Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (335)

Search Parameters:
Keywords = dengue transmission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4740 KiB  
Article
Mosquito Exosomal Tetraspanin CD151 Facilitates Flaviviral Transmission and Interacts with ZIKV and DENV2 Viral Proteins
by Durga Neupane, Md Bayzid, Girish Neelakanta and Hameeda Sultana
Int. J. Mol. Sci. 2025, 26(15), 7394; https://doi.org/10.3390/ijms26157394 - 31 Jul 2025
Viewed by 215
Abstract
The expanding distribution and geographic range of mosquitoes have potentially contributed to increased flaviviral dissemination and transmission. Despite the growing burden of flaviviral infections, there are no effective antiviral treatments or vaccines, highlighting the need for novel therapeutic targets. Tetraspanins, a superfamily of [...] Read more.
The expanding distribution and geographic range of mosquitoes have potentially contributed to increased flaviviral dissemination and transmission. Despite the growing burden of flaviviral infections, there are no effective antiviral treatments or vaccines, highlighting the need for novel therapeutic targets. Tetraspanins, a superfamily of transmembrane domain glycoproteins involved in cellular organization, signaling, and protein–protein interactions have been recognized as potential mediators of flaviviral infection and transmission. While their roles in vertebrate hosts have been explored, their involvement in flaviviral replication and dissemination within medically important vectors remains poorly understood. In this study, we investigated the role of arthropod tetraspanins in mosquito cells and extracellular vesicles (EVs) derived from cells infected with Zika virus (ZIKV) and dengue virus (serotype 2; DENV2). Among several of the tetraspanins analyzed, only CD151 was significantly upregulated in both mosquito cells and in EVs derived from ZIKV/DENV2-infected cells. RNAi-mediated silencing of CD151 led to a marked reduction in viral burden, suggesting its crucial role in flavivirus replication. Inhibition of EV biogenesis using GW4869 further demonstrated that EV-mediated viral transmission contributes to flavivirus propagation. Additionally, co-immunoprecipitation and immunofluorescence analyses revealed direct interactions between CD151 and ZIKV NS2B and DENV2 capsid proteins. Overall, our findings highlight the functional importance of mosquito CD151 in the replication and transmission of ZIKV and DENV2. This study provides new insights into the molecular mechanisms of flaviviral infection in mosquitoes and suggests that targeting vector tetraspanins may offer a potential approach to controlling mosquito-borne flaviviruses. Full article
(This article belongs to the Special Issue Advanced Perspectives on Virus–Host Interactions)
Show Figures

Figure 1

14 pages, 1214 KiB  
Article
Larvicidal Activity of Essential Oil, Hydrolate, and Aqueous Extract from Leaves of Myrciaria floribunda Against Aedes Aegypti
by Eduarda Florencio Santos, Wevertton Marllon Anselmo, Eurico Eduardo Pinto de Lemos, Júlio César Ribeiro de Oliveira Farias de Aguiar, Ana Carla da Silva, Fábio Henrique Galdino dos Santos, Camila Caroline Lopes Arruda, João Vitor Castro Aguiar, José Jorge Almeida de Andrade, Suyana Karolyne Lino da Rocha, Liderlânio de Almeida Araújo, Paulo Gomes Pereira Júnior, Caroline Francisca de Oliveira Albuquerque, Edymilaís da Silva Sousa, Gerlan Lino dos Santos, Tamires Zuleide da Conceição, Leonardo Arcanjo de Andrade, Luiz Alberto Lira Soares, Magda Rhayanny Assunção Ferreira and Daniela Maria do Amaral Ferraz Navarro
Molecules 2025, 30(15), 3116; https://doi.org/10.3390/molecules30153116 - 25 Jul 2025
Viewed by 332
Abstract
The mosquito Aedes aegypti is the vector responsible for the transmission of important arboviruses such as dengue fever, Chikungunya, Zika virus, and yellow fever. These diseases affect millions of people and exert impacts on healthcare systems throughout the world. Given the increasing resistance [...] Read more.
The mosquito Aedes aegypti is the vector responsible for the transmission of important arboviruses such as dengue fever, Chikungunya, Zika virus, and yellow fever. These diseases affect millions of people and exert impacts on healthcare systems throughout the world. Given the increasing resistance to synthetic insecticides, essential oils from plants constitute an ecologically viable alternative for the control of this vector. The aim of the present study was to investigate the larvicidal activity of the essential oil (EO), aqueous extract, rutin, and hydrolate from the leaves of Myrciaria floribunda against Aedes aegypti larvae in the initial L4 stage. The yield of EO was 0.47%. Thirty-seven chemical constituents were identified and quantified using chromatographic methods. The major constituents were (E)-caryophyllene (27.35%), 1,8-cineole (11.25%), β-selinene (4.92%), and α-muurolene (4.92%). In the larvicidal tests, the lethal concentration (LC50) was 201.73 ppm for the essential oil, 15.85% for the aqueous extract, and 22.46 ppm for rutin. The hydrolate had no larvicidal activity. The compounds that exhibited larvicidal activity against Aedes aegypti constitute a promising option for the development of natural formulations to diminish the propagation of this vector. Full article
(This article belongs to the Special Issue Chemical Composition and Bioactivities of Essential Oils, 3rd Edition)
Show Figures

Graphical abstract

12 pages, 574 KiB  
Review
An Overview of Dengue Knowledge, Attitudes, and Practices (KAPs) Among the General Public in Sri Lanka: A Review and Meta-Analysis of Questionnaire-Based Surveys from 2000–2023
by Nilmini Chandrasena, Dileepa Ediriweera, Deshaka Jayakody, Nayana Gunathilaka and Ranjan Premaratna
Trop. Med. Infect. Dis. 2025, 10(7), 189; https://doi.org/10.3390/tropicalmed10070189 - 6 Jul 2025
Viewed by 522
Abstract
The objective was to conduct a review and meta-analysis of questionnaire-based surveys of dengue knowledge, attitudes, perceptions, and practices (KAP)s among the general public in Sri Lanka as no prior island-wide survey existed. The electronic database PubMed and other bibliography were searched for [...] Read more.
The objective was to conduct a review and meta-analysis of questionnaire-based surveys of dengue knowledge, attitudes, perceptions, and practices (KAP)s among the general public in Sri Lanka as no prior island-wide survey existed. The electronic database PubMed and other bibliography were searched for literature on dengue questionnaire-based KAP surveys in Sri Lanka from 2000–2023. Data pertaining to the three domains were extracted from sixteen eligible articles, pooled, and analyzed separately using random effect models. Meta-analyses of the three domains were performed using R version 3.6.3. The population surveyed (8955) was <0.045% of the total Sri Lankan population. The publication frequency increased over time and surveys were distributed in Colombo and suburbs 43.7% (7/16), Kandy 25% (4/16,) Gampaha 12.5% (2/16), and 6.3% (1/16) one each in Kurunegala, Matara, Batticaloa, and Jaffna. Knowledge on dengue transmission, vector breeding, and fever as a symptom was >80%, while on vector species, preferred feeding times, recurrence of dengue it was > 55% and on warning signs of severity it was 25%. Attitudes towards community participation in dengue prevention activities and knowledge of dengue risk factors (avoidance of aspirin and dark colored drinks) were poor, while practice of control measures (removal of water collecting receptacles, roof-gutter management) lacked regularity. Full article
(This article belongs to the Special Issue Beyond Borders—Tackling Neglected Tropical Viral Diseases)
Show Figures

Figure 1

22 pages, 2922 KiB  
Review
Zoonotic Orthoflaviviruses Related to Birds: A Literature Review
by Vladimir Savić, Ljubo Barbić, Maja Bogdanić, Ivana Rončević, Ana Klobučar, Alan Medić and Tatjana Vilibić-Čavlek
Microorganisms 2025, 13(7), 1590; https://doi.org/10.3390/microorganisms13071590 - 6 Jul 2025
Viewed by 597
Abstract
Orthoflaviviruses (formerly flaviviruses) are known for their role in numerous diseases affecting both humans and animals. Despite the worldwide distribution of orthoflaviviruses, individual species are only found in endemic or epidemic regions. However, in recent decades, certain orthoflaviviruses have spread beyond their traditional [...] Read more.
Orthoflaviviruses (formerly flaviviruses) are known for their role in numerous diseases affecting both humans and animals. Despite the worldwide distribution of orthoflaviviruses, individual species are only found in endemic or epidemic regions. However, in recent decades, certain orthoflaviviruses have spread beyond their traditional geographic boundaries, even crossing continents. Given the long-distance movements of birds, the knowledge of zoonotic orthoflaviviruses associated with birds is essential because of their possible introduction into new regions, as was the case with West Nile virus and Usutu virus. A thorough literature review was conducted on zoonotic orthoflaviviruses related to birds, including lesser-known (re-)emerging and neglected orthoflaviviruses that are limited to specific regions and/or avian hosts but have the potential to spread to a wider geographical area and pose a higher risk of transmission to humans. Several of these viruses possess significant zoonotic potential and can cause a wide spectrum of diseases in humans, ranging from mild febrile illnesses (Zika virus) to severe neuroinvasive diseases (tick-borne encephalitis, West Nile, Japanese encephalitis virus) and hemorrhagic fevers (yellow fever, dengue virus). Geographic distribution, hosts, vectors, incidence of human infections, and impact on human and animal health of zoonotic flaviviruses related to birds are critically reviewed. The viruses have been categorized based on the role of birds as an orthoflavivirus host and the clinical presentation in human infections. Full article
(This article belongs to the Special Issue Emerging Viral Zoonoses, Second Edition)
Show Figures

Figure 1

22 pages, 3253 KiB  
Article
Infections of Aedes Mosquito Cells by Wolbachia Strains wAu and wMelpop Modulate Host Cellular Transcriptomes Differently and Suppress Dengue Viral Replication
by Amber R. Mickelson, Julia Felton, Olivia Cheschi, Emily Spacone, Kaitlyn Connors, Jacob Thornsberry and Tadahisa Teramoto
Viruses 2025, 17(7), 922; https://doi.org/10.3390/v17070922 - 28 Jun 2025
Viewed by 1808
Abstract
Dengue virus serotypes 1-4 (DENV1-4) have spread through tropical and subtropical countries, causing endemic and epidemic diseases. Recently, a novel field approach using the Wolbachia symbiont was proposed to suppress DENV transmission via the mosquito vectors Aedes aegypti and Aedes albopictus. Previously, [...] Read more.
Dengue virus serotypes 1-4 (DENV1-4) have spread through tropical and subtropical countries, causing endemic and epidemic diseases. Recently, a novel field approach using the Wolbachia symbiont was proposed to suppress DENV transmission via the mosquito vectors Aedes aegypti and Aedes albopictus. Previously, we showed that a Wolbachia strain, wMelPop, suppresses DENV2 replication in the C6/36 albopictus cell line, with the mutant DENV2 appearing and replacing the wild type DENV2. In this study, we expanded the analysis to include replications of all DENV serotypes 1-4, effects of wAu Wolbachia in C6/36 cells, and wMelPop-influences on the Aag2 aegypti cell line. It was revealed that both wAu and wMelPop reduce all DENV infectious titers without dominant appearances of the mutant viruses, despite varied effects on the viral copy numbers. The host transcriptomic profiles by RNA-seq were also variously altered by wAu and wMelPop (ranging from 10 to 30%, Log2FC > 2 or <−2, p < 0.05). Those transcripts were not further altered by DENV infection. In contrast, abundant transcriptomic alterations by DENV infection in naïve C6/36 and Aag2 cells were blocked by either wAu or wMelPop. These results indicate that Wolbachia prevents host cellular transcriptomic alterations which are induced by DENV infection, affecting the cellular homeostasis necessary for DENV replication. Full article
(This article belongs to the Special Issue The Impact of Wolbachia on Virus Infection)
Show Figures

Figure 1

12 pages, 683 KiB  
Article
Mosquito Species Diversity and Circulation of Mosquito-Borne Viruses in Selected Provinces of Central Vietnam
by Margarita R. Popova, Alena A. Sharova, Anna S. Gladkikh, Tatiana V. Arbuzova, Ekaterina O. Klyuchnikova, Valeriya A. Sbarzaglia, Nadezhda A. Tsyganova, Dmitry D. Naydenov, Anastasia S. Gritseva, Edward S. Ramsay, Regina R. Baimova, Islam A. Karmokov, Ekaterina. G. Riabiko, Nikolai K. Tokarevich, Nguyen T. Dong, Bui T. Phu, Vu T. Phan, Do T. Hung, Trinh C. Thuc and Vladimir G. Dedkov
Viruses 2025, 17(7), 905; https://doi.org/10.3390/v17070905 - 26 Jun 2025
Viewed by 509
Abstract
Arboviruses, including but not limited to dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV), pose a significant global threat to human health. The transmission of DENV, ZIKV, and CHIKV is facilitated by mosquitoes belonging to the genus Aedes, which are [...] Read more.
Arboviruses, including but not limited to dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV), pose a significant global threat to human health. The transmission of DENV, ZIKV, and CHIKV is facilitated by mosquitoes belonging to the genus Aedes, which are prevalent in both urban and rural regions of Vietnam. In 2023 an investigation into the population of mosquitoes was conducted in a number of provinces located within the central region of Vietnam. A total of 12,546 mosquitoes were collected during the study. The mosquitoes collected comprised the genera Culex spp., Aedes spp., Anopheles spp., and Armigeres spp. The Aedes spp. mosquitoes were predominant, being collected in 908 pools. These were then examined by RT-qPCR for the detection of DENV, ZIKV, and CHIKV. DENV viral RNA was detected in 92 mosquito pools, ZIKV was detected in 1 mosquito pool, and CHIKV was not detected. The typing of samples containing DENV RNA was carried out. It is evident from the results of the typing process that three distinct types of DENV have been identified. The three main dengue virus types are DENV-1, DENV-2, and DENV-4. Full article
(This article belongs to the Special Issue Emerging and Re-Emerging Viral Zoonoses)
Show Figures

Figure 1

38 pages, 1459 KiB  
Article
A Comparative Analysis of Harmonic Mean, Holling Type II, Beddington–DeAngelis, and Crowley–Martin Incidence Rates of a Piecewise Dengue Fever Dynamics Model
by Faten H. Damag, Ashraf A. Qurtam, Mohammed Almalahi, Khaled Aldwoah, Mohamed Adel, Alaa M. Abd El-Latif and E. I. Hassan
Fractal Fract. 2025, 9(7), 400; https://doi.org/10.3390/fractalfract9070400 - 22 Jun 2025
Viewed by 310
Abstract
Dengue fever remains a major global health threat, and mathematical models are crucial for predicting its spread and evaluating control strategies. This study introduces a highly flexible dengue transmission model using a novel piecewise fractional derivative framework, which can capture abrupt changes in [...] Read more.
Dengue fever remains a major global health threat, and mathematical models are crucial for predicting its spread and evaluating control strategies. This study introduces a highly flexible dengue transmission model using a novel piecewise fractional derivative framework, which can capture abrupt changes in epidemic dynamics, such as those caused by public health interventions or seasonal shifts. We conduct a rigorous comparative analysis of four widely used but distinct mechanisms of disease transmission (incidence rates): Harmonic Mean, Holling Type II, Beddington–DeAngelis, and Crowley–Martin. The model’s well-posedness is established, and the basic reproduction number (0) is derived for each incidence function. Our central finding is that the choice of this mathematical mechanism critically alters predictions. For example, models that account for behavioral changes (Beddington–DeAngelis, Crowley–Martin) identify different key drivers of transmission compared to simpler models. Sensitivity analysis reveals that vector mortality is the most influential control parameter in these more realistic models. These results underscore that accurately representing transmission behavior is essential for reliable epidemic forecasting and for designing effective, targeted intervention strategies. Full article
(This article belongs to the Special Issue Fractional Order Modelling of Dynamical Systems)
Show Figures

Figure 1

15 pages, 1480 KiB  
Article
Development of a New Trapping System with Potential Implementation as a Tool for Mosquito-Borne Arbovirus Surveillance
by Luísa Maria Inácio da Silva, Larissa Krokovsky, Rafaela Cassiano Matos, Gabriel da Luz Wallau and Marcelo Henrique Santos Paiva
Insects 2025, 16(6), 637; https://doi.org/10.3390/insects16060637 - 17 Jun 2025
Viewed by 731
Abstract
Mosquitoes of the Aedes and Culex genera are primary vectors of arboviruses such as the dengue, Zika, chikungunya (CHIKV), Oropouche, and West Nile viruses, causing millions of infections annually. Standard virus detection in mosquitoes requires capturing, transporting, and processing samples with a cold [...] Read more.
Mosquitoes of the Aedes and Culex genera are primary vectors of arboviruses such as the dengue, Zika, chikungunya (CHIKV), Oropouche, and West Nile viruses, causing millions of infections annually. Standard virus detection in mosquitoes requires capturing, transporting, and processing samples with a cold chain to preserve RNA, which is challenging in resource-limited areas. FTA cards preserve viral RNA at room temperature and have been used to collect mosquito saliva, a key sample for assessing transmission. However, most FTA-based traps require electricity or CO2, limiting use in low-resource settings. This study adapted and evaluated the BR-ArboTrap, a low-cost trap derived from an oviposition trap, integrating a sugar-based attractant with FTA cards to collect mosquito saliva, without electricity or refrigeration. Aedes aegypti exposed to CHIKV were used in three experiments to evaluate: (i) RNA preservation under different conditions, (ii) the minimum number of positive mosquitoes for detection, and (iii) RNA amounts on FTA versus blood. RT-qPCR detected CHIKV RNA in 90% of FTA cards and 96% of exposed mosquitoes. RNA remained stable under varying conditions, with no significant difference compared to blood. BR-ArboTrap is an effective, affordable, and field-ready tool to enhance arbovirus surveillance in remote and low-resource areas. Full article
Show Figures

Graphical abstract

12 pages, 527 KiB  
Article
Arbovirus Prevalence and Vulnerability Assessment Through Entomological Surveillance in Ponce, Puerto Rico
by Kayra M. Rosado-Ortiz, Manuel Rivera-Vélez, Ivanna B. Lorenzo-Pérez, Elizabeth M. Ramos-Colón, Mileily Velázquez-Ferrer, Dayaneira Rivera-Alers, Vanessa Rivera-Amill and Robert Rodríguez-González
Int. J. Environ. Res. Public Health 2025, 22(6), 854; https://doi.org/10.3390/ijerph22060854 - 29 May 2025
Viewed by 3020
Abstract
The Aedes aegypti mosquito is a vector for several arboviral diseases, posing a significant threat to human populations and exacerbating health disparities. Puerto Rico is a subtropical region where A. aegypti mosquitoes circulate all the year promoting the transmission of arboviruses. A cross-sectional [...] Read more.
The Aedes aegypti mosquito is a vector for several arboviral diseases, posing a significant threat to human populations and exacerbating health disparities. Puerto Rico is a subtropical region where A. aegypti mosquitoes circulate all the year promoting the transmission of arboviruses. A cross-sectional study in the municipality of Ponce, Puerto Rico was conducted to determine the prevalence of arbovirus in A. aegypti mosquitoes and community members, and the impact that sociodemographic and environmental factors on the presence of arbovirus in the community. Our results indicate that more than a third of the population has long-term antibodies (IgG) against chikungunya and the Mayaro virus (56% and 17%, respectively). In addition, more than two-thirds of the population have long-term antibodies (IgG) against dengue and Zika virus (96.0% and 77%, respectively). Dengue virus 1 (DENV-1) was only detected in mosquitoes from urban areas. The practice of storing water in containers uncovered and living near a river increased the odds of having arbovirus in the community (OR = 3.5, 95% CI = 1.8–10.6) (p < 0.05) and (OR = 1.6, 95% CI = 1.2–3.7). Furthermore, lower income was a social determinant associated with being at risk of arboviral disease in the communities (OR = 2.9, 95% CI = 1.4–8.5) (p < 0.05). It is recommended that public health activities be implemented, including education workshops on prevention and health promotion and health services such as vector control, to prevent arboviral diseases in communities. Full article
Show Figures

Figure 1

33 pages, 1014 KiB  
Systematic Review
The Global Prevalence of and Factors Associated with Parasitic Coinfection in People Living with Viruses: A Systematic Review and Meta-Analysis
by Yan Ge, Huaman Liu, Ningjun Ren, Abdul Qadeer, Ian Kim B. Tabios, Ian Kendrich C. Fontanilla, Lydia R. Leonardo, Banchob Sripa and Guofeng Cheng
Pathogens 2025, 14(6), 534; https://doi.org/10.3390/pathogens14060534 - 27 May 2025
Viewed by 1803
Abstract
Coinfection with parasites and viruses can exacerbate disease transmission, outcomes and therapy. This study searched the Web of Science, PubMed, Scopus and JSTOR databases for publications on the prevalence of parasitic coinfection in people living with viruses from 1 January 2005 to 30 [...] Read more.
Coinfection with parasites and viruses can exacerbate disease transmission, outcomes and therapy. This study searched the Web of Science, PubMed, Scopus and JSTOR databases for publications on the prevalence of parasitic coinfection in people living with viruses from 1 January 2005 to 30 April 2022, and 356 studies were included and systematically reviewed. A meta-analysis was performed to assess the global prevalence of and factors potentially associated with parasitic infection (helminths and protozoa) in virus-infected people, and the infection burden was estimated. A variety of parasites (29 families, 39 genera, and 63 species) and viruses (8 kinds) were identified. The prevalence of parasitic coinfection in (all) virus-infected people was estimated to be 21.34% (95% CI 17.58–25.10, 5593 of 29,190 participants) and 34.13% (95% CI 31.32–36.94, 21,243/76,072 participants) for helminths and protozoa, respectively. Specially, in human immunodeficiency virus (HIV)-infected people, the global prevalence was 19.96% (95% CI 16.18–23.74) for helminths and 34.18% (95% CI 31.33–37.03) for protozoa, respectively. The global prevalence of protozoa was 41.79% (95% CI 15.88–67.69) in hepatitis B virus (HBV)-infected people and 17.75% (95% CI 3.54–31.95) in DENV-infected people, respectively. The global burden of parasitic infections in HIV-infected people was 7,664,640 for helminths and 13,125,120 for protozoa, respectively, and that in HBV- and dengue virus (DENV)-infected people was 137,019,428 and 629,952, respectively. The prevalence of parasitic coinfection at the family, genus, and species levels in virus- or HIV-infected people were comprehensively estimated and further analyzed by subgroups. Among the most commonly identified parasites, the five helminth genera with the highest prevalence in HIV-infected people were Schistosoma (12.46%, 95% CI 5.82–19.10), Ascaris (7.82%, 95% CI 6.15–9.49), Strongyloides (5.43%, 95% CI 4.11–6.74), Trichuris (4·82%, 95% CI 2.48–7.17) and Ancylostoma (2.79%, 95% CI 1.32–4.27), whereas the top five protozoan genera were Toxoplasma (48.85%, 95% CI 42.01–55.69), Plasmodium (34.96%, 95% CI 28.11–41.82), Cryptosporidium (14.27%, 95% CI 11.49–17.06), Entamoeba (12.33%, 95% CI 10.09–14.57) and Blastocystis (10.61%, 95% CI 6.26–14.97). The prevalence of parasitic coinfection in virus-infected people was associated with income level. The findings provide valuable global epidemiological information for informing normative guidance, improving surveillance, and developing public healthcare strategies. Full article
Show Figures

Figure 1

16 pages, 1010 KiB  
Article
Temporal Variation and Human Host Predominance in Aedes aegypti from Coastal and Western Kenya: Insights from Pooled Blood Meal Metagenomics
by Kavinya Mwendwa, Francis Mutuku, Sammy Wambua, Makenzi Nzaro, Bryson A. Ndenga, Kennedy Agoi, Angelle D. LaBeaud and Carren Bosire
Pathogens 2025, 14(5), 505; https://doi.org/10.3390/pathogens14050505 - 21 May 2025
Viewed by 702
Abstract
Aedes aegypti is the primary vector of arboviral diseases such as dengue, chikungunya, yellow fever, and Zika, posing significant global health and economic challenges. The effective control of this mosquito species requires understanding its seasonality, feeding behavior, and ecological dynamics. Modern molecular techniques, [...] Read more.
Aedes aegypti is the primary vector of arboviral diseases such as dengue, chikungunya, yellow fever, and Zika, posing significant global health and economic challenges. The effective control of this mosquito species requires understanding its seasonality, feeding behavior, and ecological dynamics. Modern molecular techniques, such as amplicon metagenomic sequencing, provide insights into vector–host interactions and feeding patterns. This study investigated the temporal variation of Ae. aegypti abundance and its blood meal sources in coastal and western Kenya over 16 months. A total of 64,360 mosquitoes were collected, with Ae. aegypti comprising 10.9% (7035/64,360). Coastal sites had a higher proportion (64.7%) of Ae. aegypti than western Kenya. Seasonal variation in abundance was observed, with peaks during the long rainy season and decline during the dry season. Blood meal analysis identified 15 vertebrate hosts, with humans being the primary source (86.6–95.9%). Other hosts included domestic animals such as turkey, sheep, cow, goat, and chicken. These findings highlight the role of rainfall in arboviral disease transmission and Ae. aegypti’s strong preference for human hosts. Additionally, this study demonstrates the cost-effectiveness of group testing for identifying blood meal sources, with implications for public health interventions. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

18 pages, 1451 KiB  
Systematic Review
Viruses in Simuliidae: An Updated Systematic Review of Arboviral Diversity and Vector Potential
by Alejandra Rivera-Martínez, S. Viridiana Laredo-Tiscareño, Jaime R. Adame-Gallegos, Erick de Jesús de Luna-Santillana, Carlos A. Rodríguez-Alarcón, Julián E. García-Rejón, Mauricio Casas-Martínez and Javier A. Garza-Hernández
Life 2025, 15(5), 807; https://doi.org/10.3390/life15050807 - 19 May 2025
Cited by 1 | Viewed by 1037
Abstract
Black flies (Diptera: Simuliidae) are important vectors of pathogens, including filarial nematodes, protozoans, and arboviruses, which significantly impact human and animal health. Although their role in arbovirus transmission has not been as thoroughly studied as that of mosquitoes and ticks, advances in molecular [...] Read more.
Black flies (Diptera: Simuliidae) are important vectors of pathogens, including filarial nematodes, protozoans, and arboviruses, which significantly impact human and animal health. Although their role in arbovirus transmission has not been as thoroughly studied as that of mosquitoes and ticks, advances in molecular tools, particularly metagenomics, have enabled the identification of non-cultivable viruses, significantly enhancing our understanding of black-fly-borne viral diversity and their public and veterinary health implications. However, these methods can also detect insect-specific viruses (i.e., viruses that are unable to replicate in vertebrate hosts), which may lead to the incorrect classification of black flies as potential vectors. This underscores the need for further research into their ecological and epidemiological roles. This systematic review, conducted following the PRISMA protocol, compiled and analyzed evidence on arbovirus detection in Simuliidae from scientific databases. Several arboviruses were identified in these insects, including vesicular stomatitis virus New Jersey serotype (VSVNJ), Venezuelan equine encephalitis virus (VEEV), and Rift Valley fever virus. Additionally, in vitro studies evaluating the vector competence of Simuliidae for arboviruses such as dengue virus, Murray Valley encephalitis virus, and Sindbis virus were reviewed. These findings provide critical insights into the potential role of black flies in arbovirus transmission cycles, emphasizing their importance as vectors in both public and veterinary health contexts. Full article
(This article belongs to the Section Epidemiology)
Show Figures

Figure 1

16 pages, 4502 KiB  
Article
Mapping the Incidence of Dengue Fever in the State of Pará, Eastern Amazon: Epidemiology and Relationships with Climate
by Emilene Monteiro Furtado Serra, Douglas Batista da Silva Ferreira, João de Athaydes Silva Jr, Bergson Cavalcanti de Moraes, Aline Maria Meiguins de Lima, Brenda Caroline Sampaio da Silva, Bruno Spacek Godoy, Eliane de Castro Coutinho, Andressa Tavares Parente, Julia Clarinda Paiva Cohen, Alan Cavalcanti da Cunha and Everaldo Barreiros de Souza
Reports 2025, 8(2), 61; https://doi.org/10.3390/reports8020061 - 3 May 2025
Viewed by 744
Abstract
Background: The Amazon region possesses vast natural and anthropogenic ecosystems within a hydroclimatic environment conducive to the proliferation of arboviruses associated with infectious diseases in the human population, notably dengue fever, which poses a recurrent and significant public health challenge. Objective and Methods [...] Read more.
Background: The Amazon region possesses vast natural and anthropogenic ecosystems within a hydroclimatic environment conducive to the proliferation of arboviruses associated with infectious diseases in the human population, notably dengue fever, which poses a recurrent and significant public health challenge. Objective and Methods: We wished to update the dengue mapping for the state of Pará (eastern Amazon) using municipality-level secondary data between 2010 and 2024, including epidemiological information. Furthermore, the seasonal effects of soil and atmospheric meteorological variables (ERA5 reanalysis) on the annual municipal incidence of dengue were statistically analyzed through correlation and cluster-based regression methods. Results: Dengue mapping identified key areas over the central, southwest, and southeast parts of Pará, with eleven municipalities exhibiting extreme dengue counts exceeding 300 cases per 100,000 inhabitants. The epidemiological profile in these cities with worsening transmission showed a higher incidence in adults aged 20–39 years old (39%) and a predominance among women (54%). The majority of dengue cases occur during the rainy season (January to May), accounting for 69% of annual cases, when the climate conditions maximize vector proliferation. The statistical analyses highlighted the significant and spatially heterogeneous influence of regional climate variables on the dengue transmission cycle. Conclusions: This study advances our understanding of climatic drivers of dengue in the Amazon and provides relevant evidence to support region-specific surveillance and control strategies. Full article
(This article belongs to the Collection Health Threats of Climate Change)
Show Figures

Figure 1

13 pages, 231 KiB  
Review
Dengue Vaccine Development and Deployment into Routine Immunization
by Annelies Wilder-Smith, Thomas Cherian and Joachim Hombach
Vaccines 2025, 13(5), 483; https://doi.org/10.3390/vaccines13050483 - 29 Apr 2025
Viewed by 2285
Abstract
Dengue has emerged as a significant global health threat. Despite decades of research, only two dengue vaccines—CYD-TDV (Dengvaxia) and TAK-003 (Qdenga)—have been licensed to date, with limited implementation. This paper explores and outlines strategies for integrating dengue vaccines into routine immunization programs, particularly [...] Read more.
Dengue has emerged as a significant global health threat. Despite decades of research, only two dengue vaccines—CYD-TDV (Dengvaxia) and TAK-003 (Qdenga)—have been licensed to date, with limited implementation. This paper explores and outlines strategies for integrating dengue vaccines into routine immunization programs, particularly in high-burden regions. TAK-003, a tetravalent live-attenuated vaccine, has demonstrated 61% efficacy against virologically confirmed dengue and 84% efficacy against hospitalizations in endemic settings. However, concerns remain about vaccine-enhanced disease, particularly among seronegative individuals exposed to DENV3 and DENV4. WHO recommends targeted introduction in high-transmission settings without pre-vaccination screening, while ongoing post-introduction studies will further clarify long-term safety and efficacy. Effective vaccine rollout requires a multi-pronged approach, including school-based immunization, integration with adolescent health services, and strong community engagement. Decision-making for vaccine introduction should be guided by National Immunization Technical Advisory Groups (NITAGs), local epidemiological data, and cost-effectiveness assessments. While future vaccines, including mRNA and virus-like particle candidates, are under development, optimizing the use of currently available vaccines is crucial to reducing dengue’s public health impact. Given the continued rise in cases, immediate action—combining vaccination with vector control—is essential to prevent further morbidity and mortality. Full article
(This article belongs to the Special Issue 50 Years of Immunization—Steps Forward)
17 pages, 2563 KiB  
Article
Molecular Epidemiology of Travel-Associated and Locally Acquired Dengue Virus Infections in Catalonia, Spain, 2019
by Jéssica Navero-Castillejos, Adrián Sánchez-Montalvá, Elena Sulleiro, Aroa Silgado, Tomás Montalvo, Laura Barahona, Núria Busquets, José Muñoz, Daniel Camprubí-Ferrer, Manuel Valdivia, Ana Martínez, Maria Assumpció Bou-Monclús, Itziar Martínez-Calleja, Mireia Jané, Cristina Rius, Hernán Vargas-Leguas, Beatriz Escudero-Pérez, Rosa Albarracín, Alexander Navarro, Mireia Navarro, Josep Barrachina and Miguel J. Martínezadd Show full author list remove Hide full author list
Viruses 2025, 17(5), 621; https://doi.org/10.3390/v17050621 - 26 Apr 2025
Viewed by 716
Abstract
Dengue virus (DENV) is the most important arbovirus worldwide. In 2019, a significant increase in dengue cases was reported worldwide, resulting in a peak of imported cases in some European countries such as Spain. We aimed to describe travel-associated and locally acquired DENV [...] Read more.
Dengue virus (DENV) is the most important arbovirus worldwide. In 2019, a significant increase in dengue cases was reported worldwide, resulting in a peak of imported cases in some European countries such as Spain. We aimed to describe travel-associated and locally acquired DENV strains detected in 2019 in the Catalonia region (northeastern Spain), a hotspot for dengue introduction in Europe. Through sequencing and phylogenetic analysis of the envelope gene, 75 imported viremic cases and two local strains were described. Autochthonous transmission events included an infection of a local mosquito with an imported dengue strain and a locally acquired human dengue infection from a locally infected mosquito. Overall, all four DENV serotypes and up to 10 different genotypes were detected. Phylogenetic analysis revealed transcontinental circulations associated with DENV-1 and DENV-2 and the presence of DENV-4 genotype I in Indonesia, where few cases had been previously described. A molecular study of the autochthonous events determined that local Ae. albopictus mosquitoes were infected by an African DENV-1 genotype V strain, while the locally acquired human case was caused by a DENV-3 genotype I of Asian origin. These findings underline the wide variability of imported strains and the high risk of DENV introduction into this territory, emphasizing the importance and usefulness of molecular characterization and phylogenetics for both local and global surveillance of the disease. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

Back to TopTop