Next Article in Journal
Comparative IP-MS Reveals HSPA5 and HSPA8 Interacting with Hemagglutinin Protein to Promote the Replication of Influenza A Virus
Previous Article in Journal
Pathophysiology of COVID-19: A Post Hoc Analysis of the ICAT-COVID Clinical Trial of the Bradykinin Antagonist Icatibant
Previous Article in Special Issue
Prevalence of Blastocystis spp. and Other Gastrointestinal Pathogens Among Patients Admitted to Research Hospitals in Campania Region, Italy
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Systematic Review

The Global Prevalence of and Factors Associated with Parasitic Coinfection in People Living with Viruses: A Systematic Review and Meta-Analysis

1
Shanghai Tenth People’s Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai 200070, China
2
Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai 200331, China
3
School of Public Health, Southwest Medical University, Luzhou 646000, China
4
Parasite and Vector Biology and Control Program, University of the Philippines Los Baños Zoonoses Center, Los Baños, Laguna 4031, Philippines
5
Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
6
Office of Research Coordination, University of the East, CM Recto Avenue, Manila 1008, Philippines
7
Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Padre Faura, Manila 1000, Philippines
8
Graduate School, University of the Ease Ramon Magsaysay Memorial Medical Center, 64 Aurora Blvd., Quezon City 1100, Philippines
9
WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, KhonKaen University, KhonKaen 40002, Thailand
10
Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
11
Affiliated Shanghai Blue Cross Brain Hospital, School of Medicine, Tongji University, Shanghai 200020, China
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Pathogens 2025, 14(6), 534; https://doi.org/10.3390/pathogens14060534
Submission received: 2 April 2025 / Revised: 16 May 2025 / Accepted: 20 May 2025 / Published: 27 May 2025

Abstract

:
Coinfection with parasites and viruses can exacerbate disease transmission, outcomes and therapy. This study searched the Web of Science, PubMed, Scopus and JSTOR databases for publications on the prevalence of parasitic coinfection in people living with viruses from 1 January 2005 to 30 April 2022, and 356 studies were included and systematically reviewed. A meta-analysis was performed to assess the global prevalence of and factors potentially associated with parasitic infection (helminths and protozoa) in virus-infected people, and the infection burden was estimated. A variety of parasites (29 families, 39 genera, and 63 species) and viruses (8 kinds) were identified. The prevalence of parasitic coinfection in (all) virus-infected people was estimated to be 21.34% (95% CI 17.58–25.10, 5593 of 29,190 participants) and 34.13% (95% CI 31.32–36.94, 21,243/76,072 participants) for helminths and protozoa, respectively. Specially, in human immunodeficiency virus (HIV)-infected people, the global prevalence was 19.96% (95% CI 16.18–23.74) for helminths and 34.18% (95% CI 31.33–37.03) for protozoa, respectively. The global prevalence of protozoa was 41.79% (95% CI 15.88–67.69) in hepatitis B virus (HBV)-infected people and 17.75% (95% CI 3.54–31.95) in DENV-infected people, respectively. The global burden of parasitic infections in HIV-infected people was 7,664,640 for helminths and 13,125,120 for protozoa, respectively, and that in HBV- and dengue virus (DENV)-infected people was 137,019,428 and 629,952, respectively. The prevalence of parasitic coinfection at the family, genus, and species levels in virus- or HIV-infected people were comprehensively estimated and further analyzed by subgroups. Among the most commonly identified parasites, the five helminth genera with the highest prevalence in HIV-infected people were Schistosoma (12.46%, 95% CI 5.82–19.10), Ascaris (7.82%, 95% CI 6.15–9.49), Strongyloides (5.43%, 95% CI 4.11–6.74), Trichuris (4·82%, 95% CI 2.48–7.17) and Ancylostoma (2.79%, 95% CI 1.32–4.27), whereas the top five protozoan genera were Toxoplasma (48.85%, 95% CI 42.01–55.69), Plasmodium (34.96%, 95% CI 28.11–41.82), Cryptosporidium (14.27%, 95% CI 11.49–17.06), Entamoeba (12.33%, 95% CI 10.09–14.57) and Blastocystis (10.61%, 95% CI 6.26–14.97). The prevalence of parasitic coinfection in virus-infected people was associated with income level. The findings provide valuable global epidemiological information for informing normative guidance, improving surveillance, and developing public healthcare strategies.

1. Introduction

Viral infections pose significant global public health challenges, annually causing millions of deaths worldwide. There is a sustained high occurrence of chronic viral infections such as human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) and viral hepatitis. About 39.9 million people were living with HIV by the end of 2023, and around 630,000 people died from HIV-related causes in 2023 [1]. Viral hepatitis, as the second leading infectious causes of death globally, was responsible for 1.3 million deaths in 2022 [2]. There were an estimated 304 million people living with hepatitis B virus (HBV) and hepatitis C virus (HCV) infections in 2022 [2]. Additionally, the emergence of pandemic coronavirus disease 2019 (COVID-19) has highlighted the critical need for effective measures to prevent and control viral infections [1,2,3,4,5].
Similarly, parasitic infections constitute a major global health burden, causing clinical disorders ranging from iron-deficiency anemia to growth retardation in children and other physical and mental health impairments [6,7]. Malaria alone accounted for an estimated 263 million cases and 597,000 fatalities in 2023 [8]. Coinfections with viruses and parasites establish a dynamic interplay that alters fundamental biological mechanisms, including pathogen immune evasion and dysregulation of host inflammatory homeostasis, thereby reshaping disease transmission and exacerbating clinical outcomes through synergistic pathogenesis [9,10,11]. HIV infection drives the progressive depletion of CD4+ T lymphocytes, resulting in an immunocompromised state that predisposes to opportunistic infections with accelerated progression to advanced disease states, including AIDS-defining malignancies [12,13]. Parasitic comorbidities have become a leading cause of high morbidity and mortality in individuals with HIV/AIDS [14]. Notably, HIV or dengue virus (DENV) coinfection significantly elevates malaria severity risk through mechanisms involving vascular dysfunction and altered cytokine networks, creating therapeutic challenges in differential diagnosis [15,16,17]. Helminths induce a T-helper 2 (Th2)-type immune response, which inhibits Th1-type antiviral immune defense mechanisms [11]. Therefore, deciphering the complex epidemiology of parasite–virus coinfection in a global perspective is essential for formulating precision public health interventions.
Most of the epidemiological studies on parasite–virus coinfection, however, have focused on one kind of virus within geographically constrained settings. Only a few of them have adopted a global perspective, predominantly limited to HIV coinfection with protozoa such as Toxoplasma and Blastocystis [18,19,20]. The global epidemiology of parasitic coinfection among virus-infected people and the profiles of such coinfection remain underexplored. In particular, regarding helminth and virus global syndemics, there is a critical knowledge gap despite a quarter of the world’s population being at risk of soil-transmitted helminth (STH) infections defined as neglected tropical diseases (NTDs) by World Health Organization (WHO) [21,22,23]. In this systematic review and meta-analysis, we aimed to investigate the global prevalence of parasitic coinfection in virus-infected people and to identify potential associated factors, which would inform the development of public healthcare strategies in risk regions and chart investigative priorities for subsequent studies.

2. Materials and Methods

2.1. Search Strategy and Selection Criteria

This systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [24] (Table S1) and was registered with the International Prospective Register of Systematic Reviews (PROSPERO, registration number CRD42023338483). We searched the Web of Science, PubMed, Scopus, and JSTOR databases for publications from 1 January 2005 to 30 April 2022 by using terms “Parasite virus”, “Parasite virus co-infection”, “Parasite co-infection”, “Helminths virus”, “Helminths virus co-infection” or “Helminths co-infection” (Text S1). After duplication removal, the titles and abstracts were independently screened by two reviewers (AQ and HL). We included studies (original research articles, observational studies, experimental studies, or surveys) with prevalence data on parasitic coinfection in people living with viruses. Included studies were confined to the English language. Studies were excluded if they were review articles, book chapters, patents, unpublished data, conference papers, or nonhuman studies. Further full-text screening of potentially eligible articles was conducted by three reviewers (YG, HL, and AQ). Studies without relevant prevalence rates were excluded. The extracted papers were cross-checked. When any discrepancy arose, ambiguous articles were discussed with two reviewers (YG and GC) to reach consensus. In total, four reviewers conducted data extraction. The included studies were divided into helminth–virus and protozoan–virus coinfection groups for further process.

2.2. Data Extraction and Quality Assessment

From each eligible study, we extracted the information of first author, publication year, country, WHO region, income level, total number of virus-infected people (sample size), number of people with parasitic coinfection in virus-infected people, study design, diagnostic method, viral name, classification of parasites (including family, genus, and species), age at risk, and gender at risk.
We assessed study quality following the Grading of Recommendations Assessment, Development and Evaluation method as previously described with some modifications [20,25]. Briefly, the data were graded into high or low rank on the basis of three factors, study design, sample size, and diagnostic method. For each factor, high rank was scored one point, and low rank, zero points. The total score for each study was calculated (Text S2). Using the three-point scale, individual studies were categorized into three tiers: high- (3 points), moderate- (2 points), and low-quality (≤1 points) groups (Tables S2 and S3).

2.3. Statistical Analysis

We conducted a systematic review and meta-analysis to assess the global prevalence of parasitic coinfection in people living with viruses (all viruses and specific viruses with ≥5 identified articles) with 95% CIs for both overall and subgroups of income level (high, upper middle, lower middle, and low), region, country, gender, age, sample size (≤200 and >200), and publication year (<2014 and ≥2014). The prevalence rates of parasites at family, genus, and species levels in virus-infected people were also evaluated. For the mainly identified parasitic genera (with ≥30 included articles), the prevalence in HIV-infected people was further analyzed by subgroups of region, country, income level, age, and gender. To comprehensively analyze the included studies, we used both common-effect and random-effects models. When there was high heterogeneity (I2 > 50%, p < 0.1), random-effects model analysis was used for final statistics. We analyzed data by using R (version:4.1.0) “meta” (version 4.9-6). The forest plots of prevalence were generated by the package “meta”. The effect of subgroup was analyzed by using the rma function. The R function metaprop was used to calculate effect size and heterogeneity. The assessment of heterogeneity between studies was conducted using the Cochran’s Q (represented by χ2 and p value) and I2 statistics. The I2 statistics describe the percentage of variation between the studies due to heterogeneity. To assess publication bias, funnel plots were conducted to visually assess the symmetry of the distribution of effect sizes against their precision metrics, which were further statistically evaluated by Egger’s linear regression test [26] and Begg–Mazumdar nonparametric rank correlation test [27].
The infection burden was calculated by multiplying our estimated prevalence rate of parasites in virus (HIV, HBV, or DENV)-infected people by the global number of virus (HIV, HBV, or DENV)-infected people [28,29].

3. Results

3.1. Study Selection

Our search identified 146,330 publications (Figure 1). After the removal of 54,918 duplicate records, 89,279 irrelevant records were excluded by title and abstract screening. Then, 2040 records were retrieved for the assessment of eligibility. After full-text review, 356 studies were included in our meta-analysis. Notably, 102 out of the 356 included articles investigated concurrent infections involving both helminths and protozoa in virus coinfection scenarios. Therefore, these articles were included in both parasite-specific analytical categories during data stratification. Consequently, 135 and 323 studies were about helminth and protozoan coinfections in virus-infected people, respectively. In the helminth–virus group, 12 out of 135 articles had multiple parasitism but without a definitive description (only included in helminth species coinfection subgroup), whereas the other 123 articles were included in all the helminth coinfection meta-analyses. In the protozoan–virus group, 15 out of 323 articles had multiple parasitism but without definitive description (only included in protozoan species coinfection subgroup), whereas the other 308 articles were included in all the protozoan coinfection meta-analyses.

3.2. The Global Prevalence of Parasitic Infection in People Living with Viruses

Overall, our study identified a diverse range of coinfecting parasites in people living with viruses. This included helminths from 16 families, 18 genera, and 20 species as well as protozoa from 13 families, 21 genera, and 43 species. These parasites were found in individuals infected with eight kinds of viruses, namely hepatitis B virus (HBV), hepatitis C virus (HCV), HIV, Chikungunya virus, DENV, human T-lymphotropic virus type 1 (HTLV-1), SARS-CoV-2, and influenza virus (Tables S2 and S3). We observed that the number of parasitic coinfections in people living with viruses from lower-middle-income countries was the highest, which was 1543 for helminth and 9977 for protozoan coinfections, respectively (Table 1 and Table 2). The majority of the identified articles originated from the regions of eastern and southern Africa, Asia and the Pacific, and western and central Africa (Table 1 and Table 2). Our study revealed that the estimated global prevalences of pooled helminth and protozoan coinfection in virus-infected people were 21.3% (95% CI 17.6–25.1) and 31.41% (95% CI 31.3–36.91), respectively (Table 1 and Table 2). Specially, in HIV-infected people, the estimated global prevalence of pooled helminth and protozoan coinfections was 19.96% (95% CI 16.18–23.74) and 34.18% (95% CI 31.33–37.03), respectively (Table 3 and Table 4). For HBV-infected people, the estimated global prevalence of protozoan coinfection was 41.79% (95% CI 15.88–67.69), and for DENV-infected people, it was 17.75% (95% CI 3.54–31.95) (Table 4). Notably, our study found that Plasmodium was the only identified parasitic genus that coinfected with DENV (Tables S2 and S3).

3.3. The Global Prevalence of Parasitic Coinfection at the Family, Genus, and Species Levels in Virus- or HIV-Infected People

A subgroup analysis of studies by family, genus, or species for the most commonly identified parasitic coinfection in both virus-infected people and HIV-infected people (people living with HIV, PLWH) was performed. For virus-infected people, the five most prevalent helminth families were Onchocercidae, Schistosomatidae, Opisthorchiidae, Ascarididae, and Strongylidae for helminths, while the top protozoan families were Sarcocystidae, Plasmodiidae, Trypanosomatidae, Trichomonadidae, and Blastocystidae (Figure S1A,B). Similarly, in virus-infected people, the top five most prevalent helminth genera were Opisthorchis, Schistosoma, Ascaris, Strongyloides, and Trichuris, and the protozoan genera were Toxoplasma, Plasmodium, Leishmania, Trypanosoma, and Trichomonas (Figure S2A,B).
The five most prevalent helminth genera in HIV-infected people were Schistosoma (12.46%, 95% CI 5.82–19.10), Ascaris (7.82%, 95% CI 6.15- 9.49), Strongyloides (5.43%, 95% CI 4.11–6.74), Trichuris (4.82%, 95% CI 2.48–7.17), and Ancylostoma (2.79%, 95% CI 1.32–4.27), followed by Taenia (2.19%, 95% CI 1.52–2.85), Hymenolepis (0.51%, 95% CI 0.37–0.64), and Enterobius (0.83%, 95% CI 0.55–1.10) (Table S4 and Figure S4A). The top five definitive helminth species in PLWH were Schistosoma haematobium, Ascaris lumbricoides, Schistosoma mansoni, Strongyloides stercoralis, and Trichuris trichiura (Figure S3A). The five most prevalent protozoan genera in HIV-infected people were Toxoplasma (48.85%, 95% CI 42.01–55.69), Plasmodium (34.96%, 95% CI 28.11–41.82), Leishmania (30.50%, 95% CI 21.65–39.35), Trypanosoma (20.32%, 95% CI 0.00–42.37), and Trichomonas (14.75%, 95% CI 8.75–20.75), followed by Cryptosporidium (14.27%, 95% CI 11.49–17.06), Entamoeba (12.33%, 95% CI 10.09–14.57), Blastocystis (10.61%, 95% CI 6.26–14.97), Endolimax (6.06%, 95% CI 3.03–9.09), Giardia (4.99%, 95% CI 4.18–5.81), Isospora (4.58%, 95% CI 3.37–5.80), Cyclospora (3.08%, 95% CI 1.89–4.28), and Iodamoeba (2.00%, 95% CI 1.08–2.92) (Table S4 and Figure S4B). The top ten definitive protozoan species with high prevalence rates in PLWH included Toxoplasma gondii, Plasmodium falciparum, Trichomonas vaginalis, Trypanosoma cruzi, Cryptosporidium parvum, Cryptosporidium hominis, Entamoeba histolytica/dispar, Blastocystis hominis, Entamoeba coli, and Giardia lamblia (Figure S3B).

3.4. Factors Potentially Associated with the Prevalence of Parasite Coinfection in People Living with Viruses

We further assessed several key factors potentially associated with parasite–virus coinfection. First, our subgroup analysis revealed a notable association between income level and the prevalence of parasitic coinfection in virus-infected people. Specifically, the prevalence of helminth coinfection in virus-infected people was the highest in low-income-level countries 26.78% (95% CI 17.58–35.98), compared with upper-middle (22.85%, 95% CI 12.95–32.76)-, lower-middle (19.51%, 95% CI 14.63–24.39)-, and high (16.26%, 95% CI 8.25–24.27)-income-level countries (Table 1). A similar trend was observed for protozoan infection in virus-infected people, with the highest prevalence in low-income-level countries (37.76%, 95% CI 30.25–45.27), followed by lower-middle (35.55%, 95% CI 31.76–39.34)-, high (28.09%, 95% CI 19.66–36.51)-, and upper-middle (27.66%, 95% CI 22.41–32.91)-income level countries (Table 2). Second, the prevalence of helminth coinfection in virus-infected people was notably high in the Middle East and North Africa (30.86%, 95% CI 9.20–52.51), eastern and southern Africa (27.55%, 95% CI 21.72–33.37), and western and central Africa (20.34%, 95% CI 11.37–29.30) (Table 1). These three regions also exhibited high rates of protozoan coinfection in virus-infected people, with prevalences of 39.01% (95% CI 29.57–48.45) in the Middle East and North Africa, 37.11% (95% CI 31.46–42.77) in western and central Africa, and 33.28% (95% CI 27.35–39.22) in eastern and southern Africa, respectively (Table 2). Third, among the most commonly identified countries, Tanzania, Ethiopia, Nigeria and India showed relatively high prevalence rates of helminth coinfection in virus-infected people, whereas relatively high prevalence rates of protozoan coinfection in virus-infected people were observed in Nigeria, Kenya, Thailand, Ethiopia, Burkina Faso, Cameroon, Iran, India, Brazil, and Ghana (Figure 2). Fourth, our analysis indicated that sample size significantly impacted the prevalence of parasitic coinfection in virus-infected people. Specifically, studies with sample sizes greater than 200 reported lower prevalence rates of both helminth and protozoan coinfections in virus-infected people compared with those with sample size of 200 or fewer (Table 1 and Table 2). Fifthly, age appeared to influence the prevalence of protozoan coinfection in virus-infected people but not that of helminth coinfection (Figure S5A,B). Individuals in the <35 age group (44.6%, 95% CI 30.3–58.8) exhibited a higher prevalence of protozoan coinfection in virus-infected people than those in the ≥35 age group (28.2%, 95% CI 20.4–36.1). Finally, our findings showed no significant association between the prevalence of either helminth coinfection or protozoan coinfection and factors such as gender or publication year (Figures S6A,B and S7A,B).
We also performed a subgroup analysis study of parasitic coinfection in PLWH. First, the subgroup analysis by region indicated that the prevalence rates of helminth coinfection in PLWH were significantly higher in both the regions of eastern and southern Africa (27.63%, 95% CI 21.66–33.59) and western and central Africa (20.65%, 95% CI 11.37–29.94) than in other regions. In terms of protozoan coinfection, the most commonly identified regions with the highest prevalence rates in PLWH were the Middle East and North Africa (37.41%, 95% CI 28.20–46.62), western and central Africa (36.16%, 95% CI 30.48–41.84), and eastern and southern Africa (34.26%, 95% CI 28.16–40.35) (Table 3 and Table 4). Second, in PLWH, the most commonly identified country with helminth coinfection rates surpassing the global average was Tanzania, followed by Guinea, the Lao People’s Democratic Republic, Zimbabwe, South Africa, Zambia, Canada, Thailand, and Brazil (Table 3), whereas the most commonly identified countries with protozoan coinfection rates exceeding the global average were Uganda, Kenya, Cameroon, Thailand, Ethiopia, Iran, and Nigeria, followed by Indonesia, Bolivia, Guinea, Australia, Mexico, the Czech Republic, Burkina Faso, the United States, and Malaysia (Table 4). Additionally, subgroup analyses by factors such as income level, age, gender, sample size, and publication year indicated that the patterns of parasitic coinfection prevalence in PLWH were similar to those observed in virus-infected people (Figures S6–S10).
Visual inspection of funnel plots demonstrated asymmetry in both helminth–virus and protozoan–virus coinfection studies (Figure S11A,B). The asymmetry was statistically confirmed by Egger’s linear regression test and Begg–Mazumdar rank correlation test with a significance of (p < 0.05) (Texts S3 and S4), suggesting that there was potential publication bias in the pooled prevalence of helminth or protozoan coinfection in people living with viruses.

3.5. The Global Burden of Parasitic Coinfection in Virus-Infected People

In Table 3 and Table 4, we present our calculations of the global burden of parasitic coinfections in PLWH based on our estimates of parasitic prevalence rates in PLWH and the number of PLWH reported from the WHO and GBD 2019 [28,29]. Our estimates indicated that there were approximately 7,664,640 (6,213,120–9,116,160) cases of helminth coinfection and 13,125,120 (12,030,720–14,219,520) cases of protozoan coinfection worldwide in PLWH. Among the most commonly identified regions, the highest estimated number of helminth coinfections in PLWH was found in the eastern and southern Africa region, followed by the western and central Africa region, the Asia and the Pacific region, the western and central Europe and North America region, and the Latin America and the Caribbean region, whereas the highest estimated number of protozoan coinfections in PLWH was in the eastern and southern Africa region, followed by the Asia and the Pacific region, the western and central Africa region, the Latin America and the Caribbean region, the western and central Europe and North America region, and the Middle East and North Africa region. At the country level, the top five countries with high estimated numbers of helminth coinfections in PLWH were South Africa, Zimbabwe, Tanzania, Zambia, and Uganda. For protozoan coinfections in PLWH, the leading countries included South Africa, Zambia, Zimbabwe, India, and Nigeria (Table 3 and Table 4). Additionally, we calculated the global numbers of protozoan coinfection in DENV- and HBV-infected people, which were estimated to be 629,952 (142,893–1,086,124) and 137,019,428 (52,197,877–221,840,979), respectively, using the same methodology applied in PLWH.

4. Discussion

To our knowledge, our study conducted the most comprehensive systematic review and meta-analysis to date on the global prevalence of parasitic coinfection at the levels of family, genus and species in people living with viruses. Our findings extended beyond previous research, which had typically focused on one parasitic genus in people coinfected with specific virus [18,19,20,30]. We provided detailed global prevalence rates of a wide array of parasites in virus-infected people and documented the coinfection profiles worldwide, which is valuable for developing effective public health strategies and highlighting future research directions.
Our study identified HIV as the predominant virus coinfecting with parasites. Notably, the majority of identified parasites in HIV-infected people in our study were intestinal parasites. Therapeutic intervention against intestinal parasites significantly reduces HIV viral load in chronically coinfected individuals [31], yet many intestinal parasitic infections remain classified as neglected tropical diseases and receive insufficient public health prioritization [22]. In our study, the helminth genera with relatively high prevalence in HIV-infected people, i.e., Schistosoma, Ascaris, Strongyloides, Trichuris, and Ancylostoma, are key intestinal helminths. Additionally, we observed unexpectedly high prevalence of Opisthorchis infection in HIV-infected people despite limited epidemiological documentation. The primary intestinal protozoa relevant to HIV infection were Trichomonas, Cryptosporidium, Blastocystis, Entamoeba, Endolimax, Giardia, Isospora, Cyclospora, Iodamoeba, and Chilomastix. Among them, Cryptosporidium, Entamoeba and Giardia were the most commonly identified, aligning with a prior report [32]. Our global prevalence estimates for Cryptosporidium and Blastocystis infections in HIV-infected people were 14.27% (95% CI 11.49–17.06) and 10·61% (95% CI 6.26–14.97), corroborating previous reports of 14.0% (95% CI 13.0–15.0) [30] and 9% (95% CI, 5–13%) [18], respectively, whereas the global prevalence rate of Isospora infection in HIV-infected people in our study, 4.58% (95% CI 3.37–5.80), exceeded that in a previous report, 2.5% (95% CI 2.1–2.9) [30], highlighting an underrecognized burden or geographic variability.
Among parasitic pathogens, Schistosoma rank as the second most significant global pathogen in terms of public health burden, following immediately behind Plasmodium that cause malaria [33]. In our study, the mainly identified Schistosoma species were S. haematobium and S. mansoni. S. haematobium infection causes urogenital schistosomiasis, whereas S. mansoni infection mainly results in intestinal schistosomiasis. Coinfection with HIV and Schistosoma creates a bidirectional pathogenic synergy. The soluble egg antigens (SEAs) secreted by Schistosome eggs drive a dominant Th2-skewed immune response [34] (Pearce EJ, 2004), which suppresses Th1-mediated antiviral immunity. This creates a permissive environment for HIV replication and latency establishment. Furthermore, Schistosome egg-induced inflammation upregulates CD4, CCR5, and CXCR4 expression on immune cells in mucosal tissues, potentially increasing HIV-1 target cells and viral entry efficiency [35]. Female genital schistosomiasis (FGS) induces chronic cervicovaginal ulceration, granuloma formation and epithelial barrier breakdown. These lesions elevate HIV shedding and increase susceptibility to HIV acquisition during sexual exposure [36]. Chronic schistosomiasis elevates Treg activity [37], which dampens effector T cell responses and impairs clearance of both schistosome eggs and HIV-infected cells. Coinfection with HIV and Schistosome correlates with severe pathology, and HIV-induced immunosuppression exacerbates schistosome-related organ damage [11].
In individuals with advanced HIV/AIDS, latent tissue cysts of Toxoplasma reactivate because of severe depletion of CD4+ T cells and consequent impairment of IL-12 and IFNγ immune surveillance [11,38,39]. The loss of these cytokines cripples macrophage and dendritic cell activation, enabling dormant bradyzoites to differentiate into rapidly proliferating tachyzoites [39]. This reactivation manifests clinically as severe toxoplasmic encephalitis, necrotizing pneumonitis, or disseminated disease, which are AIDS-defining opportunistic infections with high mortality rates if untreated [11,19,40]. Reciprocally, T. gondii infection exacerbates HIV pathogenesis through driven inflammation enhances HIV replication [11,39]. As the most prevalent protozoa genus in PLWH in our study, Toxoplasma had a global prevalence of 48.85% (95% CI 42.01–55.69) in HIV-infected people in our study. This aligns closely with Safarpour et al.’s meta-analysis (44.22%, 95% CI 37.99–50.52%) [19] but contrasts with Wang et al.’s lower estimate (35.8%, 95% CI 30.8–40.7) [20], suggesting potential geographic or methodological variability.
Emerging evidence suggests that impaired immune activation, diminished production of antimalarial antibodies, and consequent immunosuppression are mechanistically linked to elevated rates of clinical malaria episodes and heightened parasitemia in HIV-infected populations, while malaria inflammation accelerates HIV/SIV-driven immunodeficiency, collectively worsening clinical outcomes [41,42]. For Plasmodium coinfection in HIV-infected people, our data revealed pronounced regional disparities: 34 studies from western and central Africa and 19 from eastern and southern Africa demonstrated higher prevalence in the former (38.36%, 95% CI 29.35–47.38) than the latter (31.22%, 95% CI 19.75–42.68), consistently with known malaria endemic burdens [43]. These findings underscore the urgent need for targeted interventions in high risk zones. Additionally, neglected kinetoplastid pathogens, Leishmania and Trypanosoma, exhibited notable prevalence in HIV-infected people, warranting further investigation into their clinical synergies with HIV.
Beyond HIV coinfections, our analysis incorporated epidemiological data (≥5 studies per case) on parasitic coinfections in individuals with HBV or DENV infections. In HBV-positive cohorts, we documented helminth (Schistosoma mansoni, Ascaris lumbricoides) and protozoan (Plasmodium spp., Toxoplasma gondii, Leishmania donovani) copathogens. We noted coinfections of HBV with helminths (S. mansoni and A. lumbricoides) and protozoa (Plasmodium, T. gondii, and L. donovani). The interaction between parasites (e.g., S. mansoni or Plasmodium) and HBV in a final host remains mechanistically obscure, hindered by the complex life cycles of parasitic organisms and the absence of appropriate animal models recapitulating these multiple-pathogen interactions [44,45,46]. Furthermore, the clinical implications of HBV–parasite coinfections, particularly their effects on hepatic pathogenesis and antiviral therapy efficacy, remain poorly characterized. For DENV, transmitted primarily by the Aedes mosquito, Plasmodium emerged as the sole parasitic copathogen in our meta-analysis. Given DENV’s hyperendemicity across more than 100 tropical/subtropical regions [47] and evidence suggesting exacerbated dengue severity in Plasmodium-coinfected patients [44,48], systematic surveillance of these coinfections is critical. Such efforts could refine differential diagnosis protocols, optimize therapeutic strategies, and inform vector control policies, particularly in ecoregions where overlapping Anopheles and Aedes habitats create niches for concurrent malaria–dengue transmission [49].
Our analysis revealed significant socioeconomic gradients in parasitic coinfection prevalence among people living with HIV, with the highest burdens concentrated in the eastern/southern Africa, western/central Africa, and Asia/Pacific regions, which strongly correlated with national income tiers. Despite global reductions in HIV–intestinal pathogen coinfections attributed to antiretroviral therapy (ART) [50], systemic disparities in healthcare access persist across Africa, perpetuating high intestinal parasite prevalence among PLWH in these settings [51,52]. Notably, while the Asia/Pacific region exhibited lower relative coinfection rates than the global average, its substantial HIV-positive population translated to elevated absolute disease burdens. This divergence underscores the dual challenge of region-specific transmission dynamics and resource allocation: African countries face urgent needs for expanded ART coverage, whereas Asia and the Pacific require targeted surveillance to mitigate population-scale impacts despite proportionally lower infection rates.
Our meta-analysis may have some limitations. First, persistent residual heterogeneity was observed across included datasets despite rigorous stratification by geospatial and demographic covariates (income, geographic region, country, gender, and age). This unresolved variability suggests either unreported confounders in source studies or methodological inconsistencies, particularly heterogeneity in diagnostic methodologies (e.g., varied pathogen detection assays) that may have differentially influenced reported prevalence rates. Second, our analysis was restricted to publications in English, excluding potentially relevant non-English evidence. This linguistic bias risk may distort regional prevalence estimates. Third, inherent surveillance capacity gaps for NTDs likely resulted in underrepresentation of epidemiological data from resource-limited settings. The cyclical neglect of parasite monitoring in endemic areas creates critical evidence voids, leaving their true coinfection burdens underrepresented in global health datasets. Fourth, our meta-analysis estimates regarding the pooled prevalence of helminth or protozoan coinfection in people living with (all) viruses are potentially limited by publication bias, which requires cautious interpretation because of probable inflation. This bias may originate from preferential publication of investigations with positive outcomes, particularly among small-scale studies; methodological heterogeneity of diagnosis; underreporting on NTDs; or language limitations. Notwithstanding the publication bias risk in the pooled helminth–virus and protozoan–virus coinfection studies, our stratified multidimensional subgroup analyses may attenuate the magnitude of the bias. Altogether, these intersecting limitations underscore the need for standardized diagnostics, multilingual systematic reviews, and strengthened parasitic disease surveillance infrastructure to improve future meta-analytic rigor.

5. Conclusions

Our study highlights disproportionate coinfection impacts in low- and middle-income countries, where intersecting biological vulnerabilities and healthcare disparities necessitate urgent investments in therapeutic infrastructure and drug accessibility. Geospatial analysis revealed striking regional inequity of markedly higher burdens of parasitic coinfection in virus-infected people in Africa and the Asia/Pacific region than in other regions, which underscores the imperative for WHO-aligned surveillance frameworks integrating multiplex diagnostics and geospatial mapping to target hyperendemic areas. To mitigate the impact of these coinfections, we recommend prophylaxis and vector control in parasite-endemic areas and accelerated deployment of vaccines against viral infections. Such interventions are crucial to protect those who are uninfected. Given the global nature of these health challenges, a coordinated international response is desired to fully scale up public health interventions and enhance the capabilities for unified diagnosis, prevention, and treatment of these infections. Our study therefore serves as both an epidemiological benchmark and a call to action to address these pressing health concerns collaboratively and effectively.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/pathogens14060534/s1, Figure S1A: Forest plots of the prevalence rates of helminth coinfections in virus-infected people at the family level by meta-analysis using common-effect and random-effects models; Figure S1B: Forest plots of the prevalence rates of protozoan coinfections in virus-infected people at the family level by meta-analysis using common-effect and random-effects models; Figure S2A: Forest plots of the prevalence rates of helminth coinfections in virus-infected people at the genus level by meta-analysis using common-effect and random-effects models; Figure S2B: Forest plots of the prevalence rates of protozoan coinfections in virus-infected people at the genus level by meta-analysis using common-effect and random-effects models; Figure S3A: Forest plots of the prevalence rates of helminth coinfections in virus-infected people at the species level by meta-analysis using common-effect and random-effects models; Figure S3B: Forest plots of the prevalence rates of protozoan coinfections in virus-infected people at the species level by meta-analysis using common-effect and random-effects models; Figure S4A: Forest plots of the prevalence rates of helminth coinfections in HIV-infected people at the genus level by meta-analysis using common-effect and random-effects models; Figure S4B: Forest plots of the prevalence rates of protozoan coinfections in HIV-infected people at the genus level by meta-analysis using common-effect and random-effects models; Figure S5A: Subgroup analysis of the prevalence of helminth infections in people living with viruses by age; Figure S5B: Subgroup analysis of the prevalence of protozoan infections in people living with viruses by age; Figure S6A: Subgroup analysis of the prevalence of helminth infections in people living with viruses by gender; Figure S6B: Subgroup analysis of the prevalence of protozoan infections in people living with viruses by gender; Figure S7A: Subgroup analysis of the prevalence of helminth infections in people living with viruses by publication year; Figure S7B: Subgroup analysis of the prevalence of protozoan infections in people living with viruses by publication year; Figure S8A: Subgroup analysis of the prevalence of helminth infections in people living with HIV by income level; Figure S8B: Subgroup analysis of the prevalence of protozoan infections in people living with HIV by income level; Figure S9A: Subgroup analysis of the prevalence of helminth infections in people living with HIV by age; Figure S9B: Subgroup analysis of the prevalence of protozoan infections in people living with HIV by age; Figure S10A: Subgroup analysis of the prevalence of helminth infections in people living with HIV by gender; Figure S10B: Subgroup analysis of the prevalence of protozoan infections in people living with HIV by gender; Figure S11A: Subgroup analysis of the prevalence of helminth infections in people living with HIV by sample size; Figure S11B: Subgroup analysis of the prevalence of protozoan infections in people living with HIV by sample size; Figure S12A: Subgroup analysis of the prevalence of helminth infections in people living with HIV by publication year; Figure S12B: Subgroup analysis of the prevalence of protozoan infections in people living with HIV by publication year; Figure S13A: Funnel plot assessing distribution symmetry for the pooled prevalence of helminth coinfection in people living with viruses from 135 studies; Figure S13B: Funnel plot assessing distribution symmetry for the pooled prevalence of protozoan coinfection in people living with viruses from 323 studies; Table S1: PRISMA Checklist; Table S2: Included studies on helminth coinfections in virus-infected people; Table S3: Included studies on protozoan coinfections in virus-infected people; Table S4: The prevalence rates of parasitic coinfections at genus level in HIV-infected people by meta-analysis; Text S1: Search strategy and rules for study selection; Text S2: Quality assessment of included studies; Text S3: Egger’s linear regression test and Begg–Mazumdar rank correlation test on the pooled prevalence of helminth in virus-infected people; Text S4: Egger’s linear regression test and Begg–Mazumdar rank correlation test on the pooled prevalence of protozoan in virus-infected people [53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396].

Author Contributions

Conceptualization, Y.G. and G.C.; data curation, Y.G., H.L., A.Q. and G.C.; formal analysis, Y.G., H.L. and N.R.; investigation, Y.G., H.L., A.Q. and G.C.; methodology, Y.G., N.R. and G.C.; resources, G.C.; software, N.R.; supervision: G.C.; validation: Y.G. and H.L.; visualization: Y.G., H.L. and N.R.; writing—original draft, Y.G.; writing—review and editing: Y.G., I.K.B.T., I.K.C.F., L.R.L., B.S. and G.C.; project administration, G.C.; funding acquisition, Y.G. and G.C. All authors have read and agreed to the published version of the manuscript.

Funding

This study was funded by the Key Program for International S&T Cooperation Projects from the Ministry of Science and Technology of the People’s Republic of China, grant number 2021YFE0191600, and the Shanghai Science and Technology Innovation Action Plan for Agricultural Project, grant number 21N31901100, and also sponsored by Shanghai Tongji University Education Development Foundation.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. WHO. Key Facts HIV. 2024. Available online: https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/hiv/strategic-information/hiv-data-and-statistics (accessed on 19 May 2025).
  2. WHO. Global Hepatitis Report. 2024. Available online: https://www.who.int/publications/b/68511 (accessed on 19 May 2025).
  3. Chow, E.J.; Uyeki, T.M.; Chu, H.Y. The effects of the COVID-19 pandemic on community respiratory virus activity. Nat. Rev. Microbiol. 2023, 21, 195–210. [Google Scholar] [CrossRef] [PubMed]
  4. May, M.T.; Gompels, M.; Delpech, V.; Porter, K.; Orkin, C.; Kegg, S.; Hay, P.; Johnson, M.; Palfreeman, A.; Gilson, R.; et al. Impact on life expectancy of HIV-1 positive individuals of CD4+ cell count and viral load response to antiretroviral therapy. AIDS 2014, 28, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
  5. Palayew, A.; Razavi, H.; Hutchinson, S.J.; Cooke, G.S.; Lazarus, J.V. Do the most heavily burdened countries have the right policies to eliminate viral hepatitis B and C? Lancet Gastroenterol. Hepatol. 2020, 5, 948–953. [Google Scholar] [CrossRef]
  6. Engels, D.; Zhou, X.N. Neglected tropical diseases: An effective global response to local poverty-related disease priorities. Infect. Dis. Poverty 2020, 9, 10. [Google Scholar] [CrossRef]
  7. Jourdan, P.M.; Lamberton, P.H.L.; Fenwick, A.; Addiss, D.G. Soil-transmitted helminth infections. Lancet 2018, 391, 252–265. [Google Scholar] [CrossRef]
  8. WHO. World Malaria Report. 2024. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2024 (accessed on 19 May 2025).
  9. Figueroa-Romero, A.; Saura-Lazaro, A.; Fernandez-Luis, S.; Gonzalez, R. Uncovering HIV and malaria interactions: The latest evidence and knowledge gaps. Lancet HIV 2024, 11, e255–e267. [Google Scholar] [CrossRef]
  10. Graham, A.L.; Cattadori, I.M.; Lloyd-Smith, J.O.; Ferrari, M.J.; Bjornstad, O.N. Transmission consequences of coinfection: Cytokines writ large? Trends Parasitol. 2007, 23, 284–291. [Google Scholar] [CrossRef]
  11. Perera, D.J.; Koger-Pease, C.; Paulini, K.; Daoudi, M.; Ndao, M. Beyond schistosomiasis: Unraveling co-infections and altered immunity. Clin. Microbiol. Rev. 2024, 37, e00098-23. [Google Scholar] [CrossRef]
  12. Al Anazi, A.R. Gastrointestinal opportunistic infections in human immunodeficiency virus disease. Saudi J. Gastroenterol. 2009, 15, 95–99. [Google Scholar] [CrossRef]
  13. Dupont, D.; Fricker-Hidalgo, H.; Brenier-Pinchart, M.P.; Garnaud, C.; Wallon, M.; Pelloux, H. Serology for Toxoplasma in Immunocompromised Patients: Still Useful? Trends Parasitol. 2021, 37, 205–213. [Google Scholar] [CrossRef]
  14. Udeh, E.O.; Obiezue, R.N.N.; Okafor, F.C.; Ikele, C.B.; Okoye, I.C.; Otuu, C.A. Gastrointestinal parasitic infections and immunological status of HIV/AIDS coinfected individuals in Nigeria. Ann. Glob. Health 2019, 85, 99. [Google Scholar] [CrossRef] [PubMed]
  15. Kotepui, M.; Kotepui, K.U.; Milanez, G.J.; Masangkay, F.R. Prevalence of and risk factors for severe malaria caused by Plasmodium and dengue virus co-infection: A systematic review and meta-analysis. Infect. Dis. Poverty 2020, 9, 134. [Google Scholar] [CrossRef] [PubMed]
  16. Mahittikorn, A.; Kotepui, K.U.; De Jesus Milanez, G.; Masangkay, F.R.; Kotepui, M. A meta-analysis on the prevalence and characteristics of severe malaria in patients with Plasmodium spp. and HIV co-infection. Sci. Rep. 2021, 11, 16655. [Google Scholar] [CrossRef]
  17. Moxon, C.A.; Gibbins, M.P.; McGuinness, D.; Milner, D.A., Jr.; Marti, M. New insights into malaria pathogenesis. Annu. Rev. Pathol. 2020, 15, 315–343. [Google Scholar] [CrossRef]
  18. Khorshidvand, Z.; Khazaei, S.; Amiri, M.; Taherkhani, H.; Mirzaei, A. Worldwide prevalence of emerging parasite in immunocompromised patients: A systematic review and meta-analysis. Microb. Pathog. 2021, 152, 104615. [Google Scholar] [CrossRef]
  19. Safarpour, H.; Cevik, M.; Zarean, M.; Barac, A.; Hatam-Nahavandi, K.; Rahimi, M.T.; Bannazadeh Baghi, H.; Koshki, T.J.; Pagheh, A.S.; Shahrivar, F.; et al. Global status of Toxoplasma gondii infection and associated risk factors in people living with HIV. AIDS 2020, 34, 469–474. [Google Scholar] [CrossRef]
  20. Wang, Z.D.; Wang, S.C.; Liu, H.H.; Ma, H.Y.; Li, Z.Y.; Wei, F.; Zhu, X.Q.; Liu, Q. Prevalence and burden of Toxoplasma gondii infection in HIV-infected people: A systematic review and meta-analysis. Lancet HIV 2017, 4, e177–e188. [Google Scholar] [CrossRef]
  21. von Braun, A.; Trawinski, H.; Wendt, S.; Lubbert, C. Schistosoma and other relevant helminth infections in HIV-positive individuals-an overview. Trop. Med. Infect. Dis. 2019, 4, 65. [Google Scholar] [CrossRef]
  22. WHO. Ending the Neglect to Attain the Sustainable Development Goals: A Road Map for Neglected Tropical Diseases 2021–2030; WHO: Geneva, Switzerland, 2021. [Google Scholar]
  23. Ahmed, M. Intestinal Parasitic Infections in 2023. Gastroenterol. Res. 2023, 16, 127–140. [Google Scholar] [CrossRef]
  24. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef]
  25. Atkins, D.; Best, D.; Briss, P.A.; Eccles, M.; Falck-Ytter, Y.; Flottorp, S.; Guyatt, G.H.; Harbour, R.T.; Haugh, M.C.; Henry, D.; et al. Grading quality of evidence and strength of recommendations. BMJ 2004, 328, 1490. [Google Scholar] [CrossRef] [PubMed]
  26. Egger, M.; Smith, G.D.; Phillips, A.N. Meta-analysis: Principles and procedures. BMJ 1997, 315, 1533–1537. [Google Scholar] [CrossRef]
  27. Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef] [PubMed]
  28. GHDx. The Global Burden of Disease Study; Global Health Data Exchange: Seattle, WA, USA, 2019. [Google Scholar]
  29. WHO. Key Facts HIV. 2022. Available online: https://cdn.who.int/media/docs/default-source/hq-hiv-hepatitis-and-stis-library/key-facts-hiv-2021-26july2022.pdf?sfvrsn=8f4e7c93_5 (accessed on 30 August 2022).
  30. Wang, Z.D.; Liu, Q.; Liu, H.H.; Li, S.; Zhang, L.; Zhao, Y.K.; Zhu, X.Q. Prevalence of Cryptosporidium, microsporidia and Isospora infection in HIV-infected people: A global systematic review and meta-analysis. Parasites Vectors 2018, 11, 28. [Google Scholar] [CrossRef]
  31. Mulu, A.; Maier, M.; Liebert, U.G. Deworming of intestinal helminths reduces HIV-1 subtype C viremia in chronically co-infected individuals. Int. J. Infect. Dis. 2013, 17, e897–e901. [Google Scholar] [CrossRef]
  32. Tegen, D.; Damtie, D.; Hailegebriel, T. Prevalence and associated risk factors of human intestinal protozoan parasitic infections in Ethiopia: A Systematic Review and Meta-Analysis. J. Parasitol. Res. 2020, 2020, 8884064. [Google Scholar] [CrossRef]
  33. CDC. About Schistosomiasis. 2024. Available online: https://www.cdc.gov/schistosomiasis/about/ (accessed on 12 May 2025).
  34. Pearce, E.J.; Kane, C.M.; Sun, J.; Taylor, J.J.; McKee, A.S.; Cervi, L. Th2 response polarization during infection with the helminth parasite Schistosoma mansoni. Immunol. Rev. 2004, 201, 117–126. [Google Scholar] [CrossRef]
  35. Secor, W.E.; Shah, A.; Mwinzi, P.M.; Ndenga, B.A.; Watta, C.O.; Karanja, D.M. Increased density of human immunodeficiency virus type 1 coreceptors CCR5 and CXCR4 on the surfaces of CD4(+) T cells and monocytes of patients with Schistosoma mansoni infection. Infect. Immun. 2003, 71, 6668–6671. [Google Scholar] [CrossRef]
  36. Sturt, A.S.; Webb, E.L.; Francis, S.C.; Hayes, R.J.; Bustinduy, A.L. Beyond the barrier: Female Genital Schistosomiasis as a potential risk factor for HIV-1 acquisition. Acta Trop. 2020, 209, 105524. [Google Scholar] [CrossRef]
  37. Mohammed, S.A.; Hetta, H.F.; Zahran, A.M.; Tolba, M.E.M.; Attia, R.A.H.; Behnsawy, H.M.; Algammal, A.M.; Batiha, G.E.; Mohammed, A.Q.; Ahmad, A.A. T cell subsets, regulatory T, regulatory B cells and proinflammatory cytokine profile in Schistosoma haematobium associated bladder cancer: First report from Upper Egypt. PLoS Negl. Trop. Dis. 2023, 17, e0011258. [Google Scholar] [CrossRef]
  38. Milne, G.; Webster, J.P.; Walker, M. Toxoplasma gondii: An underestimated threat? Trends Parasitol. 2020, 36, 959–969. [Google Scholar] [CrossRef] [PubMed]
  39. Zhao, X.Y.; Ewald, S.E. The molecular biology and immune control of chronic Toxoplasma gondii infection. J. Clin. Investig. 2020, 130, 3370–3380. [Google Scholar] [CrossRef] [PubMed]
  40. Wesolowski, R.; Pawlowska, M.; Smogula, M.; Szewczyk-Golec, K. Advances and challenges in diagnostics of Toxoplasmosis in HIV-infected patients. Pathogens 2023, 12, 110. [Google Scholar] [CrossRef]
  41. Chalwe, V.; Van Geertruyden, J.P.; Mukwamataba, D.; Menten, J.; Kamalamba, J.; Mulenga, M.; D’Alessandro, U. Increased risk for severe malaria in HIV-1-infected adults, Zambia. Emerg. Infect. Dis. 2009, 15, 749–755. [Google Scholar] [CrossRef]
  42. Liu, G.; Li, Y.; Qin, L.; Yan, Y.; Ye, Y.; Chen, Y.; Huang, C.; Zhao, S.; Yao, Y.; Su, Z.; et al. SIV infection aggravates malaria in a Chinese rhesus monkey coinfection model. BMC Infect. Dis. 2019, 19, 965. [Google Scholar] [CrossRef]
  43. Obebe, O.O.; Falohun, O.O. Epidemiology of malaria among HIV/AIDS patients in sub-Saharan Africa: A systematic review and meta-analysis of observational studies. Acta Trop. 2021, 215, 105798. [Google Scholar] [CrossRef]
  44. Kotepui, K.U.; Kotepui, M. Prevalence of and risk factors for Plasmodium spp. co-infection with hepatitis B virus: A systematic review and meta-analysis. Malar. J. 2020, 19, 368. [Google Scholar] [CrossRef]
  45. Loffredo-Verde, E.; Bhattacharjee, S.; Malo, A.; Festag, J.; Kosinska, A.D.; Ringelhan, M.; Rim Sarkar, S.; Steiger, K.; Heikenwaelder, M.; Protzer, U.; et al. Dynamic, Helminth-induced immune modulation influences the outcome of acute and chronic Hepatitis B Virus infection. J. Infect. Dis. 2020, 221, 1448–1461. [Google Scholar] [CrossRef]
  46. Lombardi, A.; Morbini, P.; Zuccaro, V.; Bruno, R. Impact of HBV and S. mansoni on portal pressure: Synergy or innocent bystanders? Liver Int. 2018, 38, 377. [Google Scholar] [CrossRef]
  47. Brady, O.J.; Hay, S.I. The Global Expansion of Dengue: How Aedes aegypti mosquitoes enabled the first pandemic Arbovirus. Annu. Rev. Entomol. 2020, 65, 191–208. [Google Scholar] [CrossRef]
  48. WHO. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; New Edition; WHO: Geneva, Switzerland, 2009. [Google Scholar]
  49. Rao, M.R.; Padhy, R.N.; Das, M.K. Prevalence of dengue viral and malaria parasitic co-infections in an epidemic district, Angul of Odisha, India: An eco-epidemiological and cross-sectional study for the prospective aspects of public health. J. Infect. Public Health 2016, 9, 421–428. [Google Scholar] [CrossRef] [PubMed]
  50. Khalil, S.; Mirdha, B.R.; Sinha, S.; Panda, A.; Singh, Y.; Joseph, A.; Deb, M. Intestinal parasitosis in relation to anti-retroviral therapy, CD4(+) T-cell count and diarrhea in HIV patients. Korean J. Parasitol. 2015, 53, 705–712. [Google Scholar] [CrossRef] [PubMed]
  51. Abange, W.B.; Nkenfou, C.N.; Gonsu Kamga, H.; Nguedia, C.A.; Kamgaing, N.; Lozupone, C.; Sosso, S.M.; Kamgaing, R.; Fosso, S.; Essomba, A.; et al. Intestinal parasites infections among HIV infected children under antiretrovirals rreatment in Yaounde, Cameroon. J. Trop. Pediatr. 2020, 66, 178–186. [Google Scholar] [CrossRef]
  52. Tawana, M.; Onyiche, T.E.; Ramatla, T.; Thekisoe, O. A ’One Health’ perspective of Africa-wide distribution and prevalence of Giardia species in humans, animals and waterbodies: A systematic review and meta-analysis. Parasitology 2023, 150, 769–780. [Google Scholar] [CrossRef]
  53. Abaver, D.; Nwobegahay, J.; Goon, D.; Iweriebor, B.; Anye, D. Prevalence of intestinal parasitic infections among HIV/AIDS patients from two health institutions in Abuja, Nigeria. Afr. Health Sci. 2011, 11, 24–27. [Google Scholar]
  54. Abbas, O.M.; Abdel-Rahman, M.H.; Omar, N.A.; Badran, H.M.; Amir, E.M. Interleukin-10 promoter polymorphisms in hepatitis C patients with and without Schistosoma mansoni co-infection. Liver Int. 2009, 29, 1422–1430. [Google Scholar] [CrossRef]
  55. Abbas, O.M.; Omar, N.A.; Zaghla, H.E.; Faramawi, M.F. Schistosoma mansoni coinfection could have a protective effect against mixed cryoglobulinaemia in hepatitis C patients. Liver Int. 2009, 29, 1065–1070. [Google Scholar] [CrossRef]
  56. Abillo, T.; Kassu, A. Intestinal parasite isolates in AIDS patients with chronic diarrhea in Gondar Teaching Hospital, North west Ethiopia. Ethiop. Med. J. 2005, 43, 93–96. [Google Scholar]
  57. Abossie, A.; Petros, B. Deworming and the immune status of HIV positive pre-antiretroviral therapy individuals in Arba Minch, Chencha and Gidole hospitals, Southern Ethiopia. BMC Res. Notes 2015, 8, 483. [Google Scholar] [CrossRef]
  58. Adams, V.J.; Markus, M.B.; Kwitshana, Z.L.; Dhansay, M.A.; van der Merwe, L.; Walzl, G.; Fincham, J.E. Recall of intestinal helminthiasis by HIV-infected South Africans and avoidance of possible misinterpretation of egg excretion in worm/HIV co-infection analyses. BMC Infect. Dis. 2006, 6, 88. [Google Scholar] [CrossRef]
  59. Adamu, H.; Petros, B. Intestinal protozoan infections among HIV positive persons with and without Antiretroviral Treatment (ART) in selected ART centers in Adama, Afar and Dire-Dawa, Ethiopia. Ethiop. J. Health Dev. 2009, 23. [Google Scholar] [CrossRef]
  60. Adeleke, O.A.; Yogeswaran, P.; Wright, G. Intestinal helminth infections amongst HIV-infected adults in Mthatha General Hospital, South Africa. Afr. J. Prim. Health Care Fam. Med. 2015, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
  61. Adesiji, Y.O.; Lawal, R.O.; Taiwo, S.S.; Fayemiwo, S.A.; Adeyeba, O.A. Cryptosporidiosis in HIV infected patients with diarrhoea in Osun State southwestern Nigeria. Eur. J. Gen. Med. 2007, 4, 119–122. [Google Scholar] [CrossRef]
  62. Agholi, M.; Hatam, G.R.; Motazedian, M.H. HIV/AIDS-associated opportunistic protozoal diarrhea. AIDS Res. Hum. Retroviruses 2013, 29, 35–41. [Google Scholar] [CrossRef]
  63. Ahmed, N.H.; Chowdhary, A. Pattern of co-infection by enteric pathogenic parasites among HIV sero-positive individuals in a Tertiary Care Hospital, Mumbai, India. Indian J. Sex. Transm. Dis. AIDS 2015, 36, 40–47. [Google Scholar] [CrossRef]
  64. Akinbo, F.O.; Okaka, C.E.; Omoregie, R. Prevalence of intestinal parasites in relation to CD4 counts and anaemia among HIV-infected patients in Benin City, Edo State, Nigeria. Tanzan. J. Health Res. 2011, 13, 8–13. [Google Scholar] [CrossRef]
  65. Akinbo, F.; Okaka, C.; Omoregie, R.; Igbinuwen, O.; Egbe, C. Seasonal variation of microsporidiosis among HIV-infected persons in Benin City, Nigeria. Biosci. Res. 2011, 8, 26–29. [Google Scholar]
  66. Akinbo, F.O.; Okaka, C.E.; Omoregie, R. Plasmodium falciparum and intestinal parasitic co-infections in HIV-infected patients in Benin City, Edo State, Nigeria. J. Infect. Dev. Ctries. 2012, 6, 430–435. [Google Scholar] [CrossRef]
  67. Allam, W.R.; Barakat, A.; Zakaria, Z.; Galal, G.; Abdel-Ghafar, T.S.; El-Tabbakh, M.; Mikhail, N.; Waked, I.; Abdelwahab, S.F. Schistosomiasis does not affect the outcome of HCV infection in genotype 4-infected patients. Am. J. Trop. Med. Hyg. 2014, 90, 823. [Google Scholar] [CrossRef]
  68. Amoo, J.K.; Akindele, A.A.; Amoo, A.O.J.; Efunshile, A.M.; Ojurongbe, T.A.; Fayemiwo, S.A.; Thomas, B.N.; Ojurongbe, O. Prevalence of enteric parasitic infections among people living with HIV in Abeokuta, Nigeria. Pan Afr. Med. J. 2018, 30, 66. [Google Scholar] [CrossRef]
  69. Asma, I.; Johari, S.; Sim, B.L.H.; Lim, Y.A.L. How common is intestinal parasitism in HIV-infected patients in Malaysia? Trop. Biomed. 2011, 28, 400–410. [Google Scholar] [PubMed]
  70. Assefa, S.; Erko, B.; Medhin, G.; Assefa, Z.; Shimelis, T. Intestinal parasitic infections in relation to HIV/AIDS status, diarrhea and CD4 T-cell count. BMC Infect. Dis. 2009, 9, 155. [Google Scholar] [CrossRef] [PubMed]
  71. Missaye, A.; Dagnew, M.; Alemu, A.; Alemu, A. Prevalence of intestinal parasites and associated risk factors among HIV/AIDS patients with pre-ART and on-ART attending dessie hospital ART clinic, Northeast Ethiopia. AIDS Res. Ther. 2013, 10, 7. [Google Scholar] [CrossRef]
  72. Babatunde, S.; Salami, A.; Fabiyi, J.; Agbede, O.; Desalu, O. Prevalence of intestinal parasitic infestation in HIV seropositive and seronegative patients in Ilorin, Nigeria. Ann. Afr. Med. 2010, 9, 123–128. [Google Scholar]
  73. Barcelos, N.B.; Silva, L.d.F.; Dias, R.F.G.; Menezes, H.R.d.; Rodrigues, R.M. Opportunistic and non-opportunistic intestinal parasites in HIV/AIDS patients in relation to their clinical and epidemiological status in a specialized medical service in Goiás, Brazil. Rev. Inst. Med. Trop. São Paulo 2018, 60, e13. [Google Scholar] [CrossRef]
  74. Cardoso, L.V.; Galisteu, K.J.; Schiesari Júnior, A.; Chahla, L.A.O.A.; Canille, R.M.d.S.; Belloto, M.V.T.; Franco, C.; Maia, I.L.; Rossit, A.R.B.; Machado, R.L.D. Enteric parasites in HIV-1/AIDS-infected patients from a Northwestern São Paulo reference unit in the highly active antiretroviral therapy era. Rev. Soc. Bras. Med. Trop. 2011, 44, 665–669. [Google Scholar] [CrossRef]
  75. Colombe, S.; Corstjens, P.L.; de Dood, C.J.; Miyaye, D.; Magawa, R.G.; Mngara, J.; Kalluvya, S.E.; van Lieshout, L.; van Dam, G.J.; Downs, J.A. HIV-1 viral loads are not elevated in individuals co-infected with Schistosoma spp. after adjustment for duration of HIV-1 infection. Front. Immunol. 2018, 9, 2005. [Google Scholar] [CrossRef]
  76. Costiniuk, C.T.; Cooper, C.L.; Doucette, S.; Kovacs, C.M. Parasitic disease screening among HIV patients from endemic countries in a Toronto clinic. Can. J. Infect. Dis. Med. Microbiol. 2012, 23, 23–27. [Google Scholar] [CrossRef]
  77. da Silva, C.V.; Ferreira, M.S.; Borges, A.S.; Costa-Cruz, J.M. Intestinal parasitic infections in HIV/AIDS patients: Experience at a teaching hospital in central Brazil. Scand. J. Infect. Dis. 2005, 37, 211–215. [Google Scholar] [CrossRef]
  78. Dash, M.; Padhi, S.; Panda, P.; Parida, B. Intestinal protozoans in adults with diarrhea. N. Am. J. Med. Sci. 2013, 5, 707. [Google Scholar] [CrossRef]
  79. Erikstrup, C.; Kallestrup, P.; Zinyama-Gutsire, R.; Gomo, E.; van Dam, G.J.; Deelder, A.M.; Butterworth, A.E.; Pedersen, B.K.; Ostrowski, S.R.; Gerstoft, J. Schistosomiasis and infection with human immunodeficiency virus 1 in rural Zimbabwe: Systemic inflammation during co-infection and after treatment for schistosomiasis. Am. J. Trop. Med. Hyg. 2008, 79, 331–337. [Google Scholar] [CrossRef] [PubMed]
  80. Eshetu, T.; Sibhatu, G.; Megiso, M.; Abere, A.; Baynes, H.W.; Biadgo, B.; Zeleke, A.J. Intestinal Parasitosis and Their Associated Factors among People Living with HIV at University of Gondar Hospital, Northwest-Ethiopia. Ethiop. J. Health Sci. 2017, 27, 411–420. [Google Scholar] [CrossRef] [PubMed]
  81. Fekadu, S.; Taye, K.; Teshome, W.; Asnake, S. Prevalence of parasitic infections in HIV-positive patients in southern Ethiopia: A cross-sectional study. J. Infect. Dev. Ctries. 2013, 7, 868–872. [Google Scholar] [CrossRef] [PubMed]
  82. Jegede, E.F.; Oyeyi, E.T.I.; Bichi, A.H.; Mbah, H.A.; Torpey, K. Prevalence of intestinal parasites among HIV/AIDS patients attending Infectious Disease Hospital Kano, Nigeria. Pan Afr. Med. J. 2014, 17, 295. [Google Scholar]
  83. Gaurav, D.; Vijay, A. Prevalence of intestinal parasitic infection among HIV infected patients at SRG Hospital, Jhalawar, India. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 817–824. [Google Scholar]
  84. Getaneh, A.; Alelign, D.; Abossie, A. Prevalence of opportunistic intestinal parasites and associated factors among HIV patients while receiving ART at Arba Minch Hospital in southern Ethiopia: A cross-sectional study. Ethiop. J. Health Sci. 2018, 28, 147–156. [Google Scholar]
  85. Gebretsadik, D.; Haileslasie, H.; Feleke, D.G. Intestinal parasitosis among HIV/AIDS patients who are on anti-retroviral therapy in Kombolcha, North Central, Ethiopia: A cross-sectional study. BMC Res. Notes 2018, 11, 613. [Google Scholar] [CrossRef]
  86. Guk, S.-M.; Seo, M.; Park, Y.-K.; Oh, M.-D.; Choe, K.-W.; Kim, J.-L.; Choi, M.-H.; Hong, S.-T.; Chai, J.-Y. Parasitic infections in HIV-infected patients who visited Seoul National University Hospital during the period 1995–2003. Korean J. Parasitol. 2005, 43, 1. [Google Scholar] [CrossRef]
  87. Gupta, K.; Bala, M.; Deb, M.; Muralidhar, S.; Sharma, D. Prevalence of intestinal parasitic infections in HIV-infected individuals and their relationship with immune status. Indian J. Med. Microbiol. 2013, 31, 161–165. [Google Scholar]
  88. Haileeyesus, A.; Wegayehu, T.; Petros, B. High prevalence of diarrhoegenic intestinal parasite infections among non-ART HIV patients in Fitche Hospital, Ethiopia. PLoS ONE 2013, 8, e72634. [Google Scholar]
  89. Hochberg, N.S.; Moro, R.N.; Sheth, A.N.; Montgomery, S.P.; Steurer, F.; McAuliffe, I.T.; Wang, Y.F.; Armstrong, W.; Rivera, H.N.; Lennox, J.L. High prevalence of persistent parasitic infections in foreign-born, HIV-infected persons in the United States. PLoS Negl. Trop. Dis. 2011, 5, e1034. [Google Scholar] [CrossRef] [PubMed]
  90. Idindili, B.; Jullu, B.; Hattendorft, J.; Mugusi, F.; Antelman, G.; Tanner, M. HIV and parasitic co-infections among patients seeking care at health facilities in Tanzania. Tanzan. J. Health Res. 2011, 13, 75–85. [Google Scholar] [CrossRef] [PubMed]
  91. Jaiswal, S.; Sharma, S.; Bhat, S.R.; Pokhrel, T.; Chaudhary, N.; Sharma, I. Distribution of intestinal parasite in people living with HIV/AIDS of different care centre of Pokhara Valley, Nepal. Sch. J. Appl. Med. Sci. 2014, 2, 3366–3369. [Google Scholar]
  92. Kulkarni, S.V.; Kairon, R.; Sane, S.S.; Padmawar, P.S.; Kale, V.A.; Thakar, M.R.; Mehendale, S.M.; Risbud, A.R. Opportunistic parasitic infections in HIV/AIDS patients presenting with diarrhoea by the level of immunesuppression. Indian J. Med. Res. 2009, 130, 63–66. [Google Scholar]
  93. Kallestrup, P.; Zinyama, R.; Gomo, E.; Butterworth, A.E.; van Dam, G.J.; Erikstrup, C.; Ullum, H. Schistosomiasis and HIV-1 infection in rural Zimbabwe: Implications of coinfection for excretion of eggs. J. Infect. Dis. 2005, 191, 1311–1320. [Google Scholar] [CrossRef]
  94. Kawai, K.; Saathoff, E.; Antelman, G.; Msamanga, G.; Fawzi, W.W. Geophagy (Soil-eating) in relation to Anemia and Helminth infection among HIV-infected pregnant women in Tanzania. Am. J. Trop. Med. Hyg. 2009, 80, 36–43. [Google Scholar] [CrossRef]
  95. Kipyegen, C.K.; Shivairo, R.S.; Odhiambo, R.O. Prevalence of intestinal parasites among HIV patients in Baringo, Kenya. Pan Afr. Med. J. 2012, 13, 37. [Google Scholar]
  96. Kroidl, I.; Saathof, E.; Maganga, L.; Clowes, P.; Maboko, L.; Hoerauf, A.; Makunde, W.H.; Haule, A.; Mviombo, P.; Pitter, B.; et al. Prevalence of Lymphatic Filariasis and Treatment Effectiveness of Albendazole/Ivermectin in Individuals with HIV Co-infection in Southwest-Tanzania. PLoS Negl. Trop. Dis. 2016, 10, e0004618. [Google Scholar] [CrossRef]
  97. Kurniawan, A.; Karyadi, T.; Dwintasari, S.; Sari, I.P.; Yunihastuti, E.; Djauzi, S.; Smith, H. Intestinal parasitic infections in HIV/AIDS patients presenting with diarrhoea in Jakarta, Indonesia. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 892–898. [Google Scholar] [CrossRef]
  98. Lar, P.; Pam, V.; Ayegba, J.; Zumbes, H. Prevalence and distribution of intestinal parasite infections in HIV seropositive individuals on antiretroviral therapy in Vom, Plateau State Nigeria. Afr. J. Clin. Exp. Microbiol. 2016, 17, 18–24. [Google Scholar] [CrossRef]
  99. Lehman, L.G.; Kangam, L.; Mbenoun, M.-L.; Nguepi, E.Z.; Essomba, N.; Tonga, C.; Bilong, C.F.B. Intestinal parasitic and candida infection associated with HIV infection in Cameroon. J. Infect. Dev. Ctries. 2013, 7, 137–143. [Google Scholar] [CrossRef] [PubMed]
  100. Loffredo-Verde, E.; Abdel-Aziz, I.; Albrecht, J.; El-Guindy, N.; Yacob, M.; Solieman, A.; Protzer, U.; Busch, D.H.; Layland, L.E.; Prazeres da Costa, C.U. Schistosome infection aggravates HCV-related liver disease and induces changes in the regulatory T-cell phenotype. Parasite Immunol. 2015, 37, 97–104. [Google Scholar] [CrossRef] [PubMed]
  101. Mahmud, M.A.; Bezabih, A.M.; Gebru, R.B. Risk factors for intestinal parasitosis among antiretroviral-treated HIV/AIDS patients in Ethiopia. Int. J. STD AIDS 2014, 25, 778–784. [Google Scholar] [CrossRef] [PubMed]
  102. Marti, A.I.; Colombe, S.; Masikini, P.J.; Kalluvya, S.E.; Smart, L.R.; Wajanga, B.M.; Jaka, H.; Peck, R.N.; Downs, J.A. Increased hepatotoxicity among HIV-infected adults co-infected with Schistosoma mansoni in Tanzania: A cross-sectional study. PLoS Negl. Trop. Dis. 2017, 11, e0005867. [Google Scholar] [CrossRef]
  103. Mariam, Z.T.; Abebe, G.; Mulu, A. Opportunistic and other intestinal parasitic infections in AIDS patients, HIV seropositive healthy carriers and HIV seronegative individuals in southwest Ethiopia. East Afr. J. Public Health 2008, 5, 169–173. [Google Scholar]
  104. Mascarello, M.; Gobbi, F.; Angheben, A.; Gobbo, M.; Gaiera, G.; Pegoraro, M.; Lanzafame, M.; Buonfrate, D.; Concia, E.; Bisoffi, Z. Prevalence of Strongyloides stercoralis infection among HIV-positive immigrants attending two Italian hospitals, from 2000 to 2009. Ann. Trop. Med. Parasitol. 2011, 105, 617–623. [Google Scholar] [CrossRef]
  105. Mathur, M.K.; Verma, A.K.; Makwana, G.E.; Sinha, M. Study of opportunistic intestinal parasitic infections in human immunodeficiency virus/acquired immunodeficiency syndrome patients. J. Glob. Infect. Dis. 2013, 5, 164. [Google Scholar] [CrossRef]
  106. Mazigo, H.D.; Dunne, D.W.; Morona, D.; Kinung’hi, S.M.; Nuwaha, F. Comparison of HIV-1 viral loads, CD4-Th2-lymphocytes and effects of praziquantel treatment among adults infected or uninfected with Schistosoma mansoni in fishing villages of north-western Tanzania. Tanzan. J. Health Res. 2016, 17. [Google Scholar] [CrossRef]
  107. Meamar, A.R.; Rezaian, M.; Mohraz, M.; Hadighi, R.; Kia, E.B. Strongyloides stercoralis hyper-infection syndrome in HIV+/AIDS patients in Iran. Parasitol. Res. 2007, 101, 663–665. [Google Scholar] [CrossRef]
  108. Mehta, K.D.; Vacchani, A.; Mistry, M.M.; Kavathia, G.U.; Goswami, Y.S. To study the prevalence of various enteric parasitic infections among HIV infected individuals in the PDU Medical College and Hospital, Rajkot, Gujarat, India. J. Clin. Diagn. Res. JCDR 2013, 7, 58. [Google Scholar]
  109. Minti, P.; Code, Q. Intestinal parasitic infections in HIV-1 sero-positive individuals and its correlation with CD4 cell count in a tertiary care teaching hospital, Gujarat. Int. J. Biomed. Adv. Res. 2017, 8, 174–178. [Google Scholar]
  110. Mkhize, B.T.; Mabaso, M.; Mamba, T.; Napier, C.E.; Mkhize-Kwitshana, Z.L. The Interaction between HIV and intestinal helminth parasites coinfection with nutrition among adults in KwaZulu-Natal, South Africa. Biomed. Res. Int. 2017, 2017, 9059523. [Google Scholar] [CrossRef] [PubMed]
  111. Modjarrad, K.; Zulu, I.; Redden, D.T.; Njobvu, L.; Freedman, D.O.; Vermund, S.H. Prevalence and predictors of intestinal helminth infections among human immunodeficiency virus type 1-infected adults in an urban African setting. Am. J. Trop. Med. Hyg. 2005, 73, 777–782. [Google Scholar] [CrossRef]
  112. Modjarrad, K.; Zulu, I.; Redden, D.T.; Njobvu, L.; Lane, H.C.; Bentwich, Z.; Vermund, S.H. Treatment of intestinal helminths does not reduce plasma concentrations of HIV-1 RNA in coinfected Zambian adults. J. Infect. Dis. 2005, 192, 1277–1283. [Google Scholar] [CrossRef]
  113. Moges, F.; Kebede, Y.; Kassu, A.; Degu, G.; Tiruneh, M.; Gedefaw, M. Infection with HIV and intestinal parasites among street dwellers in Gondar city, northwest Ethiopia. Jpn. J. Infect. Dis. 2006, 59, 400–403. [Google Scholar] [CrossRef]
  114. Morawski, B.M.; Yunus, M.; Kerukadho, E.; Turyasingura, G.; Barbra, L.; Ojok, A.M.; DiNardo, A.R.; Sowinski, S.; Boulware, D.R.; Mejia, R. Hookworm infection is associated with decreased CD4+ T cell counts in HIV-infected adult Ugandans. PLoS Negl. Trop. Dis. 2017, 11, e0005634. [Google Scholar] [CrossRef]
  115. Mtapuri-Zinyowera, S.; Ruhanya, V.; Midzi, N.; Berejena, C.; Chin’ombe, N.; Nziramasanga, P.; Nyandoro, G.; Mduluza, T. Human parasitic protozoa in drinking water sources in rural Zimbabwe and their link to HIV infection. Germs 2014, 4, 86. [Google Scholar] [CrossRef]
  116. Navarro-i-Martinez, L.; da Silva, A.J.; Botero Garces, J.H.; Montoya Palacio, M.N.; del Aguila, C.; Bornay-Llinares, F.J. Cryptosporidiosis in HIV-positive patients from Medellín, Colombia. J. Eukaryot. Microbiol. 2006, 53, S37–S39. [Google Scholar] [CrossRef]
  117. Ndhlovu, P.D.; Mduluza, T.; Kjetland, E.F.; Midzi, N.; Nyanga, L.; Gundersen, S.G.; Friis, H.; Gomo, E. Prevalence of urinary schistosomiasis and HIV in females living in a rural community of Zimbabwe: Does age matter? Trans. R. Soc. Trop. Med. Hyg. 2007, 101, 433–438. [Google Scholar] [CrossRef]
  118. Nielsen, N.O.; Friis, H.; Magnussen, P.; Krarup, H.; Magesa, S.; Simonsen, P.E. Co-infection with subclinical HIV and Wuchereria bancrofti, and the role of malaria and hookworms, in adult Tanzanians: Infection intensities, CD4/CD8 counts and cytokine responses. Trans. R. Soc. Trop. Med. Hyg. 2007, 101, 602–612. [Google Scholar] [CrossRef]
  119. Nsagha, D.S.; Njunda, A.L.; Assob, N.J.C.; Ayima, C.W.; Tanue, E.A.; Kibu, O.D.; Kwenti, T.E. Intestinal parasitic infections in relation to CD4(+) T cell counts and diarrhea in HIV/AIDS patients with or without antiretroviral therapy in Cameroon. BMC Infect. Dis. 2016, 16, 9. [Google Scholar] [CrossRef] [PubMed]
  120. Nuhu, A.; Umar, A.I.; Abdulrazak, M.; Kabiru, G.; Keh, E.I.; Garba, I. Intestinal parasitic infestation among HIV seropositive and HIV seronegative patients attending Usmanu Danfodiyo University Teaching Hospital Sokoto, Nigeria. Niger. J. Basic Appl. Sci. 2014, 22, 107–110. [Google Scholar]
  121. Oguntibeju, O.O. Prevalence of Intestinal Parasites In HIV-Positive/AIDS Patients. Malays. J. Med. Sci. 2006, 13, 68–73. [Google Scholar]
  122. Ojurongbe, O.; Raji, O.A.; Akindele, A.A.; Kareem, M.I.; Adefioye, O.A.; Adeyeba, A.O. Cryptosporidium and other enteric parasitic infections in HIV-seropositive individuals with and without diarrhoea in Osogbo, Nigeria. Br. J. Biomed. Sci. 2011, 68, 75–78. [Google Scholar] [CrossRef]
  123. Orji, M.L.; Onyire, N.B.; Ibe, B.C.; Ibekwe, R. Effect of Helminth infestationin children infected with human immunodeficiency virus (HIV). J. Nepal Paediatr. Soc. 2017, 37, 25–30. [Google Scholar] [CrossRef]
  124. Oyedeji, O.A.; Adejuyigbe, E.; Oninla, S.O.; Akindele, A.A.; Adedokun, S.A.; Agelebe, E. Intestinal parasitoses in HIV infected children in a Nigerian Tertiary Hospital. J. Clin. Diagn. Res. JCDR 2015, 9, SC01. [Google Scholar] [CrossRef]
  125. Paboriboune, P.; Phoumindr, N.; Borel, E.; Sourinphoumy, K.; Phaxayaseng, S.; Luangkhot, E.; Sengphilom, B.; Vansilalom, Y.; Odermatt, P.; Delaporte, E. Intestinal parasitic infections in HIV-infected patients, Lao People’s Democratic Republic. PLoS ONE 2014, 9, e91452. [Google Scholar] [CrossRef]
  126. Pavie, J.; Menotti, J.; Porcher, R.; Donay, J.L.; Gallien, S.; Sarfati, C.; Derouin, F.; Molina, J.-M. Prevalence of opportunistic intestinal parasitic infections among HIV-infected patients with low CD4 cells counts in France in the combination antiretroviral therapy era. Int. J. Infect. Dis. 2012, 16, e677–e679. [Google Scholar] [CrossRef]
  127. Pennap, G.R.; Ajegena, S.; Dodo, U. Intestinal Parasitosis among HIV Positive Patients Accessing Healthcare in a Medical Centre in Norhtern Nigeria. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 768–776. [Google Scholar]
  128. Pinlaor, S.; Mootsikapun, P.; Pinlaor, P.; Pipitgool, V.; Tuangnadee, R. Detection of opportunistic and non-opportunistic intestinal parasites and liver flukes in HIV-positive and HIV-negative subjects. Southeast Asian J. Trop. Med. Public Health 2005, 36, 841. [Google Scholar]
  129. Plumelle, Y. Eosinophils in HIV Patients Co-Infected by HTLV-1 and/or Strongyloïdes stercoralis: Protective or Harmful Depending on HIV Infection Stage. J. AIDS Clin. Res. 2015, 6. [Google Scholar] [CrossRef]
  130. Ramakrishnan, K.; Shenbagarathai, R.; Uma, A.; Kavitha, K.; Rajendran, R.; Thirumalaikolundu Subramanian, P. Prevalence of intestinal parasitic infestation in HIV/AIDS patients with diarrhea in Madurai City, South India. Jpn. J. Infect. Dis. 2007, 60, 209–210. [Google Scholar] [CrossRef] [PubMed]
  131. Ramana, K.; Prakash, K.; Mohanty, S. A study of opportunistic parasitic infections and CD4 counts in HIV-seropositive individuals in Narketpally, South India. Ann. Trop. Med. Public Health 2010, 3, 49. [Google Scholar] [CrossRef]
  132. Raytekar, N.A.; Saini, S.; Deorukhkar, S. Intestinal parasitic prevalence in human immunodeficiency virus infected patients with and without diarrhoea and its association with CD4+ T-cells counts. Int. J. Biomed. Adv. Res. 2012, 3, 853–857. [Google Scholar] [CrossRef]
  133. Ringo, T.A.; Ernest, A.; Kamala, B.; Mpondo, B.C. Intestinal parasitic infections and the level of immunosuppression in HIV seropositive individuals with diarrhoea in Kilimanjaro, Tanzania: A crosssectional study. South Sudan Med. J. 2015, 8, 52–56. [Google Scholar]
  134. Rodrigues Bachur, T.P.R.; Vale, J.M.; Coêlho, I.C.B.; Queiroz, T.R.B.S.d.; Chaves, C.d.S. Enteric parasitic infections in HIV/AIDS patients before and after the highly active antiretroviral therapy. Braz. J. Infect. Dis. 2008, 12, 115–122. [Google Scholar]
  135. Roka, M.; Goñi, P.; Rubio, E.; Clavel, A. Prevalence of intestinal parasites in HIV-positive patients on the island of Bioko, Equatorial Guinea: Its relation to sanitary conditions and socioeconomic factors. Sci. Total Environ. 2012, 432, 404–411. [Google Scholar] [CrossRef]
  136. Roka, M.; Goñi, P.; Rubio, E.; Clavel, A. Intestinal parasites in HIV-seropositive patients in the Continental Region of Equatorial Guinea: Its relation with socio-demographic, health and immune systems factors. Trans. R. Soc. Trop. Med. Hyg. 2013, 107, 502–510. [Google Scholar] [CrossRef]
  137. Saksirisampant, W.; Prownebon, J.; Saksirisampant, P.; Mungthin, M.; Siripatanapipong, S.; Leelayoova, S. Intestinal parasitic infections: Prevalences in HIV/AIDS patients in a Thai AIDS-care centre. Ann. Trop. Med. Parasitol. 2009, 103, 573–581. [Google Scholar] [CrossRef]
  138. Samie, A.; Makuwa, S.; Mtshali, S.; Potgieter, N.; Thekisoe, O.; Mbati, P.; Bessong, P.O. Parasitic infection among HIV/AIDS patients at Bela-Bela clinic, Limpopo province, South Africa with special reference to Cryptosporidium. Southeast Asian J. Trop. Med. Public Health 2014, 45, 783. [Google Scholar]
  139. Sanyaolu, A.O.; Oyibo, W.A.; Fagbenro-Beyioku, A.F.; Gbadegeshin, A.H.; Iriemenam, N.C. Comparative study of entero-parasitic infections among HIV sero-positive and sero-negative patients in Lagos, Nigeria. Acta Trop. 2011, 120, 268–272. [Google Scholar] [CrossRef] [PubMed]
  140. Sherpa, U.; Devi, K.; Bhagyapati, S.; Devi, K.S.; Singh, N.B. Opportunistic intestinal parasitic infections in individuals with HIV/AIDS in RIMS Hospital. JMS 2010, 24, 8–11. [Google Scholar]
  141. Shimelis, T.; Tassachew, Y.; Lambiyo, T. Cryptosporidium and other intestinal parasitic infections among HIV patients in southern Ethiopia: Significance of improved HIV-related care. Parasites Vectors 2016, 9, 270. [Google Scholar] [CrossRef]
  142. Smith, C.; Smith, H.; Seaton, R.A.; Fox, R. Seroprevalence of schistosomiasis in African patients infected with HIV. HIV Med. 2008, 9, 436–439. [Google Scholar] [CrossRef]
  143. Jain, S.; Singh, A.K.; Singh, R.P.; Bajaj, J.; Damle, A.S. Spectrum of opportunistic and other parasites among HIV/AIDS patients attending a tertiary care hospital. Asian Pac. J. Trop. Dis. 2014, 4, 480–483. [Google Scholar] [CrossRef]
  144. Suryawanshi, M.; Kalshetti, V.; Telele, K.; Wadile, R.; Haswani, N.; AHIRE, K. The Intestinal Parasitic Infections and the CD4 Counts in HIV Seropositive Individuals in the Dhule District in Maharashra, India. J. Clin. Diagn. Res. 2012, 6, 1207–1209. [Google Scholar]
  145. Talaat, K.R.; Babu, S.; Menon, P.; Kumarasamy, N.; Sharma, J.; Arumugam, J.; Dhakshinamurthy, K.; Srinivasan, R.; Poongulali, S.; Gu, W. Treatment of W. bancrofti (Wb) in HIV/Wb coinfections in South India. PLoS Negl. Trop. Dis. 2015, 9, e0003622. [Google Scholar] [CrossRef]
  146. Talaat, K.R.; Kumarasamy, N.; Swaminathan, S.; Gopinath, R.; Nutman, T.B. Filarial/human immunodeficiency virus coinfection in urban southern India. Am. J. Trop. Med. Hyg. 2008, 79, 558. [Google Scholar] [CrossRef]
  147. Hailegebriel, T.; Petros, B.; Endeshaw, T. Evaluation of Parasitological Methods for the Detection of Strongyloides Stercoralis among Individuals in Selected Health Institutions In Addis Ababa, Ethiopia. Ethiop. J. Health Sci. 2017, 27, 515–522. [Google Scholar] [CrossRef]
  148. Tian, L.-G.; Chen, J.-X.; Wang, T.-P.; Cheng, G.-J.; Steinmann, P.; Wang, F.-F.; Cai, Y.-C.; Yin, X.-M.; Guo, J.; Zhou, L. Co-infection of HIV and intestinal parasites in rural area of China. Parasites Vectors 2012, 5, 1–7. [Google Scholar] [CrossRef]
  149. Tian, L.-G.; Wang, T.-P.; Lv, S.; Wang, F.-F.; Guo, J.; Yin, X.-M.; Cai, Y.-C.; Dickey, M.K.; Steinmann, P.; Chen, J.-X. HIV and intestinal parasite co-infections among a Chinese population: An immunological profile. Infect. Dis. Poverty 2013, 2, 1–9. [Google Scholar] [CrossRef] [PubMed]
  150. Tigist, G.; Fantahun, E.; Hailu, E.; Kibe, H.; Fesseha, O.; Godana, W. Prevalence of intestinal parasitosis among HIV/AIDS patients attending ART clinic of Arbaminch Hospital. Afr. J. Sci. Res. 2015, 4, 13–17. [Google Scholar]
  151. Tiwari, B.R.; Ghimire, P.; Malla, S.; Sharma, B.; Karki, S. Intestinal parasitic infection among the HIV-infected patients in Nepal. J. Infect. Dev. Ctries. 2013, 7, 550–555. [Google Scholar] [CrossRef]
  152. Tuli, L.; Gulati, A.K.; Sundar, S.; Mohapatra, T.M. Correlation between CD4 counts of HIV patients and enteric protozoan in different seasons—An experience of a tertiary care hospital in Varanasi (India). BMC Gastroenterol. 2008, 8, 36. [Google Scholar] [CrossRef]
  153. Vouking, M.Z.; Enoka, P.; Tamo, C.V.; Tadenfok, C.N. Prevalence of intestinal parasites among HIV patients at the Yaoundé Central Hospital, Cameroon. Pan Afr. Med. J. 2014, 18, 136. [Google Scholar] [CrossRef]
  154. VyaS, N.; Sood, S.; SharMa, B. The prevalence of intestinal parasitic infestation and the related profile of the CD4+ counts in HIV/AIDS people with diarrhoea in Jaipur city. J. Clin. Diagn. Res. JCDR 2013, 7, 454. [Google Scholar] [CrossRef]
  155. Wanyiri, J.W.; Kanyi, H.; Maina, S.; Wang, D.E.; Ngugi, P.; O’Connor, R.; Kamau, T.; Waithera, T.; Kimani, G.; Wamae, C.N.; et al. Infectious diarrhoea in antiretroviral therapy-naive HIV/AIDS patients in Kenya. Trans. R. Soc. Trop. Med. Hyg. 2013, 107, 631–638. [Google Scholar] [CrossRef]
  156. Wumba, R.; Longo-Mbenza, B.; Mandina, M.; Wobin, T.O.; Biligui, S.; Sala, J.; Breton, J.; Thellier, M. Intestinal parasites infections in hospitalized AIDS patients in Kinshasa, Democratic Republic of Congo. Parasite 2010, 17, 321–328. [Google Scholar] [CrossRef]
  157. Wumba, R.; Longo-Mbenza, B.; Menotti, J.; Mandina, M.; Kintoki, F.; Situakibanza, N.H.; Kakicha, M.K.; Zanga, J.; Mbanzulu-Makola, K.; Nseka, T.; et al. Epidemiology, clinical, immune, and molecular profiles of microsporidiosis and cryptosporidiosis among HIV/AIDS patients. Int. J. Gen. Med. 2012, 5, 603–611. [Google Scholar] [CrossRef]
  158. Xiao, P.-L.; Zhou, Y.-B.; Chen, Y.; Yang, Y.; Shi, Y.; Gao, J.-C.; Yihuo, W.-L.; Song, X.-X.; Jiang, Q.-W. Prevalence and risk factors of Ascaris lumbricoides (Linnaeus, 1758), Trichuris trichiura (Linnaeus, 1771) and HBV infections in Southwestern China: A community-based cross sectional study. Parasites Vectors 2015, 8, 661. [Google Scholar] [CrossRef]
  159. Gebrecherkos, T.; Kebede, H.; Gelagay, A.A. Intestinal parasites among HIV/AIDS patients attending University of Gondar Hospital, northwest Ethiopia. Ethiop. J. Health Dev. 2019, 33, 64–72. [Google Scholar]
  160. Kaneshiro, Y.; Sourinphoumy, K.; Imaizumi, N.; Rasaphon, M.; Kuba-Miyara, M.; Sakihama, S.; Guerrero, C.L.H.; Nhativong, K.; Nonaka, D.; Pongvongsa, T.; et al. Intestinal helminth infections in HIV-infected patients in Savannakhet after establishment of an HIV registration network in Lao People’s Democratic Republic. Trop. Med. Health 2019, 47, 14. [Google Scholar] [CrossRef] [PubMed]
  161. Sannella, A.R.; Suputtamongkol, Y.; Wongsawat, E.; Cacciò, S.M. A retrospective molecular study of Cryptosporidium species and genotypes in HIV-infected patients from Thailand. Parasites Vectors 2019, 12, 91. [Google Scholar] [CrossRef]
  162. Alemayehu, E.; Gedefie, A.; Adamu, A.; Mohammed, J.; Kassanew, B.; Kebede, B.; Belete, M.A. Intestinal parasitic infections among hiv-infected patients on antiretroviral therapy attending debretabor general hospital, Northern Ethiopia: A cross-sectional study. HIV/AIDS Res. Palliat. Care 2020, 12, 647–655. [Google Scholar] [CrossRef]
  163. Belay, A.; Ashagrie, M.; Seyoum, B.; Alemu, M.; Tsegaye, A. Prevalence of enteric pathogens, intestinal parasites and resistance profile of bacterial isolates among HIV infected and non-infected diarrheic patients in Dessie Town, Northeast Ethiopia. PLoS ONE 2020, 15, e0243479. [Google Scholar] [CrossRef]
  164. Chhangte, M.Z.; Koticha, A.; Ingole, N.; Mehta, P. Prevalence of Intestinal Parasites in HIV Seropositive Patients Attending an Integrated Counselling and Testing Centre. J. Evol. Med. Dent. Sci. JEMDS 2020, 9, 919–923. [Google Scholar] [CrossRef]
  165. Lengongo, J.V.K.; Ngondza, B.P.; Ditombi, B.M.; M’Bondoukwé, N.P.; Ngomo, J.M.N.; Delis, A.M.; Lekounga, P.B.; Bouyou-Akotet, M.; Mawili-Mboumba, D.P. Prevalence and associated factors of intestinal parasite infection by HIV infection status among asymptomatic adults in rural Gabon. Afr. Health Sci. 2020, 20, 1024–1034. [Google Scholar] [CrossRef]
  166. McLellan, J.; Gill, M.J.; Vaughan, S.; Meatherall, B. Schistosoma and Strongyloides screening in migrants initiating HIV Care in Canada: A cross sectional study. BMC Infect. Dis. 2020, 20, 76. [Google Scholar] [CrossRef]
  167. Namaji, M.; Pathan, S.H.; Balki, A.M. Profile of intestinal parasitic infections in human immunodeficiency virus/acquired immunodeficiency syndrome patients in Northeast India. Indian J. Sex. Transm. Dis. AIDS 2020, 41, 93–96. [Google Scholar] [CrossRef]
  168. Rabiu, O.R.; Dada-Adegbola, H.; Falade, C.O.; Arinola, O.G.; Odaibo, A.B.; Ademowo, O.G. Malaria, Helminth Infections and Clinical Status Among HIV-Infected Pregnant Women. Int. J. MCH AIDS 2021, 10, 81–87. [Google Scholar] [CrossRef]
  169. Botero-Garces, J.; Villegas-Arbelaez, E.; Giraldo, S.; Uran-Velasquez, J.; Arias-Agudelo, L.; Alzate-Angell, J.C.; Garcia-Montoya, G.M.; Galvan-Diaz, A.L. Prevalence of intestinal parasites in a cohort of HIV-infected patients from Antioquia, Colombia. Biomedica 2021, 41, 153–164. [Google Scholar] [CrossRef]
  170. Bayleyegn, B.; Woldu, B.; Yalew, A.; Kasew, D.; Asrie, F. Prevalence of intestinal parasitic infection and associated factors among HAART initiated children attending at university of gondar comprehensive specialized hospital, northwest Ethiopia. HIV/AIDS Res. Palliat. Care 2021, 13, 81–90. [Google Scholar] [CrossRef]
  171. Betancourth, S.; Archaga, O.; Moncada, W.; Rodríguez, V.; Fontecha, G. First molecular characterization of cryptosporidium spp. in patients living with HIV in honduras. Pathogens 2021, 10, 336. [Google Scholar] [CrossRef]
  172. Feleke, D.G.; Ali, A.; Bisetegn, H.; Andualem, M. Intestinal parasitic infections and associated factors among people living with HIV attending Dessie Referral Hospital, Dessie town, North-east Ethiopia: A cross-sectional study. AIDS Res. Ther. 2022, 19, 19. [Google Scholar] [CrossRef]
  173. Miressa, R.; Dufera, M. Prevalence and predisposing factors of intestinal parasitic infections among HIV positive patients visiting nekemte specialized hospital, western ethiopia. HIV/AIDS Res. Palliat. Care 2021, 13, 505–512. [Google Scholar] [CrossRef]
  174. Chandi, D.H.; Lakhani, S.J. Intestinal parasite infestation in HIV infected patients in tertiary care center. J. Pure Appl. Microbiol. 2021, 15, 1602–1607. [Google Scholar] [CrossRef]
  175. Ajayi, O.T.; Makanjuola, O.B.; Olayinka, A.T.; Olorukooba, A.; Olofu, J.E.; Nguku, P.; Fawole, O.I. Predictors of intestinal parasite infection among HIV patients on antiretroviral therapy in Jos, Plateau State, Nigeria, 2016: A cross-sectional survey. Pan Afr. Med. J. 2021, 38, 306. [Google Scholar] [CrossRef]
  176. Talukder, M.R.; Pham, H.; Woodman, R.; Wilson, K.; Taylor, K.; Kaldor, J.; Einsiedel, L. The Association between Diabetes and Human T-Cell Leukaemia Virus Type-1 (HTLV-1) with Strongyloides stercoralis: Results of a Community-Based, Cross-Sectional Survey in Central Australia. Int. J. Environ. Res. Public Health 2022, 19, 2084. [Google Scholar] [CrossRef]
  177. Barreto, N.; Farias, M.M.B.; Oliveira, C.D.; Araujo, W.A.C.; Grassi, M.F.R.; de Souza, J.N.; Jacobina, B.S.; Teixeira, M.C.A.; Galvao-Castro, B.; Soares, N.M. Evaluation of Strongyloides stercoralis infection in HTLV-1 patients. Biomedica 2022, 42, 31–40. [Google Scholar] [CrossRef]
  178. Wolday, D.; Ndungu, F.M.; Gomez-Perez, G.P.; de Wit, T.F.R. Chronic Immune Activation and CD4(+) T Cell Lymphopenia in Healthy African Individuals: Perspectives for SARS-CoV-2 Vaccine Efficacy. Front. Immunol. 2021, 12, 693269. [Google Scholar] [CrossRef]
  179. Purbey, M.; Singh, A.; Kumari, S.; Banerjee, T. High carriage rate of intestinal parasites among asymptomatic HIV-seropositive individuals on antiretroviral therapy attending the tertiary care hospital in Varanasi, India. Indian J. Sex. Transm. Dis. AIDS 2021, 42, 101–105. [Google Scholar] [CrossRef] [PubMed]
  180. Uzairue, L.I.; Oghena, M.; Ikede, R.E.; Aguda, O.N.; Adebisi, Y.A.; Lucero-Prisno, D.E., III. Prevalence, risk factors and impact of cellular immunity on intestinal parasitosis among people living with HIV at Auchi, Edo State, Nigeria. Int. J. STD AIDS 2021, 32, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
  181. PrayGod, G.; Filteau, S.; Range, N.; Ramaiya, K.; Jeremiah, K.; Rehman, A.M.; Krogh-Madsen, R.; Friis, H.; Faurholt-Jepsen, D. The association of Schistosoma and geohelminth infections with β-cell function and insulin resistance among HIV-infected and HIV-uninfected adults: A cross-sectional study in Tanzania. PLoS ONE 2022, 17, e0262860. [Google Scholar] [CrossRef]
  182. Abdollahi, A.; Saffar, H.; Saffar, H.; Sheikhbahaei, S.; Rasoulinejad, M. Is the evaluation of Entamoeba histolytica infection in HIV-positive patients of any clinical significance? Acta Med. Iran. 2015, 53, 46–50. [Google Scholar]
  183. Abdollahi, A.; Shoar, S.; Sheikhbahaei, S.; Jafari, S. Sero-prevalence of cytomegalovirus and Toxoplasma infections among newly diagnosed HIV patients in Iran, assessing the correlation with cd4+ cell counts. Iran. J. Pathol. 2013, 8, 81–88. [Google Scholar]
  184. Adamu, H.; Petros, B.; Zhang, G.; Kassa, H.; Amer, S.; Ye, J.; Feng, Y.; Xiao, L. Distribution and clinical manifestations of Cryptosporidium species and subtypes in HIV/AIDS patients in Ethiopia. PLoS Negl. Trop. Dis. 2014, 8, e2831. [Google Scholar] [CrossRef]
  185. Addebbous, A.; Adarmouch, L.; Tali, A.; Laboudi, M.; Amine, M.; Aajly, L.; Rhajaoui, M.; Chabaa, L.; Zougaghi, L. IgG anti-Toxoplasma antibodies among asymptomatic HIV-infected patients in Marrakesh-Morocco. Acta Trop. 2012, 123, 49–52. [Google Scholar] [CrossRef]
  186. Adu-Gyasi, D.; Fanello, C.I.; Baiden, F.; Porter, J.D.; Korbel, D.; Adjei, G.; Mahama, E.; Manu, A.; Asante, K.P.; Newton, S. Prevalence of clinically captured and confirmed malaria among HIV seropositve clinic attendants in five hospitals in Ghana. Malar. J. 2013, 12, 1–7. [Google Scholar] [CrossRef]
  187. Aghaee, R.; Saki, S.S.; Didehdar, M.; Hajihossein, R.; Eslamirad, Z. Epidemiologic evaluation of toxoplasmosis and leading risk factors in HIV/AIDS patients in Arak City, Iran. Australas. Med. J. 2017, 10, 865–869. [Google Scholar] [CrossRef]
  188. Ajjampur, S.R.; Asirvatham, J.; Muthusamy, D.; Gladstone, B.; Abraham, O.; Mathai, D.; Ward, H.; Wanke, C.; Kang, G. Clinical features & risk factors associated with cryptosporidiosis in HIV infected adults in India. Indian J. Med. Res. 2007, 126, 553. [Google Scholar]
  189. Akinbo, F.O.; Anate, P.J.; Akinbo, D.B.; Omoregie, R.; Okoosi, S.; Abdulsalami, A.; Isah, B. Prevalence of malaria among HIV patients on highly active antiretroviral therapy in Kogi State, North Central Nigeria. Ann. Niger. Med. 2016, 10, 11–15. [Google Scholar] [CrossRef]
  190. Akinbo, F.O.; Okaka, C.E.; Omoregie, R. Prevalence of intestinal parasitic infections among HIV patients in Benin City, Nigeria. Libyan J. Med. 2010, 5, 5506. [Google Scholar] [CrossRef] [PubMed]
  191. Ako-Nai, A.K.; Ebhodaghe, B.I.; Osho, P.O.; Adejuyigbe, E.A.; Adeyemi, F.M.; Ikuomola, A.A.; Kassim, O.O. The epidemiology of HIV seropositive malaria infected pregnant women in Akure Metropolis, Southwestern Nigeria. Ann. Trop. Med. Public Health 2013, 6, 519. [Google Scholar] [CrossRef]
  192. Alavi, S.M.; Jamshidian, R.; Salmanzadeh, S. Comparative study on toxoplasma serology among HIV positive and HIV negative illicit drug users in Ahvaz, Iran. Casp. J. Intern. Med. 2013, 4, 781. [Google Scholar]
  193. Alberto Velasco, C.; Méndez, F.; López, P. Cryptosporidiosis in Colombian children with HIV/AIDS infection. Colomb. Méd. 2011, 42, 418–429. [Google Scholar] [CrossRef]
  194. de Cavalcanti, A.A.T.; Medeiros, Z.; Lopes, F.; Andrade, L.D.d.; Ferreira, V.d.M.; Magalhães, V.; Miranda-Filho, D.d.B. Diagnosing visceral leishmaniasis and HIV/AIDS co-infection: A case series study in Pernambuco, Brazil. Rev. Inst. Med. Trop. São Paulo 2012, 54, 43–47. [Google Scholar] [CrossRef]
  195. Almeida, E.A.; Lima, J.N.; Lages-Silva, E.; Guariento, M.E.; Aoki, F.H.; Torres-Morales, A.E.; Pedro, R.J. Chagas’ disease and HIV co-infection in patients without effective antiretroviral therapy: Prevalence, clinical presentation and natural history. Trans. R. Soc. Trop. Med. Hyg. 2010, 104, 447–452. [Google Scholar] [CrossRef]
  196. Amuta, E.; Amali, O.; Jacob, S.; Houmsou, R. Toxoplasma gondii IgG antibodies in HIV/AIDS patients attending hospitals in Makurdi metropolis, Benue state, Nigeria. Int. J. Med. Biomed. Res. 2012, 1, 186–192. [Google Scholar] [CrossRef]
  197. Amuta, E.U.; Houmsou, R.S.; Diya, A.W. Malarial infection among HIV patients on antiretroviral therapy (ART) and not on ART: A case study of Federal Medical Centre Makurdi, Benue State, Nigeria. Asian Pac. J. Trop. Dis. 2012, 2, s378–s381. [Google Scholar] [CrossRef]
  198. Angal, L.; Lim, Y.; Yap, N.; Ngui, R.; Amir, A.; Kamarulzaman, A.; Rohela, M. Toxoplasmosis in HIV and non HIV prisoners in Malaysia. Trop. Biomed. 2016, 33, 159–169. [Google Scholar]
  199. Hailu, A.; Negashe, K.; Tasew, A.; Getachew, M.; Sisay, T.; Jibat, T.; Fekadu, D. Sero-prevalence, and associated risk factors of Toxoplasma gondii infection in pregnant women and HIV/AIDS patients in selected cities of Ethiopia. Banat. J. Biotechnol. 2014, 5, 17. [Google Scholar] [CrossRef] [PubMed]
  200. Mohan, A.; Kumar, M.; Kumar, A. HIV/AIDS associated Isospora belli infection in kumaun region, uttarakhand. J. Evol. Med. Dent. Sci. 2017, 6, 3959–3963. [Google Scholar] [CrossRef]
  201. Arefkha, N.; Sarkari, B.; Afrashteh, M.; Rezaei, Z.; Dehghani, M. Toxoplasma gondii: The prevalence and risk factors in HIV-infected patients in Fars province, southern Iran. Iran. Red. Crescent Med. J. 2018, 20, e66521. [Google Scholar] [CrossRef]
  202. Barua, A.; Gill, N. A Comparative Study of Concurrent Dengue and Malaria Infection with their Monoinfection in a Teaching Hospital in Mumbai. J. Assoc. Physicians India 2016, 64, 49–52. [Google Scholar]
  203. Assir, M.Z.K.; Masood, M.A.; Ahmad, H.I. Concurrent dengue and malaria infection in Lahore, Pakistan during the 2012 dengue outbreak. Int. J. Infect. Dis. 2014, 18, 41–46. [Google Scholar] [CrossRef]
  204. Assob, J.C.; Njunda, A.L.; Nsagha, D.S.; Kamga, H.L.; Weledji, P.E.; Che, V. Toxoplasma antibodies amongst HIV/AIDS patients attending the University Teaching Hospital Yaounde in Cameroon. Afr. J. Clin. Exp. Microbiol. 2011, 12, 1119–1123. [Google Scholar] [CrossRef]
  205. Ayi, I.; Sowah, A.O.; Blay, E.A.; Suzuki, T.; Ohta, N.; Ayeh-Kumi, P.F. Toxoplasma gondii infections among pregnant women, children and HIV-seropositive persons in Accra, Ghana. Trop. Med. Health 2016, 44, 17. [Google Scholar] [CrossRef]
  206. Bamba, S.; Sourabié, Y.; Guiguemdé, T.R.; Karou, D.S.; Simporé, J.; Bambara, M.; Villena, I. Seroprevalence of latent Toxoplasma gondii infection among HIV-infected pregnant women in Bobo-Dioulasso, Burkina Faso. Pak. J. Biol. Sci. 2014, 17, 1074–1078. [Google Scholar] [CrossRef]
  207. Bate, A.; Kimbi, H.K.; Lum, E.; Lehman, L.G.; Onyoh, E.F.; Ndip, L.M.; Njabi, C.M.; Tonga, C.; Wempnje, B.G.; Ndip, R.N.; et al. Malaria infection and anaemia in HIV-infected children in Mutengene, Southwest Cameroon: A cross sectional study. BMC Infect. Dis. 2016, 16, 523. [Google Scholar] [CrossRef]
  208. Beena, U.; Aggarwal, P.; Perween, N.; Sud, A. Seroprevalence of Toxoplasma among HIV infected and HIV non-infected individuals in North India. Asian Pac. J. Trop. Dis. 2015, 5, S15–S18. [Google Scholar]
  209. Berenji, F.; Sarvghad, M.R.; FATA, A.; HOSSEININEZHAD, Z.; Saremi, E.; Ganjbakhsh, M.; IZADI, J.R. A study of the prevalence of intestinal parasitic infection in HIV positive individuals in Mashhad, Northeast Iran. Jundishapur J. Microbiol. 2010, 3, 61–65. [Google Scholar]
  210. Bessong, P.O.; Mathomu, L.M. Seroprevalence of HTLV1/2, HSV1/2 and Toxoplasma gondii among chronic HIV-1 infected individuals in rural northeastern South Africa. Afr. J. Microbiol. Res. 2010, 4, 2587–2591. [Google Scholar]
  211. Bharti, A.R.; Saravanan, S.; Madhavan, V.; Smith, D.M.; Sharma, J.; Balakrishnan, P.; Letendre, S.L.; Kumarasamy, N. Correlates of HIV and malaria co-infection in Southern India. Malar. J. 2012, 11, 1–4. [Google Scholar] [CrossRef]
  212. Carranza-Tamayo, C.O.; Assis, T.S.M.d.; Neri, A.T.B.; Cupolillo, E.; Rabello, A.; Romero, G.A.S. Prevalence of Leishmania infection in adult HIV/AIDS patients treated in a tertiary-level care center in Brasilia, Federal District, Brazil. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 743–748. [Google Scholar] [CrossRef]
  213. Chemoh, W.; Sawangjaroen, N.; Siripaitoon, P.; Andiappan, H.; Hortiwakul, T.; Sermwittayawong, N.; Charoenmak, B.; Nissapatorn, V. Toxoplasma gondii–prevalence and risk factors in HIV-infected patients from Songklanagarind hospital, Southern Thailand. Front. Microbiol. 2015, 6, 1304. [Google Scholar] [CrossRef]
  214. Chukwuanukwu, R.C.; Ukaejiofo, E.O.; Ele, P.U.; Onyenekwe, C.C.; Chukwuanukwu, T.O.; Ifeanyichukwu, M.O. Evaluation of some haemostatic parameters in falciparum malaria and HIV co-infection. Br. J. Biomed. Sci. 2016, 73, 168–173. [Google Scholar] [CrossRef]
  215. Cohen, C.; Karstaedt, A.; Frean, J.; Thomas, J.; Govender, N.; Prentice, E.; Dini, L.; Galpin, J.; Crewe-Brown, H. Increased prevalence of severe malaria in HIV-infected adults in South Africa. Clin. Infect. Dis. 2005, 41, 1631–1637. [Google Scholar] [CrossRef]
  216. Colomba, C.; Saporito, L.; Vitale, F.; Reale, S.; Vitale, G.; Casuccio, A.; Tolomeo, M.; Maranto, D.; Rubino, R.; Di Carlo, P. Cryptic Leishmania infantum infection in Italian HIV infected patients. BMC Infect. Dis. 2009, 9, 199. [Google Scholar] [CrossRef]
  217. Cota, G.F.; de Sousa, M.R.; de Freitas Nogueira, B.M.; Gomes, L.I.; Oliveira, E.; Assis, T.S.M.; de Mendonça, A.L.P.; Pinto, B.F.; Saliba, J.W.; Rabello, A. Comparison of parasitological, serological, and molecular tests for visceral leishmaniasis in HIV-infected patients: A cross-sectional delayed-type study. Am. J. Trop. Med. Hyg. 2013, 89, 570. [Google Scholar] [CrossRef]
  218. Dabo, N.; Sharif, A.; Muhammed, Y.; Sarkinfada, F. Malaria and Hepatitis B co-infection in patients with febrile illnesses attending general outpatient unit of the Murtala Muhammed Specialist Hospital, Kano, Northwest Nigeria. Bayero J. Pure Appl. Sci. 2015, 8, 89–95. [Google Scholar] [CrossRef]
  219. Daryani, A.; Sharif, M.; Meigouni, M.; Mahmoudi, F.B.; Rafiei, A.; Sh, G.; Khalilian, A.; Sh, G.; Mirabi, A. Prevalence of intestinal parasites and profile of CD4+ counts in HIV+/AIDS people in north of Iran, 2007–2008. Pak. J. Biol. Sci. PJBS 2009, 12, 1277–1281. [Google Scholar] [CrossRef] [PubMed]
  220. Daryani, A.; Sharif, M.; Meigouni, M. Seroprevalence of IgG and IgM anti—Toxoplasma antibodies in HIV/AIDS patients, northern Iran. Asian Pac. J. Trop. Med. 2011, 4, 271–274. [Google Scholar] [CrossRef] [PubMed]
  221. Davarpanah, M.; Mehrbani, D.; Neyrami, R.; Ghahramanpouri, M.; Darvishi, M. Toxoplasmosis in HIV/AIDS patients in Shiraz, southern Iran. Iran. Red. Crescent Med. J. 2007, 9, 22–27. [Google Scholar]
  222. Davis, A.; Dasgupta, A.; Goddard-Eckrich, D.; El-Bassel, N. Trichomonas vaginalis and human immunodeficiency virus coinfection among women under community supervision: A call for expanded T. vaginalis screening. Sex. Transm. Dis. 2016, 43, 617–622. [Google Scholar] [CrossRef]
  223. de Lemos, P.A.P.; García-Zapata, M.; Guimarães, N.; Morais, R. Comparison of methods for the identification of Trichomonas vaginalis in HIV-positive and negative women. Int. J. Trop. Med. 2009, 4, 76–81. [Google Scholar]
  224. Tegegne, D.; Abdurahaman, M.; Mosissa, T.; Yohannes, M. Anti-Toxoplasma antibodies prevalence and associated risk factors among HIV patients. Asian Pac. J. Trop. Med. 2016, 9, 460–464. [Google Scholar] [CrossRef]
  225. Kassa, D.; Petros, B.; Messele, T.; Admassu, A.; Adugna, F.; Wolday, D. Parasito-haematological features of acute Plasmodium falciparum and P. vivax malaria patients with and without HIV co-infection at Wonji Sugar Estate, Ethiopia. Ethiop. J. Health Dev. 2005, 19, 132–139. [Google Scholar] [CrossRef]
  226. Djieyep, A.; Djieyep, F.; Pokam, B.; David, D.; Kamga, H. The prevalence of intestinal coccidian parasites burden in HIV/AIDS patients on antiretroviral therapy in HIV centers in Mubi, Nigeria. Afr. J. Clin. Exp. Microbiol. 2014, 15, 165–172. [Google Scholar] [CrossRef]
  227. Domingos, A.; Ito, L.S.; Coelho, E.; Lúcio, J.M.; Matida, L.H.; Ramos, A.N. Seroprevalence of Toxoplasma gondii IgG antibody in HIV/AIDS-infected individuals in Maputo, Mozambique. Rev. Saude Publica 2013, 47, 890–896. [Google Scholar] [CrossRef]
  228. Ebrahim-Saraie, H.S.; Heidari, H.; Mousavi, S.; Asefi, H.; Abadi, A.; Afsar-Kazerooni, P.; Motamedifar, M. Toxoplasma gondii seroprevalence and related risk factors in patients with HIV in Iran. Arch. Hell. Med./Arheia Ellenikes Iatr. 2018, 35, 400. [Google Scholar]
  229. Echoru, I.; Herman, L.; Micheni, L.; Ajagun-Ogunleye, M.O.; Kalange, M.; Kasozi, K.I. Epidemiology of coccidian parasites in HIV patients of Northern Uganda. J. Adv. Med. Med. Res. 2015, 7, 904–913. [Google Scholar] [CrossRef] [PubMed]
  230. El-Nahas, H.A.; El-Tantawy, N.L.; Farag, R.E.; Alsalem, A.M. Toxoplasma gondii infection among chronic hepatitis C patients: A case-control study. Asian Pac. J. Trop. Med. 2014, 7, 589–593. [Google Scholar] [CrossRef] [PubMed]
  231. Epelboin, L.; Hanf, M.; Dussart, P.; Ouar-Epelboin, S.; Djossou, F.; Nacher, M.; Carme, B. Is dengue and malaria co-infection more severe than single infections? A retrospective matched-pair study in French Guiana. Malar. J. 2012, 11, 1–8. [Google Scholar] [CrossRef]
  232. Erhabor, O.; Obunge, O.; Awah, I. Cryptosporidiosis among HIV-infected persons in the Niger Delta of Nigeria. Niger. J. Med. 2011, 20, 372–375. [Google Scholar]
  233. Walle, F.; Kebede, N.; Tsegaye, A.; Kassa, T. Seroprevalence and risk factors for Toxoplasmosis in HIV infected and non-infected individuals in Bahir Dar, Northwest Ethiopia. Parasites Vectors 2013, 6, 1–8. [Google Scholar] [CrossRef]
  234. Franke, M.F.; Spiegelman, D.; Ezeamama, A.; Aboud, S.; Msamanga, G.I.; Mehta, S.; Fawzi, W.W. Malaria parasitemia and CD4 T cell count, viral load, and adverse HIV outcomes among HIV-infected pregnant women in Tanzania. Am. J. Trop. Med. Hyg. 2010, 82, 556. [Google Scholar] [CrossRef]
  235. Frosch, A.E.; Odumade, O.A.; Taylor, J.J.; Ireland, K.; Ayodo, G.; Ondigo, B.; Narum, D.L.; Vulule, J.; John, C.C. Decrease in numbers of naive and resting B cells in HIV-infected Kenyan adults leads to a proportional increase in total and Plasmodium falciparum–specific atypical memory B cells. J. Immunol. 2017, 198, 4629–4638. [Google Scholar] [CrossRef]
  236. Certad, G.; Arenas-Pinto, A.; Pocaterra, L.; Ferrara, G.; Castro, J.; Bello, A.; Núnez, L. Cryptosporidiosis in HIV-infected Venezuelan adults is strongly associated with acute or chronic diarrhea. Am. J. Trop. Med. Hyg. 2005, 73, 54–57. [Google Scholar] [CrossRef]
  237. Gallagher, M.; Malhotra, I.; Mungai, P.L.; Wamachi, A.N.; Kioko, J.M.; Ouma, J.H.; Muchiri, E.; King, C.L. The effects of maternal helminth and malaria infections on mother-to-child HIV transmission. AIDS 2005, 19, 1849–1855. [Google Scholar] [CrossRef]
  238. Ganiem, A.R.; Dian, S.; Indriati, A.; Chaidir, L.; Wisaksana, R.; Sturm, P.; Melchers, W.; van der Ven, A.; Parwati, I.; van Crevel, R. Cerebral toxoplasmosis mimicking subacute meningitis in HIV-infected patients; a cohort study from Indonesia. PLoS Negl. Trop. Dis. 2013, 7, e1994. [Google Scholar] [CrossRef]
  239. García-García, J.A.; Martín-Sánchez, J.; Gállego, M.; Rivero-Román, A.; Camacho, A.; Riera, C.; Morillas-Márquez, F.; Vergara, S.; Macías, J.; Pineda, J.A. Use of noninvasive markers to detect Leishmania infection in asymptomatic human immunodeficiency virus-infected patients. J. Clin. Microbiol. 2006, 44, 4455–4458. [Google Scholar] [CrossRef] [PubMed]
  240. Ghafari, R.; Rafiei, A.; Tavalla, M.; Choghakabodi, P.M.; Nashibi, R.; Rafiei, R. Prevalence of Cryptosporidium species isolated from HIV/AIDS patients in southwest of Iran. Comp. Immunol. Microbiol. Infect. Dis. 2018, 56, 39–44. [Google Scholar] [CrossRef] [PubMed]
  241. Gholami, R.; Gholami, S.; Emadi-Kouchak, H.; Abdollahi, A.; Shahriari, M. Clinical characteristic of the HIV/AIDS patients with cryptosporidiosis referring to behavioral diseases consultation center, Imam Khomeini Hospital, Tehran in 2013. Iran. J. Pathol. 2016, 11, 27. [Google Scholar]
  242. Girma, M.; Teshome, W.; Petros, B.; Endeshaw, T. Cryptosporidiosis and Isosporiasis among HIV-positive individuals in south Ethiopia: A cross sectional study. BMC Infect. Dis. 2014, 14, 100. [Google Scholar] [CrossRef]
  243. Goselle, O.; Onwuliri, C.; Onwuliri, V. Malaria infection in HIV/AIDS patients and its correlation with packed cell volume (PCV). J. Vector Borne Dis. 2009, 46, 205–211. [Google Scholar]
  244. Hari, K.; Modi, M.; Mochan, A.; Modi, G. Reduced risk of toxoplasma encephalitis in HIV-infected patients—A prospective study from Gauteng, South Africa. Int. J. STD AIDS 2007, 18, 555–558. [Google Scholar] [CrossRef]
  245. Hasang, W.; Dembo, E.G.; Wijesinghe, R.; Molyneux, M.E.; Kublin, J.G.; Rogerson, S. HIV-1 infection and antibodies to Plasmodium falciparum in adults. J. Infect. Dis. 2014, 210, 1407–1414. [Google Scholar] [CrossRef]
  246. Huibers, M.H.; Moons, P.; Maseko, N.; Gushu, M.B.; Iwajomo, O.H.; Heyderman, R.S.; van Hensbroek, M.B.; Brienen, E.A.; van Lieshout, L.; Calis, J.C. Multiplex real-time PCR detection of intestinal protozoa in HIV-infected children in Malawi, enterocytozoon Bieneusi is common and associated with gastrointestinal complaints and may delay BMI (Nutritional Status) recovery. Pediatr. Infect. Dis. J. 2018, 37, 910. [Google Scholar] [CrossRef]
  247. Hung, C.-C.; Chen, M.; Hsieh, S.; Hsiao, C.; Sheng, W.-H.; Chang, S.-C. Prevalence of Toxoplasma gondii infection and incidence of Toxoplasma encephalitis in non-haemophiliac HIV-1-infected adults in Taiwan. Int. J. STD AIDS 2005, 16, 302–306. [Google Scholar] [CrossRef]
  248. Hung, C.-C.; Ji, D.-D.; Sun, H.-Y.; Lee, Y.-T.; Hsu, S.-Y.; Chang, S.-Y.; Wu, C.-H.; Chan, Y.-H.; Hsiao, C.-F.; Liu, W.-C. Increased risk for Entamoeba histolytica infection and invasive amebiasis in HIV seropositive men who have sex with men in Taiwan. PLoS Negl. Trop. Dis. 2008, 2, e175. [Google Scholar] [CrossRef]
  249. Hung, C.-C.; Tsaihong, J.C.; Lee, Y.-T.; Deng, H.-Y.; Hsiao, W.-H.; Chang, S.-Y.; Chang, S.-C.; Su, K.-E. Prevalence of intestinal infection due to Cryptosporidium species among Taiwanese patients with human immunodeficiency virus infection. J. Formos. Med. Assoc. 2007, 106, 31–35. [Google Scholar] [CrossRef]
  250. Hussain, G.; Roychoudhury, S.; Singha, B. Cryptosporidiosis: An emerging enteric disease in HIV-infected patients, Barak Valley, Assam, India. Int. J. Pharm. Pharmaceu Sci. 2016, 8, 304–306. [Google Scholar] [CrossRef]
  251. Igbeneghu, C.; Odaibo, G.; Olaleye, D.; Odaibo, A. Coombs’ Direct Antiglobulin Test Among Individuals Co-Infected with Malaria and HIV in Iwo Community, Southwestern Nigeria. World J. Med. Sci. 2012, 7, 34–37. [Google Scholar]
  252. Iqbal, A.; Sim, B.; Brent, R.; Johari, S.; AL, Y.L. Molecular epidemiology of Cryptosporidium in HIV/AIDS patients in Malaysia. Trop. Biomed. 2015, 32, 310–322. [Google Scholar]
  253. Iroezindu, M.O.; Agaba, E.I.; Daniyam, C.A.; Okeke, E.N.; Agbaji, O.O.; Agaba, P.A.; Imade, G.E.; Idoko, J.A. Association of HIV-induced immunosuppression and clinical malaria in Nigerian adults. Afr. J. Infect. Dis. 2012, 6, 48–53. [Google Scholar] [CrossRef]
  254. Iroezindu, M.; Agaba, E.; Okeke, E.; Daniyam, C.; Isa, S.; Akindigh, M. Relationship between fever and malaria parasitaemia in adults: Does HIV infection make any difference? J. Med. Trop. 2012, 14, 103–108. [Google Scholar]
  255. Izuka, E.; Ugwu, E.; Obi, S.; Ozumba, B.; Nwagha, T.; Obiora-Izuka, C. Prevalence and predictors of placental malaria in human immunodeficiency virus-positive women in Nigeria. Niger. J. Clin. Pract. 2017, 20, 31–36. [Google Scholar]
  256. Jayalakshmi, J.; Appalaraju, B.; Mahadevan, K. Evaluation of an enzyme-linked immunoassay for the detection of Cryptosporidium antigen in fecal specimens of HIV/AIDS patients. Indian J. Pathol. Microbiol. 2008, 51, 137. [Google Scholar] [CrossRef]
  257. Javid, S.; Rizvi, M.A.; Baveja, U. Diarrhea, CD4+ cell counts and opportunistic protozoa in Indian HIV-infected patients. Parasitol. Res. 2005, 97, 270–273. [Google Scholar]
  258. Johnbull, O.S.; Uche, A.P.; Kesiena, A.J.; Francis, F.A.; Oyemocho, A.; Obianwu, I.; Akabueze, J. Prevalence and risk factors of malaria in HIV-infected pregnant women on anti-retroviral therapy in Enugu, South East Nigeria. J. AIDS Clin. Res. 2014, 5, 321–326. [Google Scholar] [CrossRef]
  259. Barbosa Júnior, W.L.; Ramos de Araújo, P.S.; Dias de Andrade, L.; Aguiar Dos Santos, A.M.; Lopes da Silva, M.A.; Dantas-Torres, F.; Medeiros, Z. Rapid Tests and the Diagnosis of Visceral Leishmaniasis and Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome Coinfection. Am. J. Trop. Med. Hyg. 2015, 93, 967–969. [Google Scholar] [CrossRef]
  260. Kammili, N.; Rao, P.P.R.; Mathur, G.; Krishna, G.T.P.; Rajalingam, A.P.; Saxena, N.K. Prevalence of Cryptosporidium, Cyclospora cayetanensis and Isospora belli infection among diarrheal patients in South India. Trop. Med. Health 2008, 36, 131–136. [Google Scholar]
  261. Kapito-Tembo, A.; Meshnick, S.R.; van Hensbroek, M.B.; Phiri, K.; Fitzgerald, M.; Mwapasa, V. Marked reduction in prevalence of malaria parasitemia and anemia in HIV-infected pregnant women taking cotrimoxazole with or without sulfadoxine-pyrimethamine intermittent preventive therapy during pregnancy in Malawi. J. Infect. Dis. 2011, 203, 464–472. [Google Scholar] [CrossRef]
  262. Kfutwah, A.; Mary, J.Y.; Lemen, B.; Leke, R.; Rousset, D.; Barré-Sinoussi, F.; Nerrienet, E.; Menu, E.; Ayouba, A. Plasmodium falciparum infection significantly impairs placental cytokine profile in HIV infected Cameroonian women. PLoS ONE 2009, 4, e8114. [Google Scholar] [CrossRef]
  263. Kinimi, E.; Bisimwa, P.; Misinzo, G. Serological evidence of chikungunya and malaria co-infection among febrile patients seeking health care in Karagwe district, Tanzania. Tanzan. J. Health Res. 2018, 20, 1–8. [Google Scholar] [CrossRef]
  264. Kiros, H.; Nibret, E.; Munshea, A.; Kerisew, B.; Adal, M. Prevalence of intestinal protozoan infections among individuals living with HIV/AIDS at Felegehiwot Referral Hospital, Bahir Dar, Ethiopia. Int. J. Infect. Dis. 2015, 35, 80–86. [Google Scholar] [CrossRef]
  265. Kissinger, P.; Secor, W.E.; Leichliter, J.S.; Clark, R.A.; Schmidt, N.; Curtin, E.; Martin, D.H. Early repeated infections with Trichomonas vaginalis among HIV-positive and HIV-negative women. Clin. Infect. Dis. 2008, 46, 994–999. [Google Scholar] [CrossRef]
  266. Kiyingi, H.S.; Egwang, T.G.; Nannyonga, M. Prolonged elevation of viral loads in HIV-1-infected children in a region of intense malaria transmission in Northern Uganda: A prospective cohort study. Pan Afr. Med. J. 2010, 7, 11. [Google Scholar] [CrossRef]
  267. Kodym, P.; Malý, M.; Beran, O.; Jilich, D.; Rozsypal, H.; Machala, L.; Holub, M. Incidence, immunological and clinical characteristics of reactivation of latent Toxoplasma gondii infection in HIV-infected patients. Epidemiol. Infect. 2015, 143, 600–607. [Google Scholar] [CrossRef]
  268. Kolawole, O.M.; Seriki, A.A.; Irekeola, A.A.; Bello, K.E.; Adeyemi, O.O. Dengue virus and malaria concurrent infection among febrile subjects within Ilorin metropolis, Nigeria. J. Med. Virol. 2017, 89, 1347–1353. [Google Scholar] [CrossRef]
  269. Kucerova, Z.; Sokolova, O.; Demyanov, A.; Kvac, M.; Sak, B.; Kvetonova, D.; Secor, W. Microsporidiosis and cryptosporidiosis in HIV/AIDS patients in St. Petersburg, Russia: Serological identification of microsporidia and Cryptosporidium parvum in sera samples from HIV/AIDS patients. AIDS Res. Hum. Retroviruses 2011, 27, 13–15. [Google Scholar] [CrossRef]
  270. Kurniawan, A.; Dwintasari, S.W.; Connelly, L.; Nichols, R.A.; Yunihastuti, E.; Karyadi, T.; Djauzi, S. Cryptosporidium species from human immunodeficiency–infected patients with chronic diarrhea in Jakarta, Indonesia. Ann. Epidemiol. 2013, 23, 720–723. [Google Scholar] [CrossRef]
  271. Lago, E.; Conrado, G.; Piccoli, C.; Carvalho, R.; Bender, A. Toxoplasma gondii antibody profile in HIV-infected pregnant women and the risk of congenital toxoplasmosis. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 345–351. [Google Scholar] [CrossRef]
  272. Langoni-Júnior, G.; Souza, L.d.R.d. Cryptosporidium SP in HIV-infected individuals attending a Brazilian University Hospital. J. Venom. Anim. Toxins Incl. Trop. Dis. 2007, 13, 737–747. [Google Scholar] [CrossRef]
  273. Lemos, P.; Garcia-Zapata, M. The prevalence of Trichomonas vaginalis in HIV-positive and negative patients in referral hospitals in Goiania, Goiás, Brazil. Int. J. Trop. Med. 2010, 5, 24–27. [Google Scholar] [CrossRef]
  274. Li, J.R.; Gong, R.Y.; Li, Y.P.; Bai, Y.; You, F.; Deng, S. Research on HIV/Toxoplasma gondii Co-Infection and Cytokine Levels Among Intravenous Drug Users; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
  275. Llenas-García, J.; Hernando, A.; Fiorante, S.; Maseda, D.; Matarranz, M.; Salto, E.; Rubio, R.; Pulido, F. Chagas disease screening among HIV-positive Latin American immigrants: An emerging problem. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1991–1997. [Google Scholar] [CrossRef]
  276. Machala, L.; Malý, M.; Hrdá, Š.; Rozsypal, H.; Staňková, M.; Kodym, P. Antibody response of HIV-infected patients to latent, cerebral and recently acquired toxoplasmosis. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 179–182. [Google Scholar] [CrossRef]
  277. Magalhães, B.M.; Siqueira, A.M.; Alexandre, M.A.; Souza, M.S.; Gimaque, J.B.; Bastos, M.S.; Figueiredo, R.M.; Melo, G.C.; Lacerda, M.V.; Mourão, M.P.P. Vivax malaria and dengue fever co-infection: A cross-sectional study in the Brazilian Amazon. PLoS Negl. Trop. Dis. 2014, 8, e3239. [Google Scholar] [CrossRef]
  278. Maikai, B.V.; Umoh, J.U.; Lawal, I.A.; Kudi, A.C.; Ejembi, C.L.; Xiao, L. Molecular characterizations of Cryptosporidium, Giardia, and Enterocytozoon in humans in Kaduna state, Nigeria. Exp. Parasitol. 2012, 131, 452–456. [Google Scholar] [CrossRef]
  279. Malla, N.; Sengupta, C.; Dubey, M.; Sud, A.; Dutta, U. Antigenaemia and antibody response to Toxoplasma gondii in human immunodeficiency virus-infected patients. Br. J. Biomed. Sci. 2005, 62, 19–23. [Google Scholar] [CrossRef]
  280. Manyanga, V.P.; Minzi, O.; Ngasala, B. Prevalence of malaria and anaemia among HIV infected pregnant women receiving co-trimoxazole prophylaxis in Tanzania: A cross sectional study in Kinondoni Municipality. BMC Pharmacol. Toxicol. 2014, 15, 24. [Google Scholar] [CrossRef] [PubMed]
  281. Marete, I.; Mutugi, M.; Lagat, Z.; Obala, A.; Simba, J.; Mwangi, A.; Esamai, F. Malaria parasitaemia among febrile children infected with human immunodeficiency virus in the context of prophylactic cotrimoxazole as standard of care: A cross-sectional survey in Western Kenya. East Afr. Med. J. 2014, 91, 21–28. [Google Scholar] [PubMed]
  282. Masarat, S.; Ahmad, F.; Chisti, M.; Hamid, S.; Sofi, B.A. Prevalence of Cryptosporidium species among HIV positive asymptomatic and symptomatic immigrant population in Kashmir, India. Iran. J. Microbiol. 2012, 4, 35. [Google Scholar]
  283. Masese, L.N.; Graham, S.M.; Gitau, R.; Peshu, N.; Jaoko, W.; Ndinya-Achola, J.O.; Mandaliya, K.; Richardson, B.A.; Overbaugh, J.; McClelland, R.S. A prospective study of vaginal trichomoniasis and HIV-1 shedding in women on antiretroviral therapy. BMC Infect. Dis. 2011, 11, 307. [Google Scholar] [CrossRef]
  284. Endris, M.; Belyhun, Y.; Moges, F.; Adefiris, M.; Tekeste, Z.; Mulu, A.; Kassu, A. Seroprevalence and associated risk factors of Toxoplasma gondii in pregnant women attending in Northwest Ethiopia. Iran. J. Parasitol. 2014, 9, 407. [Google Scholar]
  285. Mitra, S.; Mukherjee, A.; Khanra, D.; Bhowmik, A.; Roy, K.; Talukdar, A. Enteric parasitic infection among antiretroviral therapy naive HIV-seropositive people: Infection begets infection-experience from eastern India. J. Glob. Infect. Dis. 2016, 8, 82. [Google Scholar]
  286. Mohan, M.R.; Sekhar, R.; Kammili, N.; Saxena, N.K. HAART and immune status as predictors of opportunistic enteric coccidian infections in HIV/AIDS patients. Int. J. Biomed. Res. 2014, 5, 268–270. [Google Scholar]
  287. Mohapatra, P.K.; Pachuau, E.; Kumar, C.; Borkakoty, B.; Zomawia, E.; Singh, A.; Walia, K.; Arora, R.; Mahanta, J.; Subbarao, S.K. HIV-malaria interactions in North-East India: A prospective cohort study. Indian J. Med. Res. 2017, 145, 387. [Google Scholar] [CrossRef]
  288. Mohraz, M.; Mehrkhani, F.; Jam, S.; SeyedAlinaghi, S.A.; Sabzvari, D.; Fattahi, F.; Jabbari, H.; Hajiabdolbaghi, M. Seroprevalence of toxoplasmosis in HIV+/AIDS patients in Iran. Acta Med. Iran 2011, 213–218. [Google Scholar]
  289. Morán, P.; Gómez, A.; Valadez, A.; García, G.; Ramos, F.; González, E.; Limón, A.; Riebeling, C.; Valenzuela, O.; Rojas, L. Periodicity and patterns of Entamoeba histolytica and E. dispar infection in HIV+/AIDS patients in Mexico. Ann. Trop. Med. Parasitol. 2009, 103, 307–315. [Google Scholar] [CrossRef]
  290. Moran, P.; Ramos, F.; Ramiro, M.; Curiel, O.; González, E.; Valadez, A.; Gómez, A.; García, G.; Melendro, E.I.; Ximénez, C. Entamoeba histolytica and/or Entamoeba dispar: Infection frequency in HIV+/AIDS patients in Mexico City. Exp. Parasitol. 2005, 110, 331–334. [Google Scholar] [CrossRef] [PubMed]
  291. Morona, D.; Zinga, M.; Mirambo, M.; Mtawazi, S.; Silago, V.; Mshana, S. High prevalence of Plasmodium falciparum malaria among Human Immunodeficiency Virus seropositive population in the Lake Victoria zone, Tanzania. Tanzan. J. Health Res. 2018, 20, 70–74. [Google Scholar]
  292. Nangammbi, T.C.; Mukhadi, S.T.; Samie, A. Real-time polymerase chain reaction (PCR) detection of Trichomonas vaginalis from urine samples of human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) patients in Limpopo Province, South Africa. Afr. J. Microbiol. Res. 2013, 7, 5596–5605. [Google Scholar]
  293. Nazari, N.; Bozorgomid, A.; Janbakhsh, A.; Bashiri, F. Toxoplasma gondii and human immunodeficiency virus co-infection in western Iran: A cross sectional study. Asian Pac. J. Trop. Med. 2018, 11, 58. [Google Scholar] [CrossRef]
  294. Ngobeni, R.; Samie, A. Prevalence of Toxoplasma gondii IgG and IgM and associated risk factors among HIV-positive and HIV-negative patients in vhembe district of south africa. Afr. J. Infect. Dis. 2017, 11, 1–9. [Google Scholar]
  295. Ngum, N.H.; Ngum, A.N.; Jini, S.S. Opportunistic intestinal protozoan infections in HIV/AIDS patients on antiretroviral therapy in the North West Region of Cameroon. Microbiol. Res. J. Int. 2015, 7, 269–275. [Google Scholar] [CrossRef]
  296. Nissapatorn, V.; Lee, C.K.C.; Lim, Y.A.L.; Tan, K.S.; Jamaiah, I.; Rohela, M. Toxoplasmosis: A silent opportunistic disease in HIV/AIDS patients. Res. J. Parasitol. 2007, 2, 23–31. [Google Scholar]
  297. Njunda, A.L.; Njumkeng, C.; Nsagha, S.D.; Assob, J.C.N.; Kwenti, T.E. The prevalence of malaria in people living with HIV in Yaounde, Cameroon. BMC Public Health 2016, 16, 964. [Google Scholar] [CrossRef]
  298. Nkenfou, C.N.; Nana, C.T.; Payne, V.K. Intestinal parasitic infections in HIV infected and non-infected patients in a low HIV prevalence region, West-Cameroon. PLoS ONE 2013, 8, e57914. [Google Scholar] [CrossRef]
  299. Nkenfou, C.N.; Tchameni, S.M.; Nkenfou, C.N.; Djataou, P.; Simo, U.F.; Nkoum, A.B.; Estrin, W. Intestinal parasitic infections in human immunodeficiency virus-infected and noninfected persons in a high human immunodeficiency virus prevalence region of Cameroon. Am. J. Trop. Med. Hyg. 2017, 97, 777. [Google Scholar] [CrossRef]
  300. Nkhoma, E.T.; Bowman, N.M.; Kalilani-Phiri, L.; Mwapasa, V.; Rogerson, S.J.; Meshnick, S.R. The effect of HIV infection on the risk, frequency, and intensity of Plasmodium falciparum parasitemia in primigravid and multigravid women in Malawi. Am. J. Trop. Med. Hyg. 2012, 87, 1022. [Google Scholar] [CrossRef] [PubMed]
  301. Nwadioha, S.; Bako, I.; Onwuezobe, I.; Egah, D. Vaginal trichomoniasis among HIV patients attending primary health care centers of Jos, Nigeria. Asian Pac. J. Trop. Dis. 2012, 2, 337–341. [Google Scholar] [CrossRef]
  302. Nweze, E.; Mouneke, G. Trichomonas vaginalis in HIV/AIDS subjects in Nigeria. Asian Pac. J. Trop. Dis. 2011, 1, 282–286. [Google Scholar] [CrossRef]
  303. Ogoina, D.; Onyemelukwe, G.C.; Musa, B.O.; Obiako, R.O. Seroprevalence of IgM and IgG antibodies to Toxoplasma infection in healthy and HIV-positive adults from Northern Nigeria. J. Infect. Dev. Ctries. 2013, 7, 398–403. [Google Scholar] [CrossRef]
  304. Ojuromi, O.T.; Duan, L.; Izquierdo, F.; Fenoy, S.M.; Oyibo, W.A.; Del Aguila, C.; Ashafa, A.O.; Feng, Y.; Xiao, L. Genotypes of Cryptosporidium spp. and Enterocytozoon bieneusi in Human Immunodeficiency Virus-Infected Patients in Lagos, Nigeria. J. Eukaryot. Microbiol. 2016, 63, 414–418. [Google Scholar] [CrossRef]
  305. Okogun, G.; Jemikalajah, D.; ONYIA, C. Prevalence of Malaria Parasitemia among Human Immunodeficiency Virus (HIV) Seropositive Pregnant Women in Kwale, Delta State. Niger. J. Health Biomed. Sci. 2010, 9, 20–24. [Google Scholar] [CrossRef]
  306. Okonkwo, I.; Ibadin, M.; Sadoh, W.; Omoigberale, A. A study of malaria parasite density in HIV-1 positive under-fives in Benin City, Nigeria. J. Trop. Pediatr. 2018, 64, 289–296. [Google Scholar] [CrossRef]
  307. Olaniran, O.; Ojurongbe, O.; Hassan-Olajokun, R.E.; Abiodun Akindele, A.; Oluwatoyin Japhet, M.; Oloyede Bolaji, S.; Adedokun, A. The study of asymptomatic Plasmodium falciparum in humans infectedwith immunodeficiency virus in Ile-Ife, Nigeria. Microbiol. Res. 2012, 3, 1–4. [Google Scholar] [CrossRef]
  308. Oliveira, É.A.; Celidônio, F.A.; Silveira, T.G.V.; Lonardoni, M.V.C. Evaluation of HIV-Leishmania co-infection in patients from the northwestern Paraná State, Brazil. Acta Scientiarum. Health Sci. 2011, 33, 19–24. [Google Scholar]
  309. Olopade, B.; Ogunniyi, T.; Oyekunle, A.; Odetoyin, B.; Adegoke, A. Cryptosporidiosis: Prevalence, risk factors and diagnosis in adult HIV-infected patients at Obafemi Awolowo University teaching hospitals complex (OAUTHC), Ile-Ife, Osun State, Nigeria. Int. J. Med. Biomed. Res. 2017, 6, 18–29. [Google Scholar] [CrossRef]
  310. Omoti, C.E.; Ojide, C.K.; Lofor, P.V.; Eze, E.; Eze, J.C. Prevalence of parasitemia and associated immunodeficiency among HIV-malaria co-infected adult patients with highly active antiretroviral therapy. Asian Pac. J. Trop. Med. 2013, 6, 126–130. [Google Scholar] [CrossRef] [PubMed]
  311. Onyenekwe, C.; Ukibe, N.; Meludu, S.; Ilika, A.; Aboh, N.; Ofiaeli, N.; Ezaeni, M.; Onochie, A. Prevalence of malaria as co-infection in HIV-infected individuals in a malaria endemic area of southeastern Nigeria. J. Vector Borne Dis. 2007, 44, 250. [Google Scholar] [PubMed]
  312. Oshinaike, O.; Okubadejo, N.; Ojini, F.; Danesi, M. A preliminary study of the frequency of focal neurological deficits in HIV/AIDS patients seropositive for Toxoplasma gondii IgG in Lagos, Nigeria. Niger. Q. J. Hosp. Med. 2010, 20, 104–107. [Google Scholar]
  313. Osuji, F.N.; Onyenekwe, C.C.; Ifeanyichukwu, M.; Ahaneku, J.E.; Ezeani, M.; Ezeugwunne, I.P. Antioxidant activity in HIV and malaria co-infected subjects in Anambra State, southeastern Nigeria. Asian Pac. J. Trop. Med. 2012, 5, 841–847. [Google Scholar] [CrossRef]
  314. Osunkalu, V.O.; Akanmu, S.A.; Ofomah, N.J.; Onyiaorah, I.V.; Adediran, A.A.; Akinde, R.O.; Onwuezobe, I.A. Seroprevalence of Toxoplasma gondii IgG antibody in HIV-infected patients at the Lagos University Teaching Hospital. HIV/AIDS 2011, 3, 101. [Google Scholar] [CrossRef]
  315. Ouermi, D.; Simpore, J.; Belem, A.; Sanou, D.; Karou, D.; Ilboudo, D.; Bisseye, C.; Onadja, S.; Pietra, V.; Pignatelli, S. Co-infection of Toxoplasma gondii with HBV in HIV-infected and uninfected pregnant women in Burkina Faso. Pak. J. Biol. Sci. PJBS 2009, 12, 1188–1193. [Google Scholar] [CrossRef]
  316. Pandey, N.; Siripattanapipong, S.; Leelayoova, S.; Manomat, J.; Mungthin, M.; Tan-Ariya, P.; Bualert, L.; Naaglor, T.; Siriyasatien, P.; Phumee, A. Detection of Leishmania DNA in saliva among patients with HIV/AIDS in Trang Province, southern Thailand. Acta Trop. 2018, 185, 294–300. [Google Scholar] [CrossRef]
  317. Pappoe, F.; Cheng, W.; Wang, L.; Li, Y.; Obiri-Yeboah, D.; Nuvor, S.V.; Ambachew, H.; Hu, X.; Luo, Q.; Chu, D. Prevalence of Toxoplasma gondii infection in HIV-infected patients and food animals and direct genotyping of T. gondii isolates, Southern Ghana. Parasitol. Res. 2017, 116, 1675–1685. [Google Scholar] [CrossRef]
  318. Patel, S.D.; Kinariwala, D.M.; Javadekar, T.B. Clinico-microbiological study of opportunistic infection in HIV seropositive patients. Indian J. Sex. Transm. Dis. AIDS 2011, 32, 90. [Google Scholar] [CrossRef]
  319. Price, C.M.; Peters, R.P.; Steyn, J.; Mudau, M.; Olivier, D.; De Vos, L.; Morikawa, E.; Kock, M.M.; Medina-Marino, A.; Klausner, J.D. Prevalence and detection of Trichomonas vaginalis in human immunodeficiency virus-infected pregnant women. Sex. Transm. Dis. 2018, 45, 332. [Google Scholar] [CrossRef]
  320. Quigley, M.A.; Hewitt, K.; Mayanja, B.; Morgan, D.; Eotu, H.; Ojwiya, A.; Whitworth, J.A. The effect of malaria on mortality in a cohort of HIV-infected Ugandan adults. Trop. Med. Int. Health 2005, 10, 894–900. [Google Scholar] [CrossRef] [PubMed]
  321. Rahimi, M.T.; Mahdavi, S.A.; Javadian, B.; Rezaei, R.; Moosazadeh, M.; Khademlou, M.; Seyedpour, S.H.; Syadatpanah, A. High seroprevalence of Toxoplasma gondii antibody in HIV/AIDS individuals from north of Iran. Iran. J. Parasitol. 2015, 10, 584–589. [Google Scholar] [PubMed]
  322. Rashmi, K.; KL, R.K. Intestinal Cryptosporidiosis and the profile of the CD4 counts in a cohort of HIV infected patients. J. Clin. Diagn. Res. JCDR 2013, 7, 1016. [Google Scholar]
  323. Mukherjee, R.; Kumar, D. Toxoplasmosis in human immunodeficiency virus/acquired immunodeficiency syndrome patients in a tertiary care hospital of Pune city of Maharashtra, India. Int. J. Med. Sci. Public Health 2017, 6, 1024–1028. [Google Scholar] [CrossRef]
  324. Rezaei, Z.; Sarkari, B.; Dehghani, M.; Gigloo, A.L.; Afrashteh, M. High frequency of subclinical Leishmania infection among HIV-infected patients living in the endemic areas of visceral leishmaniasis in Fars province, southern Iran. Parasitol. Res. 2018, 117, 2591–2595. [Google Scholar] [CrossRef]
  325. Rezanezhad, H.; Sayadi, F.; Shadmand, E.; Nasab, S.D.M.; Yazdi, H.R.; Solhjoo, K.; Kazemi, A.; Maleki, M.; Vasmehjani, A.A. Seroprevalence of Toxoplasma gondii among HIV patients in Jahrom, Southern Iran. Korean J. Parasitol. 2017, 55, 99. [Google Scholar] [CrossRef]
  326. Rodríguez-Guardado, A.; Alvarez, V.A.; Perez, M.R.; Alvarez, P.M.; Flores-Chavez, M.; González, P.A.; Sánchez, J.C. Screening for Chagas’ disease in HIV-positive immigrants from endemic areas. Epidemiol. Infect. 2011, 139, 539–543. [Google Scholar] [CrossRef]
  327. Rodrigues, D.B.R.; Correia, D.; Marra, M.D.; Giraldo, L.E.R.; Lages-Silva, E.; Silva-Vergara, M.L.; Barata, C.H.; Rodrigues Junior, V. Cytokine serum levels in patients infected by human immunodeficiency virus with and without Trypanosoma cruzi coinfection. Rev. Soc. Bras. Med. Trop. 2005, 38, 483–487. [Google Scholar] [CrossRef]
  328. Rostami, A.; Keshavarz, H.; Shojaee, S.; Mohebali, M.; Meamar, A.R. Frequency of Toxoplasma gondii in HIV positive patients from West of Iran by ELISA and PCR. Iran. J. Parasitol. 2014, 9, 474. [Google Scholar]
  329. Sanyaolu, A.O.; Fagbenro-Beyioku, A.; Oyibo, W.; Badaru, O.; Onyeabor, O.; Nnaemeka, C. Malaria and HIV co-infection and their effect on haemoglobin levels from three healthcare institutions in Lagos, southwest Nigeria. Afr. Health Sci. 2013, 13, 295–300. [Google Scholar] [CrossRef]
  330. Saracino, A.; Nacarapa, E.A.; da Costa Massinga, É.A.; Martinelli, D.; Scacchetti, M.; de Oliveira, C.; Antonich, A.; Galloni, D.; Ferro, J.J.; Macome, C.A. Prevalence and clinical features of HIV and malaria co-infection in hospitalized adults in Beira, Mozambique. Malar. J. 2012, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
  331. Sarfati, C.; Bourgeois, A.; Menotti, J.; Liegeois, F.; Moyou-Somo, R.; Delaporte, E.; Derouin, F.; Ngole, E.M.; Molina, J.-M. Prevalence of intestinal parasites including microsporidia in human immunodeficiency virus–infected adults in Cameroon: A cross-sectional study. Am. J. Trop. Med. Hyg. 2006, 74, 162–164. [Google Scholar] [CrossRef] [PubMed]
  332. Scotto, G.; Fazio, V. Hepatitis B and asymptomatic malaria coinfection in Sub-Saharan African immigrants: Epidemiological and clinical features of HBV infection. Rev. Soc. Bras. Med. Trop. 2018, 51, 578–583. [Google Scholar] [CrossRef]
  333. Shafieenia, S.; Saki, J.; Khademvatan, S.; Moradi-Choghakabodi, P. Molecular and Serological Evaluation of Toxoplasmosis in AIDS Cases in Southwest Iran. Jundishapur J. Microbiol. 2018, 11, e77044. [Google Scholar] [CrossRef]
  334. Shafiei, R.; Mohebali, M.; Akhoundi, B.; Galian, M.S.; Kalantar, F.; Ashkan, S.; Fata, A.; Farash, B.R.H.; Ghasemian, M. Emergence of co-infection of visceral leishmaniasis in HIV-positive patients in northeast Iran: A preliminary study. Travel. Med. Infect. Dis. 2014, 12, 173–178. [Google Scholar] [CrossRef]
  335. Shafiei, R.; Riazi, Z.; Sarvghad, M.; Galian, S.M.; Mahmoudzadeh, A.; Hajia, M. Prevalence of IgG and IgM anti-Toxoplasma gondii antibodies in HIV positive patients in northeast of Iran. Iran. J. Pathol. 2011, 6, 68–72. [Google Scholar]
  336. Shen, G.; Wang, X.; Sun, H.; Gao, Y. Seroprevalence of Toxoplasma gondii infection among HIV/AIDS patients in Eastern China. Korean J. Parasitol. 2016, 54, 93. [Google Scholar] [CrossRef]
  337. Sherchan, J.; Ohara, H.; Sakurada, S.; Basnet, A.; Tandukar, S.; Sherchand, J.; Bam, D. Enteric Opportunistic Parasitic Infections Among HIVSeropositive Patients in Kathmandu, Nepal. Kathmandu Univ. Med. J. 2012, 10, 14–17. [Google Scholar] [CrossRef]
  338. Shimelis, T.; Tadesse, E. Performance evaluation of point-of-care test for detection of Cryptosporidium stool antigen in children and HIV infected adults. Parasites Vectors 2014, 7, 1–5. [Google Scholar] [CrossRef]
  339. Simpore, J.; Savadogo, A.; Ilboudo, D.; Nadambega, M.C.; Esposito, M.; Yara, J.; Pignatelli, S.; Pietra, V.; Musumeci, S. Toxoplasma gondii, HCV, and HBV seroprevalence and co-infection among HIV-positive and-negative pregnant women in Burkina Faso. J. Med. Virol. 2006, 78, 730–733. [Google Scholar] [CrossRef]
  340. Sitoe, S.P.B.L.; Rafael, B.; Meireles, L.R.; Andrade, H.F.d., Jr.; Thompson, R. Preliminary report of HIV and Toxoplasma gondii occurrence in pregnant women from Mozambique. Rev. Inst. Med. Trop. São Paulo 2010, 52, 291–295. [Google Scholar] [CrossRef] [PubMed]
  341. Srisuphanunt, M.; Suvedyathavorn, V.; Suputtamongkol, Y.; Arnantapunpong, S.; Wiwanitkit, V.; Satitvipawee, P.; Tansupasawadikul, S. Potential risk factors for Cryptosporidium infection among HIV/AIDS patients in central areas of Thailand. J. Public Health 2008, 16, 173–182. [Google Scholar] [CrossRef]
  342. Stark, D.; Fotedar, R.; Van Hal, S.; Beebe, N.; Marriott, D.; Ellis, J.T.; Harkness, J. Prevalence of enteric protozoa in human immunodeficiency virus (HIV)–positive and HIV-negative men who have sex with men from Sydney, Australia. Am. J. Trop. Med. Hyg. 2007, 76, 549–552. [Google Scholar] [CrossRef] [PubMed]
  343. Stensvold, C.R.; Nielsen, S.D.; Badsberg, J.-H.; Engberg, J.; Friis-Møller, N.; Nielsen, S.S.; Nielsen, H.V.; Friis-Møller, A. The prevalence and clinical significance of intestinal parasites in HIV-infected patients in Denmark. Scand. J. Infect. Dis. 2011, 43, 129–135. [Google Scholar] [CrossRef]
  344. Sucilathangam, G.; Velvizhi, G.; Palaniappan, T.; Anna, T. The prevalence of coccidian parasites in and around tirunelveli in HIV positive individuals and its correlation with the CD4 count. J. Clin. Diagn. Res. 2011, 5, 1182–1186. [Google Scholar]
  345. Tagoe, D.N.A.; Boachie, J. Assessment of the impact of malaria on CD4+ T Cells and haemoglobin levels of HIV-malaria co-infected patients. J. Infect. Dev. Ctries. 2012, 6, 660–663. [Google Scholar] [CrossRef]
  346. Taherkhani, H.; Fallah, M.; Jadidian, K.; Vaziri, S. A study on the prevalence of Cryptosporidium in HIV positive patients. J. Res. Health Sci. 2007, 7, 20–24. [Google Scholar]
  347. Tay, S.C.; Badu, K.; Mensah, A.A.; Gbedema, S.Y. The prevalence of malaria among HIV seropositive individuals and the impact of the co-infection on their hemoglobin levels. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 1–8. [Google Scholar] [CrossRef]
  348. Tegenaw, A.; Alemu, A.; Alemu, A.; Unakal, C. Prevalence of malaria and HIV among pregnant women attending antenatal clinics at felege hiwot referral hospital and Addis zemen health center. Int. J. Life Sci. Biotechnol. Pharma Res. 2013, 2, 1–13. [Google Scholar]
  349. Tellevik, M.G.; Moyo, S.J.; Blomberg, B.; Hjøllo, T.; Maselle, S.Y.; Langeland, N.; Hanevik, K. Prevalence of Cryptosporidium parvum/hominis, Entamoeba histolytica and Giardia lamblia among young children with and without diarrhea in Dar es Salaam, Tanzania. PLoS Negl. Trop. Dis. 2015, 9, e0004125. [Google Scholar] [CrossRef]
  350. Thompson, M.G.; Breiman, R.F.; Hamel, M.J.; Desai, M.; Emukule, G.; Khagayi, S.; Shay, D.K.; Morales, K.; Kariuki, S.; Bigogo, G.M.; et al. Influenza and malaria coinfection among young children in western Kenya, 2009-2011. J. Infect. Dis. 2012, 206, 1674–1684. [Google Scholar] [CrossRef] [PubMed]
  351. Yohanes, T.; Debalke, S.; Zemene, E. Latent Toxoplasma gondii infection and associated risk factors among HIV-infected individuals at Arba Minch Hospital, South Ethiopia. AIDS Res. Treat. 2014, 2014, 652941. [Google Scholar] [PubMed]
  352. Tumwine, J.K.; Kekitiinwa, A.; Bakeera-Kitaka, S.; Ndeezi, G.; Downing, R.; Feng, X.; Akiyoshi, D.E.; Tzipori, S. Cryptosporidiosis and microsporidiosis in Ugandan children with persistent diarrhea with and without concurrent infection with the human immunodeficiency virus. Am. J. Trop. Med. Hyg. 2005, 73, 921–925. [Google Scholar] [CrossRef]
  353. Uneke, C.; Ogbu, O.; Inyama, P.; Anyanwu, G. Malaria infection in HIV-seropositive and HIV-seronegative individuals in Jos-Nigeria. J. Vector Borne Dis. 2005, 42, 151. [Google Scholar]
  354. Uysal, H.K.; Adas, G.T.; Atalik, K.; Altiparmak, S.; Akgul, O.; Saribas, S.; Gurcan, M.; Yuksel, P.; Yildirmak, T.; Kocazeybek, B. The prevalence of Cyclospora cayetanensis and Cryptosporidium spp. in Turkish patients infected with HIV-1. Acta Parasitol. 2017, 62, 557–564. [Google Scholar] [CrossRef]
  355. Wang, L.; Zhang, H.; Zhao, X.; Zhang, L.; Zhang, G.; Guo, M.; Liu, L.; Feng, Y.; Xiao, L. Zoonotic Cryptosporidium species and Enterocytozoon bieneusi genotypes in HIV-positive patients on antiretroviral therapy. J. Clin. Microbiol. 2013, 51, 557–563. [Google Scholar] [CrossRef]
  356. Wanyiri, J.W.; Kanyi, H.; Maina, S.; Wang, D.E.; Steen, A.; Ngugi, P.; Kamau, T.; Waithera, T.; O’Connor, R.; Gachuhi, K. Cryptosporidiosis in HIV/AIDS patients in Kenya: Clinical features, epidemiology, molecular characterization and antibody responses. Am. J. Trop. Med. Hyg. 2014, 91, 319. [Google Scholar] [CrossRef]
  357. Wumba, R.D.; Zanga, J.; Aloni, M.N.; Mbanzulu, K.; Kahindo, A.; Mandina, M.N.; Ekila, M.B.; Mouri, O.; Kendjo, E. Interactions between malaria and HIV infections in pregnant women: A first report of the magnitude, clinical and laboratory features, and predictive factors in Kinshasa, the Democratic Republic of Congo. Malar. J. 2015, 14, 1–11. [Google Scholar] [CrossRef]
  358. Xavier, G.A.; Cademartori, B.G.; Cunha Filho, N.A.d.; Farias, N.A.d.R. Evaluation of seroepidemiological toxoplasmosis in HIV/AIDS patients in the south of Brazil. Rev. Inst. Med. Trop. São Paulo 2013, 55, 25–30. [Google Scholar] [CrossRef]
  359. Yosefi, F.; Rahdar, M.; Alavi, S.M.; Samany, A. A study on prevalence of gastrointestinal parasitic infections in HIV (+) patients referred to Ahvaz Razi Hospital in 2008–2009. Jundishapur J. Microbiol. 2012, 5, 424–426. [Google Scholar] [CrossRef]
  360. Yu, Z.; Li, F.; Zeng, Z.; Huang, Z.; Fan, Z.; Jin, Y.; Luo, W.; Xiang, X.; Deng, Q. Prevalence and clinical significance of Cryptosporidium infection in patients with hepatitis B virus-associated acute-on-chronic liver failure. Int. J. Infect. Dis. 2011, 15, e845–e848. [Google Scholar] [CrossRef] [PubMed]
  361. Zeleke, A.J.; Melsew, Y.A. Seroprevalence of Toxoplasma gondii and associated risk factors among HIV-infected women within reproductive age group at Mizan Aman General Hospital, Southwest Ethiopia: A cross sectional study. BMC Res. Notes 2017, 10, 70. [Google Scholar] [CrossRef] [PubMed]
  362. Zeynudin, A.; Hemalatha, K.; Kannan, S. Prevalence of opportunistic intestinal parasitic infection among HIV infected patients who are taking antiretroviral treatment at Jimma Health Center, Jimma, Ethiopia. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 513–516. [Google Scholar] [PubMed]
  363. Zheng, X.; Lin, M.; Xie, D.-D.; Li, J.; Chen, J.-T.; Eyi, U.M.; Monte-Nguba, S.-M.; Ehapo, J.C.S.; Yang, H.; Yang, H.-T. Prevalence of HIV and malaria: A cross-sectional study on Bioko Island, Equatorial Guinea. Afr. J. AIDS Res. 2017, 16, 65–70. [Google Scholar] [CrossRef]
  364. Anabire, N.G.; Aryee, P.A.; Abdul-Karim, A.; Abdulai, I.B.; Quaye, O.; Awandare, G.A.; Helegbe, G.K. Prevalence of malaria and hepatitis B among pregnant women in Northern Ghana: Comparing RDTs with PCR. PLoS ONE 2019, 14, e0210365. [Google Scholar] [CrossRef]
  365. Bavand, A.; Aghakhani, A.; Mohraz, M.; Banifazl, M.; Karami, A.; Golkar, M.; Babaie, J.; Saleh, P.; Mamishi, S.; Ramezani, A. Prevalence of Toxoplasma gondii antibodies and DNA in Iranian HIV patients. Iran. J. Pathol. 2019, 14, 68–75. [Google Scholar] [CrossRef]
  366. Chukwuocha, U.M.; Iwuoha, G.N.; Nwakwuo, G.C.; Egbe, P.K.; Ezeihekaibe, C.D.; Ekiyor, C.P.; Dozie, I.N.S.; Burrowes, S. Malaria care-seeking behaviour among HIV-infected patients receiving antiretroviral treatment in South-Eastern Nigeria: A cross-sectional study. PLoS ONE 2019, 14, e0213742. [Google Scholar] [CrossRef]
  367. Masoumi-Asl, H.; Khanaliha, K.; Bokharaei-Salim, F.; Esteghamati, A.; Kalantari, S.; Hosseinyrad, M. Enteric Opportunistic infection and the impact of antiretroviral therapy among HIV/AIDS patients from Tehran, Iran. Iran. J. Public Health 2019, 48, 730–739. [Google Scholar] [CrossRef]
  368. Abdullahi, I.N.; Emeribe, A.U.; Adekola, H.A.; Muhammad, H.Y.; Ahmad, A.E.; Anka, A.U.; Mohammed, Y.; Haruna, S.; Oderinde, B.S.; Shuwa, H.A.; et al. Leucocytes and Th-associated Cytokine Profile of HIV-Leishmaniasis Co-Infected Persons Attending Abuja Teaching Hospital, Nigeria. Eurasian J. Med. 2020, 52, 271–276. [Google Scholar] [CrossRef]
  369. Amodu-Sanni, M.; Ahmed, H.; Jiya, N.; Yusuf, T.; Sani, U.; Isezuo, K.; Ugege, M.; Mikailu, A. Prevalence and clinical forms of malaria among febrile HIV-infected children seen at usmanu danfodiyo university teaching hospital, sokoto, nigeria. Afr. J. Infect. Dis. 2020, 14, 24–32. [Google Scholar] [CrossRef]
  370. Anyanwu, N.C.J.; Oluwatimileyin, D.J.; Sunmonu, P.T. Status of Anaemia and Malaria Co-infection With HIV From HAART Clinics in Federal Capital Territory, Nigeria: A Cross-Sectional Study. Microbiol. Insights 2020, 13, 1178636120947680. [Google Scholar] [CrossRef] [PubMed]
  371. Ayele, A.A.; Tadesse, D.; Manilal, A.; Yohanes, T.; Seid, M.; Mekuria, M.S. Prevalence of enteric bacteria and enteroparasites in human immunodeficiency virus-infected individuals with diarrhoea attending antiretroviral treatment clinic, Arba Minch General Hospital, southern Ethiopia. New Microbes New Infect. 2020, 38, 100789. [Google Scholar] [CrossRef] [PubMed]
  372. Barbosa Júnior, W.L.; Justo, A.M.; Aguiar Dos Santos, A.M.; de Lorena, V.M.B.; do Carmo, R.F.; de Melo, F.L.; de Medeiros, Z.M.; Vasconcelos, L.R.S. Higher levels of TNF and IL-4 cytokines and low miR-182 expression in visceral leishmaniasis-HIV co-infected patients. Parasite Immunol. 2020, 42, e12701. [Google Scholar] [CrossRef]
  373. Barbosa Júnior, W.L.; Justo, A.M.; Dos Santos, A.M.A.; do Carmo, R.F.; de Melo, F.L.; Vasconcelos, L.R.S.; de Medeiros, Z.M. SLC11A1 (rs3731865) polymorphism and susceptibility to visceral leishmaniasis in HIV-coinfected patients from Northeastern Brazil. Parasitol. Res. 2020, 119, 491–499. [Google Scholar] [CrossRef]
  374. Bokharaei-Salim, F.; Esteghamati, A.; Khanaliha, K.; Kalantari, S.; Sayyahfar, S.; Donyavi, T.; Garshasbi, S.; Asgari, Q.; Salemi, B. Evaluation of a PCR assay for diagnosis of toxoplasmosis in serum and peripheral blood mononuclear cell among HIV/AIDS patients. J. Parasit. Dis. 2020, 44, 159–165. [Google Scholar] [CrossRef]
  375. Charoensakulchai, S.; Bualert, L.; Manomat, J.; Mungthin, M.; Leelayoova, S.; Tanariya, P.; Siripattanapipong, S.; Naaglor, T.; Piyaraj, P. Risk Factors of Leishmania Infection among HIV-Infected Patients in Trang Province, Southern Thailand: A Study on Three Prevalent Species. Am. J. Trop. Med. Hyg. 2020, 103, 1502–1509. [Google Scholar] [CrossRef]
  376. Cunha, M.A.; Celeste, B.J.; Kesper, N.; Fugimori, M.; Lago, M.M.; Ibanes, A.S.; Ouki, L.M.; Neto, E.A.S.; Fonseca, F.F.; Silva, M.A.L.; et al. Frequency of Leishmania spp. infection among HIV-infected patients living in an urban area in Brazil: A cross-sectional study. BMC Infect. Dis. 2020, 20, 885. [Google Scholar] [CrossRef]
  377. Dutta, A.; Mehta, P.; Ingole, N. Seroprevalence of Toxoplasma gondii in newly diagnosed HIV seropositive patients. Indian J. Med. Res. 2020, 152, 515–518. [Google Scholar] [CrossRef]
  378. Hoshina, T.; Horino, T.; Saiki, E.; Aonuma, H.; Sawaki, K.; Miyajima, M.; Lee, K.; Nakaharai, K.; Shimizu, A.; Hosaka, Y.; et al. Seroprevalence and associated factors of Toxoplasma gondii among HIV-infected patients in Tokyo: A cross sectional study. J. Infect. Chemother. 2020, 26, 33–37. [Google Scholar] [CrossRef]
  379. Jegede, F.E.; Oyeyi, T.I.; Abdulrahman, S.A.; Mbah, H.A. Malaria parasite density as a predictor of hematological parameter changes among HIV infected adults attending two antiretroviral treatment clinics in Kano, Northwest Nigeria. J. Trop. Med. 2020, 2020, 3210585. [Google Scholar] [CrossRef]
  380. Medina-Marino, A.; Mudau, M.; Kojima, N.; Peters, R.P.H.; Feucht, U.D.; De Vos, L.; Olivier, D.; Muzny, C.A.; McIntyre, J.A.; Klausner, J.D. Persistent Chlamydia trachomatis, Neisseria gonorrhoeae or Trichomonas vaginalis positivity after treatment among human immunodeficiency virus-infected pregnant women, South Africa. Int. J. STD AIDS 2020, 31, 294–302. [Google Scholar] [CrossRef] [PubMed]
  381. Moro, J.C.; Moreira, N.M. Clinico-epidemiological and sociodemographic profile of HIV/AIDS patients who are co-infected with Toxoplasma gondii in the border region of Brazil. An. Acad. Bras. Cienc. 2020, 92, e20200293. [Google Scholar] [CrossRef] [PubMed]
  382. Onosakponome, E.O.; Wogu, M.N. The Role of Sex in Malaria-COVID19 Coinfection and Some Associated Factors in Rivers State, Nigeria. J. Parasitol. Res. 2020, 2020, 8829848. [Google Scholar] [CrossRef]
  383. Zakari, M.M.; Isah, A.Y.; Offiong, R.; Yunusa, T.; Abdullahi, I.N. Serological survey and risk factors associated with Toxoplasma gondii infection among HIV-infected pregnant women attending Abuja Tertiary Hospital, Nigeria. Malawi Med. J. 2020, 32, 160–167. [Google Scholar] [CrossRef]
  384. Sandie, S.M.; Sumbele, I.U.N.; Tasah, M.M.; Kimbi, H.K. Malaria and intestinal parasite co-infection and its association with anaemia among people living with HIV in Buea, Southwest Cameroon: A community-based retrospective cohort study. PLoS ONE 2021, 16, e0245743. [Google Scholar] [CrossRef]
  385. Sepahvand, F.; Mamaghani, A.J.; Ezatpour, B.; Badparva, E.; Zebardast, N.; Fallahi, S. Gastrointestinal parasites in immunocompromised patients; A comparative cross-sectional study. Acta Trop. 2022, 231, 106464. [Google Scholar] [CrossRef]
  386. Stiffler, D.M.; Oyieko, J.; Kifude, C.M.; Rockabrand, D.M.; Luckhart, S.; Stewart, V.A. HIV-1 Infection Is Associated With Increased Prevalence and Abundance of Plasmodium falciparum Gametocyte-Specific Transcripts in Asymptomatic Adults in Western Kenya. Front. Cell. Infect. Microbiol. 2021, 10, 600106. [Google Scholar] [CrossRef]
  387. Steinberg, H.E.; Bowman, N.M.; Diestra, A.; Ferradas, C.; Russo, P.; Clark, D.E.; Zhu, D.; Magni, R.; Malaga, E.; Diaz, M.; et al. Detection of toxoplasmic encephalitis in hiv positive patients in urine with hydrogel nanoparticles. PLoS Negl. Trop. Dis. 2021, 15, e0009199. [Google Scholar] [CrossRef]
  388. Yulfi, H.; Rozi, M.F.; Andriyani, Y.; Darlan, D.M. Prevalence of Cryptosporidium spp. and Blastocystis hominis in faecal samples among diarrheic HIV patients in Medan, Indonesia. Med. Glas. 2021, 18, 1–7. [Google Scholar] [CrossRef]
  389. Weinreich, F.; Hahn, A.; Eberhardt, K.A.; Feldt, T.; Sarfo, F.S.; Di Cristanziano, V.; Frickmann, H.; Loderstadt, U. Comparison of three Real-Time PCR assays targeting the SSU rRNA Gene, the COWP gene and the DnaJ-like protein gene for the diagnosis of Cryptosporidium spp. in stool samples. Pathogens 2021, 10, 1131. [Google Scholar] [CrossRef]
  390. Alonso, S.; Vidal, M.; Ruiz-Olalla, G.; González, R.; Jairoce, C.; Manaca, M.N.; Vázquez-Santiago, M.; Balcells, R.; Vala, A.; Rupérez, M.; et al. HIV infection and placental malaria reduce maternal transfer of multiple antimalarial antibodies in Mozambican women. J. Infect. 2021, 82, 45–57. [Google Scholar] [CrossRef] [PubMed]
  391. Dankwa, K.; Nuvor, S.V.; Obiri-Yeboah, D.; Feglo, P.K.; Mutocheluh, M. Occurrence of Cryptosporidium infection and associated risk factors among HIV-infected patients attending art clinics in the central region of ghana. Trop. Med. Infect. Dis. 2021, 6, 210. [Google Scholar] [CrossRef] [PubMed]
  392. Fang, E.E.; Nyasa, R.B.; Ndi, E.M.; Zofou, D.; Kwenti, T.E.; Lepezeu, E.P.; Titanji, V.P.K.; Ndip, R.N. Investigating the risk factors for seroprevalence and the correlation between CD4+ T-cell count and humoral antibody responses to Toxoplasma gondii infection amongst HIV patients in the Bamenda Health District, Cameroon. PLoS ONE 2021, 16, e0256947. [Google Scholar] [CrossRef] [PubMed]
  393. Jemikalajah, J.D.; Anie, C.O.; Enwa, F.O. Prevalence and density of malaria parasitaemia amongst hiv individuals in warri, Nigeria. Afr. Health Sci. 2021, 21, 614–618. [Google Scholar] [CrossRef]
  394. Reimer-McAtee, M.J.; Mejia, C.; Clark, T.; Terle, J.; Pajuelo, M.J.; Cabeza, J.; Lora, M.H.; Valencia, E.; Castro, R.; Lozano, D.; et al. HIV and Chagas Disease: An evaluation of the use of Real-Time Quantitative Polymerase Chain Reaction to measure levels of Trypanosoma cruzi parasitemia in HIV patients in Cochabamba, Bolivia. Am. J. Trop. Med. Hyg. 2021, 105, 643–650. [Google Scholar] [CrossRef]
  395. Rafati-Sajedi, H.; Majidi-Shad, B.; Jafari-Shakib, R.; Atrkar-Roshan, Z.; Mahmoudi, M.R.; Rezvani, S.M. Serological evaluation of Toxoplasmosis and related risk factors among HIV+/AIDS patients in northern Iran. Acta Parasitol. 2021, 66, 1417–1423. [Google Scholar] [CrossRef]
  396. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
Figure 1. Flow diagram of study selection.
Figure 1. Flow diagram of study selection.
Pathogens 14 00534 g001
Figure 2. The prevalence of parasitic coinfections in virus-infected people in different countries. a labels countries with ≥2 articles on helminth coinfections in virus-infected people; b labels countries with ≥2 articles on protozoan coinfections in virus-infected people.
Figure 2. The prevalence of parasitic coinfections in virus-infected people in different countries. a labels countries with ≥2 articles on helminth coinfections in virus-infected people; b labels countries with ≥2 articles on protozoan coinfections in virus-infected people.
Pathogens 14 00534 g002
Table 1. Pooled prevalence of helminth coinfections in virus-infected people.
Table 1. Pooled prevalence of helminth coinfections in virus-infected people.
StudiesCoinfection (n/N)Prevalence (95% CI)tau2Heterogeneity (I2)
Region
Western and central Africa271306/687820.65% (11.37–29.94)0.05990.995
Middle East and North Africa6222/152736.07% (13.30–58.84)0.07870.989
Eastern and southern Africa432691/11,17227.55% (21.72–33.37)0.03680.991
Asia and the Pacific34757/672113.42% (7.51–19.33)0.03010.972
Latin America and the Caribbean6395/156614.57% (0.00–34.33)0.06060.995
Western and central Europe and North America6201/120417.60% (8.07–27.13)0.01330.951
Sub-Saharan Africa *121/12217.21% (10.51–23.91)N/AN/A
Gender
N/A631429/14,13519.90% (14.50–25.29)0.04680.2163
Male31673/774124.41% (17.89–30.93)0.03280.1812
Female29602/731421.13% (12.77–29.49)0.05210.2283
Income Level
High8209/151016.26% (8.25–24.27)0.01260.1121
Upper middle18365/343822.85% (12.95–32.76)0.04480.2117
Lower middle711543/17,70219.51% (14.63–24.39)0.04300.2073
Low26484/654026.78% (17.58–35.98)0.05650.2377
Sample size
≤200661722/703623.33% (17.91–28.75)0.04900.989
>200573871/22,15419.13% (13.97–24.29)0.03910.994
Total1232652/29,19021.30% (17.60–25.10)-1.000
* Definitive country data is not available (N/A).
Table 2. Pooled prevalence of protozoan coinfections in virus-infected people.
Table 2. Pooled prevalence of protozoan coinfections in virus-infected people.
StudiesCoinfection (n/N)Prevalence (95% CI)tau2Heterogeneity (I2)
Region
Western and central Africa917213/23,50137.11% (31.46–42.77)0.07400.999
Middle East and North Africa321613/509239.01% (29.57–48.45)0.07230.990
Eastern and southern Africa714903/19,52433.28% (27.35–39.22)0.06390.993
Asia and the Pacific704752/18,58330.94% (25.54–36.34)0.05180.995
Latin America and the Caribbean311715/648030.68% (22.73–38.62)0.04830.991
Western and central Europe and North America111013/280529.60% (18.95–40.26)0.03060.974
Eastern Europe and central Asia119/4641.30% (27.08–55.53)N/AN/A
Sub-Saharan Africa *115/4136.59% (21.84–51.33)N/AN/A
Gender
Female694346/16,06933.14% (27.58–38.70)0.05360.2314
Male744551/22,22231.37% (26.24–36.50)0.04960.2226
N/A1657165/37,78135.78% (31.66–39.89)0.07190.2682
Income Level
High171146/430428.09% (19.66–36.51)0.02960.1720
Upper middle562452/15,59427.66% (22.41–32.91)0.03830.1958
Lower middle1829977/44,61535.55% (31.76–39.34)0.06650.2579
Low532487/11,55937.76% (30.25–45.27)0.07620.2760
Sample size
≤20017511,239/58,73037.39% (33.61–41.16)0.06250.2499
>2001334823/17,34229.98% (25.85–34.12)0.05870.2423
Total20816,062/76,07231.41% (31.30–36.91)-1.000
* Definitive country data is not available (N/A).
Table 3. Estimates of helminth infections in HIV-infected people globally.
Table 3. Estimates of helminth infections in HIV-infected people globally.
Estimated HIV InfectionsPrevalence of CoinfectionsEstimated Number of Coinfections
Number *Mean (95% CI)Estimated (95% CI)
Global38,400,00019.96% (16.18–23.74)7,664,640 (6,213,120–9,116,160)
Region
Western and central Africa5,000,00020.65% (11.37–29.94)1,032,500 (568,500–1,497,000)
Cameroon500,00011.44% (0.00–23.11)57,200 (0–115,550)
Congo130,0004.37% (0.12–8.61)5681 (156–11,193)
Gabon47,0007.83% (2.92–12.73)3680 (1372–5983)
Guinea120,00091.80% (89.47–94.12)110,160 (107,364–112,944)
Nigeria1,900,00016.70% (9.95–23.46)317,300 (189,050–445,740)
Middle East and North Africa180,0000.74% (0.24–1.24)1332 (432–2232)
Iran53,0000.74% (0.24- 1.24)392 (127–657)
Eastern and southern Africa20,600,00027.63% (21.66–33.59)5,691,780 (4,461,960–6,919,540)
Ethiopia610,00018.86% (12.56–25.16)115,046 (76,616–153,476)
Kenya1,400,00017.62% (2.50–32.74)246,680 (35,000–458,360)
South Africa7,500,00039.70% (24.43–54.98)2,977,500 (1,832,250–4,123,500)
Tanzania1,700,00031.86% (21.58–42.14)541,620 (366,860–716,380)
Uganda1,400,00032.18% (25.74–38.62)450,520 (360,360–540,680)
Zambia1,300,00036.44% (13.19–59.69)473,720 (171,470–775,970)
Zimbabwe1,300,00047.83% (10.69–84.98)621,790 (138,970–1,104,740)
Asia and the Pacific6,000,00012.02% (6.22–17.81)721,200 (373,200–1,068,600)
Australia30,00022.39% (16.63–28.15)6717 (4989–8445)
China551,4264.91% (2.74–7.08)27,075 (15,109–39,040)
India2,400,0006.47% (4.36–8.59)155,280 (104,640–206,160)
Indonesia540,0000.94% (0.00–2.01)5076 (0–10,854)
Lao People’s Democratic Republic 15,00059.59% (10.45–100.00)8939 (1,568–15,000)
Korea29,9762.86% (0.00–6.04)857 (0–1798)
Malaysia82,00019.08% (14.94–23.21)15,646 (12,251–19,032)
Nepal30,00011.14% (8.88–13.40)3342 (2664–4020)
Thailand520,00021.05% (0.00–47.11)109,460 (0–244,972)
Latin America and the Caribbean 2,530,00014.57% (0.00–34.33)368,621 (0–868,549)
Brazil960,00020.92% (0.00–49.63)200,832 (0–476,448)
Colombia170,0001.04% (0.00–2.48)1768 (0–4216)
Honduras22,0002.94% (0.00–6.22)647 (0–1368)
Western and central Europe and North America2,300,00017.60% (8.07–27.13)404,800 (185,610–623,990)
Canada92,28222.56% (18.18–26.94)20,819 (16,777–24,861)
France190,0007.55% (0.00–16.92)14,345 (0–32,148)
Italy140,00010.87% (5.68–16.06)15,218 (7952–22,484)
United State1,200,00037.50% (29.11–45.89)450,000 (349,320–550,680)
* Data resources from WHO Database and Global Burden of Disease 2019.
Table 4. Estimates of protozoan infections in HIV, HBV, and DENV-infected people globally.
Table 4. Estimates of protozoan infections in HIV, HBV, and DENV-infected people globally.
Estimated HIV InfectionsPrevalence of CoinfectionsEstimated Number of Coinfections
Number *Mean (95% CI)Estimated (95% CI)
Global38,400,00034.18% (31.33–37.03)13,125,120 (12,030,720–14,219,520)
Region
Western and central Africa 5,000,00036·16% (30·48–41·84)1808,000 (1,524,000–1,524,000)
Cameroon500,00037.82% (23.54–52.09)189,100 (117,700–260,450)
Congo130,00036.77% (0.00–73.68)47,801 (0–95,784)
Gabon47,00046.96% (37.84–56.08)22,071 (17,785–26,358)
Ghana350,00025.00% (3.82–46.18)87,500 (13,370–161,630)
Guinea120,00054.06% (0.00–100.00)64,872 (0–120,000)
Nigeria1,900,00036.00% (29.06–42.95)684,000 (552,140–816,050)
Middle East and North Africa180,00037.41% (28.20–46.62)67,338 (50,760–83,916)
Iran53,00036.59% (27.22–45.97)19,393 (14,427–24,364)
Morocco 23,00062.11% (52.35–71.86)14,285 (12,041–16,528)
Eastern and southern Africa20,600,00034.26% (28.16–40.35)7,057,560 (5,800,960–8,312,100)
Ethiopia610,00036.66% (26.73–46.59)223,626 (163,053–284,199)
Kenya1,400,00038.08% (23.05–53.12)533,120 (322,700–743,680)
Malawi990,00033.06% (7.73–58.38)327,294 (76,527–577,962)
Mozambique 2,355,34526.83% (12.09–41.57)631,939 (284,761–979,116)
South Africa7,500,00019.77% (13.67–25.87)1,482,750 (1,025,250–1,940,250)
Tanzania1,700,00017.67% (12.09–23.26)300,390 (205,530–395,420)
Uganda1,400,00046.14% (14.35–77.93)645,960 (200,900–1,091,020)
Zambia1,300,00076.36% (65.14–87.59)992,680 (846,820–1,138,670)
Zimbabwe1,300,00072.41% (56.15–88.68)941,330 (729,950–1,152,840)
Asia and the Pacific6,000,00032.09% (26.52–37.67)1,925,400 (1,591,200–2,260,200)
Australia30,00045.97% (42.61–49.33)13,791 (12,783–14,799)
China551,42612.82% (5.09–20.54)70,692 (28,068–113,262)
India2,400,00032.02% (24.55–39.49)768,480 (589,200–947,760)
Indonesia540,00058.53% (30.00–87.06)316,062 (162,000–470,124)
Japan45,5148.27% (5.57–10.97)5835 (2317–9349)
Korea29,97612.38% (6.08–18.68)3711 (1823–5600)
Lao People’s Democratic Republic 15,00064.96% (56.97–72.95)9744 (8546–10,943)
Malaysia82,00038.18% (16.83–59.52)31,308 (13,801–48,806)
Nepal30,00020.36% (1.89–38.83)6108 (567–11,649)
Thailand520,00037.05% (20.94–53.17)192,660 (108,888–276,484)
Latin America and the Caribbean2,530,00031.51% (23.44–39.57)797,203 (593,032–1,001,121)
Bolivia26,00054.12% (2.30–100.00)14,071 (598–26,000)
Brazil960,00031.88% (21.29–42.48)306,048 (204,384–407,808)
Colombia170,00027.20% (22.35–32.05)46,240 (37,995–54,485)
Honduras22,00030.39% (21.47–39.32)6686 (4723–8650)
Mexico360,00044.01% (18.87–69.14)158,436 (67,932–248,904)
Spain160,00014.23% (0.00–31.05)22,768 (0–49,680)
Venezuela 98,00014.86% (11.36–18.36)14,563 (11,133–17,993)
Western and central Europe and North America2,300,00027.47% (16.64–38.29)631,810 (382,720–880,670)
Czech Republic 41.37% (39.13–43.61)
Denmark 670033.33% (23.90–42.76)2233 (1601–2865)
France190,00012.60% (8.48–16.72)23940 (16,112–31,768)
Italy140,00016.55% (10.50–22.60)23,170 (14,700–31,640)
Turkey 52815.22% (1.15–9.28)276 (62–490)
United State1,200,00038.84% (12.85–64.82)466,080 (154,200–777,840)
Eastern Europe and central Asia
Russia 1,137,79341.30% (27.08–55.53)469,909,(308,114–631,816)
Estimated DENV infectionsPrevalence of coinfectionsEstimated number of coinfections
Number *Mean (95% CI)Estimated (95% CI)
Global3,394,13617.75% (3.54–31.95)629,952 (142,893–1,086,124)
Estimated HBV infectionsPrevalence of coinfectionsEstimated number of coinfections
Number *Mean (95% CI)Estimated (95% CI)
Global 326,236,73441.79% (15.88–67.69)137,019,428 (52,197,877–221,840,979)
* Data resources from WHO Database and Global Burden of Disease 2019.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ge, Y.; Liu, H.; Ren, N.; Qadeer, A.; Tabios, I.K.B.; Fontanilla, I.K.C.; Leonardo, L.R.; Sripa, B.; Cheng, G. The Global Prevalence of and Factors Associated with Parasitic Coinfection in People Living with Viruses: A Systematic Review and Meta-Analysis. Pathogens 2025, 14, 534. https://doi.org/10.3390/pathogens14060534

AMA Style

Ge Y, Liu H, Ren N, Qadeer A, Tabios IKB, Fontanilla IKC, Leonardo LR, Sripa B, Cheng G. The Global Prevalence of and Factors Associated with Parasitic Coinfection in People Living with Viruses: A Systematic Review and Meta-Analysis. Pathogens. 2025; 14(6):534. https://doi.org/10.3390/pathogens14060534

Chicago/Turabian Style

Ge, Yan, Huaman Liu, Ningjun Ren, Abdul Qadeer, Ian Kim B. Tabios, Ian Kendrich C. Fontanilla, Lydia R. Leonardo, Banchob Sripa, and Guofeng Cheng. 2025. "The Global Prevalence of and Factors Associated with Parasitic Coinfection in People Living with Viruses: A Systematic Review and Meta-Analysis" Pathogens 14, no. 6: 534. https://doi.org/10.3390/pathogens14060534

APA Style

Ge, Y., Liu, H., Ren, N., Qadeer, A., Tabios, I. K. B., Fontanilla, I. K. C., Leonardo, L. R., Sripa, B., & Cheng, G. (2025). The Global Prevalence of and Factors Associated with Parasitic Coinfection in People Living with Viruses: A Systematic Review and Meta-Analysis. Pathogens, 14(6), 534. https://doi.org/10.3390/pathogens14060534

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop