimental Groups and Experimental Design
- In complete Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 10,000 IU/mL penicillin G sodium, 100,000 μg/mL streptomycin sulfate, 25 μg/mL amphotericin B, and 1% L-glutamine—for cell viability, morphological evaluation, and collagen synthesis analysis.
- In DMEM without FBS—for collagen synthesis analysis.
- In osteogenic medium (OM), consisting of DMEM supplemented with 50 μg/mL ascorbic acid and 10 mM β-glycerophosphate—for mineralization assays.
2.1.2. Viability
- O1 = Oxidized Alamar Blue® coefficient at 560 nm = 80.586.
- O2 = Oxidized Alamar Blue® coefficient at 600 nm.
- R1 = Reduced Alamar Blue® coefficient at 560 nm.
- R2 = Reduced Alamar Blue® coefficient at 600 nm.
- A1 = Absorbance of the sample at 560 nm.
- A2 = Absorbance of the sample at 600 nm.
- N1 = Absorbance of the negative control (media + reagent, no cells) at 560 nm.
- N2 = Absorbance of the negative control at 600 nm.
2.1.3. Morphological Analysis
2.1.4. Collagen Synthesis
2.1.5. Mineralization
2.2. In Vivo Study Design and Experimental Groups
- SHAM-SS: Animals underwent a simulated bilateral ovariectomy (sham surgery) at week 18 and received daily oral gavage of 0.5 mL of 0.9% saline solution starting from week 2.
- OVX-SS: Animals underwent bilateral ovariectomy at week 18 and received daily oral gavage of 0.5 mL of 0.9% saline solution starting from week 2.
- OVX-TAM: Animals underwent bilateral ovariectomy at week 18 and received daily oral gavage of tamoxifen citrate (15 mg/kg) [31] starting from week 2.
2.3. Animals
Sample Size Calculation and Randomization
2.4. Experimental Protocol
2.4.1. Ovariectomy
2.4.2. Estrous Cycle
2.4.3. Systemic Treatments
2.4.4. Implant Placement
2.4.5. Euthanasia and Sample Processing
2.4.6. Ground-Section Processing
2.4.7. Demineralized Specimen Processing
2.5. Data Analysis
2.5.1. Histological Analysis
2.5.2. Histometric Evaluation of Bone-To-Implant Contact (BIC)
2.5.3. Analysis of the Bone Ingrowth Percentage
2.5.4. Polarization Technique with Picrosirius Red
2.6. Primary and Secondary Outcomes
2.7. Statistical Analysis
3. Results
3.1. Tamoxifen Reduces SAOS-2 Viability and Collagen Deposition and Improves Mineralization Rate
3.2. Tamoxifen Increases Bone/Implant Contact and Bone Ingrowth and Reduces Foci of Inflammation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jordan, V.C. Tamoxifen: Catalyst for the change to targeted therapy. Eur. J. Cancer 2008, 44, 30–38. [Google Scholar] [CrossRef]
- Ingle, J.N.; Ahmann, D.L.; Green, S.J.; Edmonson, J.H.; Bisel, H.F.; Kvols, L.K.; Nichols, W.C.; Creagan, E.T.; Hahn, R.G.; Rubin, J.; et al. Randomized Clinical Trial of Diethylstilbestrol versus Tamoxifen in Postmenopausal Women with Advanced Breast Cancer. N. Engl. J. Med. 1981, 304, 16–21. [Google Scholar] [CrossRef]
- Ward, H.W.C. Anti-oestrogen Therapy for Breast Cancer: A Trial of Tamoxifen at Two Dose Levels. Br. Med. J. 1973, 1, 13–14. [Google Scholar] [CrossRef]
- Cole, M.P.; Jones, C.T.; Todd, I.D.H. A new anti-oestrogenic agent in late breast cancer: An early clinical appraisal of ICI46474. Br. J. Cancer 1971, 25, 270–275. [Google Scholar] [CrossRef]
- Davies, C.; Godwin, J.; Gray, R.; Clarke, M.; Darby, S.; McGale, P.; Wang, Y.C.; Peto, R.; Pan, H.C.; Cutter, D.; et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. Lancet 2011, 378, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Nazarali, S.A.; Narod, S.A. Tamoxifen for women at high risk of breast cancer. Breast Cancer 2014, 6, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Paterni, I.; Granchi, C.; Katzenellenbogen, J.A.; Minutolo, F. Estrogen receptors alpha (ERα) and beta (ERβ): Subtype-selective ligands and clinical potential. Steroids 2014, 90, 13–29. [Google Scholar] [CrossRef]
- Gallo, M.A.; Kaufman, D. Antagonistic and agonistic effects of tamoxifen: Significance in human cancer. Semin. Oncol. 1997, 24 (Suppl. S1), S1-71–S1-80. [Google Scholar]
- Kallio, A.; Guo, T.; Lamminen, E.; Seppänen, J.; Kangas, L.; Väänänen, H.K.; Härkönen, P. Estrogen and the selective estrogen receptor modulator (SERM) protection against cell death in estrogen receptor alpha and beta expressing U2OS cells. Mol. Cell. Endocrinol. 2008, 289, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Watanabeab, T.; Inouea, S.; Ogawaa, S.; Ishiia, Y.; Hiroia, H.; Ikedaa, K.; Orimoa, A.; Muramatsu, M. Agonistic effect of tamoxifen is dependent on cell type, ERE-Promoter context, and estrogen receptor subtype: Functional difference between estrogen receptors α and β. Biochem. Biophys. Res. Commun. 1997, 236, 140–145. [Google Scholar] [CrossRef]
- Razandi, M.; Pedram, A.; Jordan, V.C.; Fuqua, S.; Levin, E.R. Tamoxifen regulates cell fate through mitochondrial estrogen receptor beta in breast cancer. Oncogene 2013, 32, 3274–3285. [Google Scholar] [CrossRef]
- Burstein, H.J.; Temin, S.; Anderson, H.; Buchholz, T.A.; Davidson, N.E.; Gelmon, K.E.; Giordano, S.H.; Hudis, C.A.; Rowden, D.; Solky, A.J.; et al. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American Society of Clinical Oncology clinical practice guideline focused update. J. Clin. Oncol. 2014, 32, 2255–2269. [Google Scholar] [CrossRef]
- Ribnikar, D.; Sousa, B.; Cufer, T.; Cardoso, F. Extended adjuvant endocrine therapy—A standard to all or some? Breast 2017, 32, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.L.; Morgan, G.; Dalley, D.; Kelly, P.J. Tamoxifen reduces bone turnover and prevents lumbar spine and proximal femoral bone loss in early postmenopausal women. Bone Miner. 1993, 22, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, H.; Ahn, S.H.; Tabatabaie, V.; Choi, S.W.; Sohn, G.; Lee, S.B.; Ko, B.S.; Chung, I.Y.; Kim, J.; et al. Change in bone mineral density during 5 years of adjuvant treatment in premenopausal breast cancer patients. Breast Cancer Res. Treat. 2020, 180, 657–663. [Google Scholar] [CrossRef]
- Keating, F.S.J. Chapter 35—Estrogens and Osteoporosis; Academic Press: Cambridge, MA, USA, 2000; pp. 509–533. ISBN 9780124537903. [Google Scholar] [CrossRef]
- Kim, D.; Oh, J.; Lee, H.S.; Jeon, S.; Park, W.C.; Yoon, C.I. Association between tamoxifen and incidence of osteoporosis in Korean patients with ductal carcinoma in situ. Front. Oncol. 2024, 13, 1236188. [Google Scholar] [CrossRef] [PubMed]
- Vehmanen, L.; Elomaa, I.; Blomqvist, C.; Saarto, T. Tamoxifen treatment after adjuvant chemotherapy has opposite effects on bone mineral density in premenopausal patients depending on menstrual status. J. Clin. Oncol. 2006, 24, 675–680. [Google Scholar] [CrossRef]
- Cha, C.; Lee, S.J.; Hong, H.; Choi, Y.Y.; Chung, M.S. Adverse effects of adjuvant tamoxifen treatment on bone mineral density in premenopausal breast cancer patients: A systematic review and meta-analysis. J. Clin. Oncol. 2021, 39, e12500. [Google Scholar] [CrossRef]
- Brånemark, P.I.; Hansson, B.O.; Adell, R.; Breine, U.; Lindström, J.; Hallén, O.; Ohman, A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand. J. Plast. Reconstr. Surg. Suppl. 1977, 16, 1–132. [Google Scholar]
- Zhao, L.; Wang, H.; Huo, K.; Cui, L.; Zhang, W.; Ni, H.; Zhang, Y.; Wu, Z. Quaternized chitosan/glycyrrhizic acid co-decorated titanium with enhanced antimicrobial, immunomodulatory, and osteogenic properties for dental implant applications. Carbohydr. Polym. 2025, 320, 123984. [Google Scholar] [CrossRef]
- Perry, M.J.; Gujra, S.; Whitworth, T.; Tobias, J.H. Tamoxifen Stimulates Cancellous Bone Formation in Long Bones of Female Mice. Endocrinology 2005, 146, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Tokin, M.; Nagata, K. Tamoxifen directly stimulates the mineralization of human osteoblast-like osteosarcoma cells through a pathway independent of estrogen response element. Biochem. Biophys. Res. Commun. 1995, 210, 295–301. [Google Scholar] [CrossRef]
- Fiorin, L.G.; Matheus, H.R.; Ervolino, E.; Canciani, E.; Pellegrini, G.; Dellavia, C.; Maiorana, C.; de Almeida, J.M. Tamoxifen improves homeostasis in the peri-implant bone remodeling of osseointegrated titanium implants. J. Periodontal Res. 2022, 57, 880–890. [Google Scholar] [CrossRef]
- Dvorakova, J.; Wiesnerova, L.; Chocholata, P.; Kulda, V.; Landsmann, L.; Cedikova, M.; Kripnerova, M.; Eberlova, L.; Babuska, V. Human cells with osteogenic potential in bone tissue research. Biomed. Eng. Online 2023, 22, 33. [Google Scholar] [CrossRef]
- Prideaux, M.; Wijenayaka, A.R.; Kumarasinghe, D.D.; Ormsby, R.T.; Evdokiou, A.; Findlay, D.M.; Atkins, G.J. SaOS2 Osteosarcoma cells as an in vitro model for studying the transition of human osteoblasts to osteocytes. Calcif. Tissue Int. 2014, 95, 183–193. [Google Scholar] [CrossRef]
- Darakhshan, S.; Ghanbari, A.; Rad, F.G.; Pour, A.B. Tamoxifen and tranilast show a synergistic effect against breast cancer in vitro. Bratisl. Med. J. 2015, 116, 69–73. [Google Scholar] [CrossRef]
- Rampersad, S.N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 2012, 12, 12347–12360. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Massaccesi, L.; Ragone, V.; Papini, N.; Goi, G.; Corsi Romanelli, M.M.; Galliera, E. Effects of Vitamin E-Stabilized Ultra High Molecular Weight Polyethylene on Oxidative Stress Response and Osteoimmunological Response in Human Osteoblast. Front. Endocrinol. 2019, 10, 203. [Google Scholar] [CrossRef]
- Jagga, S.; Sharma, A.R.; Lee, Y.H.; Nam, J.S.; Lee, S.S. Sclerostin-Mediated Impaired Osteogenesis by Fibroblast-Like Synoviocytes in the Particle-Induced Osteolysis Model. Front. Mol. Biosci. 2021, 8, 666295. [Google Scholar] [CrossRef] [PubMed]
- Hilakivi-Clarke, L.; Wärri, A.; Bouker, K.B.; Zhang, X.; Cook, K.L.; Jin, L.; Zwart, A.; Nguyen, N.; Hu, R.; Cruz, M.I.; et al. Effects of in utero exposure to ethinyl estradiol on tamoxifen resistance and breast cancer recurrence in a preclinical model. JNCI J. Natl. Cancer Inst. 2016, 109, djw188. [Google Scholar] [CrossRef]
- Kilkenny, C.; Browne, W.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Reporting guidelines working group. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br. J. Pharmacol. 2010, 160, 1577–1579. [Google Scholar] [CrossRef]
- Matheus, H.R.; Ervolino, E.; Faleiros, P.L.; Novaes, V.C.N.; Theodoro, L.H.; Garcia, V.G.; de Almeida, J.M. Cisplatin chemotherapy impairs the peri-implant bone repair around titanium implants: An In vivo study in rats. J. Clin. Periodontol. 2017, 45, 241–252. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, J.M.; Matheus, H.R.; Fiorin, L.G.; Furquim, E.M.; Gusman, D.J. Influence of immunosuppression on the progression of experimental periodontitis and on healthy periodontal tissue: A rat in vivo study. J. Dent. Res. Dent. Clin. Dent. Prospect. 2021, 15, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, A.F.; Akhigbe, R.E. Staging of the estrous cycle and induction of estrus in experimental rodents: An update. Fertil. Res. Pract. 2020, 6, 5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matheus, H.R.; Ervolino, E.; Gusman, D.J.R.; Forin, L.G.; Piovezan, B.R.; de Almeida, J.M. The influence of antineoplastic agents on the peri-implant bone around osseointegrated titanium implants: An in vivo histomorphometric and immunohistochemical study. Clin. Oral Investig. 2022, 26, 2681–2692. [Google Scholar] [CrossRef]
- Dellavia, C.; Carmagnola, D.; Storelli, S.; Rossi, A.; Canciani, E.; Romeo, E. Histological evaluation of the peri-implant tissues of three human-retrieved Straumann implants. J. Investig. Clin. Dent. 2011, 2, 216–220. [Google Scholar] [CrossRef]
- Clines, G.A.; Choksi, P.; van Poznak, C. Adjuvant Endocrine Therapy and Bone Health in Breast Cancer. Curr. Osteoporos. Rep. 2015, 13, 263–273. [Google Scholar] [CrossRef]
- Planas-Silva, M.D.; Rutherford, T.M.; Stone, M.C. Prevention of age-related spontaneous mammary tumors in outbred rats by late ovariectomy. Cancer Detect. Prev. 2008, 32, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Vidal, O.; Kindblom, L.-G.; Ohlsson, C. Expression and localization of estrogen receptor-β in murine and human bone. J. Bone Miner. Res. 1999, 14, 923–929. [Google Scholar] [CrossRef]
- Sutherland, M.K.; Hui, D.U.; Rao, L.G.; Wylie, J.N.; Murray, T.M. Immunohistochemical localization of the estrogen receptor in human osteoblastic SaOS-2 cells: Association of receptor levels with alkaline phosphatase activity. Bone 1996, 18, 361–369. [Google Scholar] [CrossRef]
- Vandrovcova, M.; Jirka, I.; Novotna, K.; Lisa, V.; Frank, O.; Kolska, Z.; Stary, V.; Bacakova, L. Interaction of human osteoblast-like Saos-2 and MG-63 cells with thermally oxidized surfaces of a titanium-niobium alloy. PLoS ONE 2014, 9, e100475. [Google Scholar] [CrossRef]
- Saldaña, L.; Bensiamar, F.; Boré, A.; Vilaboa, N. In search of representative models of human bone-forming cells for cytocompatibility studies. Acta Biomater. 2011, 7, 4210–4221. [Google Scholar] [CrossRef]
- Majumdar, S.K.; Valdellon, J.A.; Brown, K.A. In vitro investigations on the toxicity and cell death induced by tamoxifen on two non-breast cancer cell types. BioMed Res. Int. 2000, 1, 99–107. [Google Scholar] [CrossRef]
- Vidal, O.; Lindberg, M.K.; Hollberg, K.; Baylink, D.J.; Andersson, G.; Lubahn, D.B.; Mohan, S.; Gustafsson, J.Å.; Ohlsson, C. Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc. Natl. Acad. Sci. USA 2000, 97, 5474–5479. [Google Scholar] [CrossRef]
- Jennings, C.J.; Zainal, N.; Dahlan, I.M.M.; Kay, E.W.; Harvey, B.J.; Thomas, W. Tamoxifen suppresses the growth of malignant pleural mesothelioma cells. Anticancer. Res. 2016, 36, 5905–5914. [Google Scholar] [CrossRef]
- Hwang, J.J.; Na Kim, H.; Kim, J.; Cho, D.-H.; Kim, M.J.; Kim, Y.-S.; Kim, Y.; Park, S.-J.; Koh, J.-Y. Zinc(II) ion mediates tamoxifen-induced autophagy and cell death in MCF-7 breast cancer cell line. BioMetals 2010, 23, 997–1013. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, J.; Lei, T.; Zhang, H. Tamoxifen induces apoptosis of mouse microglia cell line BV-2 cells via both mitochondrial and death receptor pathways. J. Huazhong Univ. Sci. Technol. 2012, 32, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Pike, S.; Zhang, P.; Wei, Z.; Wu, N.; Klinger, A.; Chang, S.; Jones, R.; Carpenter, J.; Brown, S.A.; DiMuzio, P.; et al. In vitro effects of tamoxifen on adipose-derived stem cells. Wound Repair Regen. 2015, 23, 728–736. [Google Scholar] [CrossRef]
- Choi, M.G.; Koh, H.S.; Kluess, D.; O'Connor, D.; Mathur, A.; Truskey, G.A.; Rubin, J.; Zhou, D.X.F.; Sung, K.-L.P. Effects of titanium particle size on osteoblast functions in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2005, 102, 4578–4583. [Google Scholar] [CrossRef]
- Schwarz, F.; Langer, M.; Hagena, T.; Hartig, B.; Sader, R.; Becker, J. Cytotoxicity and proinflammatory effects of titanium and zirconia particles. Int. J. Implant. Dent. 2019, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Cortes, E.; Lachowski, D.; Robinson, B.; Sarper, M.; Teppo, J.S.; Thorpe, S.D.; Lieberthal, T.J.; Iwamoto, K.; Lee, D.; Okada-Hatakeyama, M.; et al. Tamoxifen mechanically reprograms the tumor microenvironment via HIF-1A and reduces cancer cell survival. EMBO Rep. 2019, 20, e46557. [Google Scholar] [CrossRef]
- Hara, E.S.; Okada, M.; Nagaoka, N.; Nakano, T.; Matsumoto, T. Re-Evaluation of Initial Bone Mineralization from an Engineering Perspective. Tissue Eng. Part B Rev. 2022, 28, 246–255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, Y.S.; Mo, T.T.; Jiang, C.; Zhang, J.N. Osteonectin bidirectionally regulates osteoblast mineralization. J. Orthop. Surg. Res. 2023, 18, 761. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kraenzlin, M.E.; Seibel, M.J. Measurement of biochemical markers of bone resorption. In Dynamics of Bone and Cartilage Metabolism, 2nd ed.; Seibel, M.J., Robins, S.P., Bilezikian, J.P., Eds.; Academic Press: Cambridge, MA, USA, 2006; pp. 541–563. [Google Scholar]
- Iwayama, T.; Bhongsatiern, P.; Takedachi, M.; Murakami, S. Matrix Vesicle-Mediated Mineralization and Potential Applications. J. Dent. Res. 2022, 101, 1554–1562. [Google Scholar] [CrossRef] [PubMed]
- Blank, M.; Sims, N.A. Cellular Processes by Which Osteoblasts and Osteocytes Control Bone Mineral Deposition and Maturation Revealed by Stage-Specific EphrinB2 Knockdown. Curr. Osteoporos. Rep. 2019, 17, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Shirota, T.; Ohno, K.; Michi, K. Effect of ovariectomy on bone remodeling adjacent to hydroxyapatite-coated implants in the tibia of mature rats. J. Oral Maxillofac. Surg. 2000, 58, 877–882. [Google Scholar] [CrossRef]
- Duarte, P.D.M.; Neto, J.B.C.D.; Gonçalves, P.F.D.; Sallum, E.A.D.; Nociti, F.H.J. Estrogen deficiency affects bone healing around titanium implants: A histometric study in rats. Implant. Dent. 2003, 12, 340–346. [Google Scholar] [CrossRef]
- Qi, M.-C.; Zhou, X.-Q.; Hu, J.; Du, Z.-J.; Yang, J.-H.; Liu, M.; Li, X.-M. Oestrogen replacement therapy promotes bone healing around dental implants in osteoporotic rats. Int. J. Oral Maxillofac. Surg. 2004, 33, 279–285. [Google Scholar] [CrossRef]
- Høegh-Andersen, P.; Tankó, L.B.; Andersen, T.L.; Lundberg, C.V.; Mo, A.J.; Heegaard, A.-M.; Delaissé, J.-M.; Christgau, S. Ovariectomized rats as a model of postmenopausal osteoarthritis: Validation and application. Arthritis Res. Ther. 2004, 6, R169–R180. [Google Scholar] [CrossRef]
- Johnston, B.D.; Ward, W.E. The ovariectomized rat as a model for studying alveolar bone loss in postmenopausal women. BioMed Res. Int. 2015, 2015, 635023. [Google Scholar] [CrossRef]
- Kalu, D.N. The ovariectomized rat model of postmenopausal bone loss. Bone Miner. 1991, 15, 175–191. [Google Scholar] [CrossRef]
- Baloğlu, M.; Gökalp Özkorkmaz, E. Biochemical and immunohistochemical investigations on bone formation and remodelling in ovariectomised rats with tamoxifen citrate administration. Folia Morphol. 2019, 78, 789–797. [Google Scholar] [CrossRef]
- EOwumi, S.; KOlusola, J.; OArunsi, U.; KOyelere, A. Chlorogenic acid abates oxido-inflammatory and apoptotic responses in the liver and kidney of Tamoxifen-treated rats. Toxicol. Res. 2021, 10, 345–353. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tingskov, S.J.; Jensen, M.S.; Pedersen, C.T.; de Araujo, I.B.B.A.; Mutsaers, H.A.M.; Nørregaard, R. Tamoxifen attenuates renal fibrosis in human kidney slices and rats subjected to unilateral ureteral obstruction. Biomed. Pharmacother. 2021, 133, 111003. [Google Scholar] [CrossRef]
- Bernhardt, R.; Kuhlisch, E.; Matthias, C.S.; Eckelt, U.; Stadlinger, B. Comparison of bone-implant contact and bone-implant volume between 2D-Histological sections and 3D-SRμCT slices. Eur. Cells Mater. 2012, 23, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Yi, K.Y.; Lee, I.S.; Jung, Y.C. Correlation between microtomography and histomorphometry for assessment of implant osseointegration. Clin. Oral Implant. Res. 2004, 16, 156–160. [Google Scholar] [CrossRef]
- Takaoka, Y.; Fujibayashi, S.; Onoe, H.; Goto, K.; Otsuki, B.; Kawai, T.; Okuzu, Y.; Shimizu, T.; Ikeda, N.; Orita, K.; et al. Bone ingrowth into a porous structure is achieved by preceding fibrogenesis and vascularization. Acta Biomater. 2024, 177, 243–252. [Google Scholar] [CrossRef]
- Zidan, J.; Keidar, Z.; Basher, W.; Israel, O. Effects of tamoxifen on bone mineral density and metabolism in postmenopausal women with early-stage breast cancer. Med. Oncol. 2004, 21, 117–122. [Google Scholar] [CrossRef]
- Santen, R.J. Effect of Endocrine Therapies on Bone in Breast Cancer Patients. J. Clin. Endocrinol. Metab. 2011, 96, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Aromatase inhibitors versus tamoxifen in premenopausal women with oestrogen receptor-positive early-stage breast cancer treated with ovarian suppression: A patient-level meta-analysis of 7030 women from four randomised trials. Lancet Oncol. 2022, 23, 382–392, Erratum in Lancet Oncol. 2022, 23, e161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koopal, C.; Janssen-Heijnen, M.L.; van de Wouw, A.J.; van den Bergh, J.P. Fracture incidence in pre- and postmenopausal women after completion of adjuvant hormonal therapy for breast cancer. Breast 2015, 24, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Jordan, V.C.; Fritz, N.F.; Langan-Fahey, S.; Thompson, M.; Tormey, D.C. Alteration of endocrine parameters in premenopausal women with breast cancer during long-term adjuvant therapy with tamoxifen as the single agent. JNCI J. Natl. Cancer Inst. 1991, 83, 1488–1491. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorin, L.G.; Galliera, E.; Matheus, H.R.; Henin, D.; Ervolino, E.; Simionato, G.C.; de Almeida, J.M.; Dellavia, C. Behavior of Osteoblastic Lineage Cells When in the Presence of Tamoxifen: In Vitro and In Vivo Studies on Osseointegration. Dent. J. 2025, 13, 351. https://doi.org/10.3390/dj13080351
Fiorin LG, Galliera E, Matheus HR, Henin D, Ervolino E, Simionato GC, de Almeida JM, Dellavia C. Behavior of Osteoblastic Lineage Cells When in the Presence of Tamoxifen: In Vitro and In Vivo Studies on Osseointegration. Dentistry Journal. 2025; 13(8):351. https://doi.org/10.3390/dj13080351
Chicago/Turabian StyleFiorin, Luiz Guilherme, Emanuela Galliera, Henrique R. Matheus, Dolaji Henin, Edilson Ervolino, Gabriela Carrara Simionato, Juliano Milanezi de Almeida, and Claudia Dellavia. 2025. "Behavior of Osteoblastic Lineage Cells When in the Presence of Tamoxifen: In Vitro and In Vivo Studies on Osseointegration" Dentistry Journal 13, no. 8: 351. https://doi.org/10.3390/dj13080351
APA StyleFiorin, L. G., Galliera, E., Matheus, H. R., Henin, D., Ervolino, E., Simionato, G. C., de Almeida, J. M., & Dellavia, C. (2025). Behavior of Osteoblastic Lineage Cells When in the Presence of Tamoxifen: In Vitro and In Vivo Studies on Osseointegration. Dentistry Journal, 13(8), 351. https://doi.org/10.3390/dj13080351