Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = dehydrins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3044 KB  
Article
Heterologous Expression of Bacterial Dehydrin Promotes Arabidopsis Tolerance to Cadmium and Arsenic Stress
by Asmat Ali, Muhammad Usman, Waqar Ali, Nadir Zaman Khan, Muhammad Aasim, Nikola Staykov, Akhtar Ali, Iqbal Munir and Tsanko Gechev
Genes 2025, 16(12), 1413; https://doi.org/10.3390/genes16121413 - 27 Nov 2025
Viewed by 717
Abstract
Background: Abiotic stresses, such as drought, salinity, temperature fluctuations, waterlogging, and heavy metal contamination, have a detrimental impact on plants, leading to reduced global agricultural productivity. The accumulation of cadmium (Cd) and arsenic (As) in agricultural soil, resulting from both natural and anthropogenic [...] Read more.
Background: Abiotic stresses, such as drought, salinity, temperature fluctuations, waterlogging, and heavy metal contamination, have a detrimental impact on plants, leading to reduced global agricultural productivity. The accumulation of cadmium (Cd) and arsenic (As) in agricultural soil, resulting from both natural and anthropogenic activities, poses significant threats to crop production and food safety. Dehydrins, also known as Group II Late Embryogenesis Abundant (LEA) proteins, are intrinsically disordered proteins that play crucial roles in protecting cellular structures during abiotic stress conditions. These proteins are considered promising candidates for enhancing plant tolerance to environmental stresses through their membrane-stabilizing and protective functions. Methods: This study evaluated the tolerance of Arabidopsis transgenic lines expressing a bacterial dehydrin gene (BG757) to Cd and As stresses using various physiological and biochemical parameters. Results: Compared with the wild-type (WT) control, the transgenic line (35S::BG757-1/Col-0) displayed significant increases in root and shoot growth upon exposure to Cd and As. Furthermore, transgenic plants exposed to heavy metal stress exhibited higher concentrations of chlorophyll, total protein, free proline, total flavonoid, and total phenolic content compared to WT plants. Likewise, transgenic plants showed higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and retained higher relative water content under stress conditions. Conclusions: Taken together, these findings suggest that bacterial dehydrins confer enhanced tolerance to heavy metal stress in transgenic Arabidopsis plants, highlighting their potential application in developing stress-resilient crops for contaminated environments. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

16 pages, 4416 KB  
Article
Transcriptomic Analysis Reveals the Regulatory Mechanism of Cold Tolerance in Saussurea involucrata: The Gene Expression and Function Characterization of Dehydrins
by Tongyao Chen, Lisi Zhou, Jun Zhu, Shunxing Guo, Chengcheng Liu, Airong Wang, Xu Zeng and Xiaomei Chen
Int. J. Mol. Sci. 2025, 26(18), 9030; https://doi.org/10.3390/ijms26189030 - 17 Sep 2025
Viewed by 995
Abstract
Saussurea involucrata, a rare and endangered medicinal plant of the Asteraceae family, is primarily distributed in high-altitude rocky slopes and meadows at elevations of 2400–4100 m. In nature, this herb endures various abiotic stresses, including intense cold and ultraviolet radiation. In our [...] Read more.
Saussurea involucrata, a rare and endangered medicinal plant of the Asteraceae family, is primarily distributed in high-altitude rocky slopes and meadows at elevations of 2400–4100 m. In nature, this herb endures various abiotic stresses, including intense cold and ultraviolet radiation. In our study, transcriptomic profiles revealed that most of the differentially expressed genes (DEGs) enriched in stress response pathways, such as “response to water”, “response to abscisic acid”, “cold acclimation”, and “response to water deprivation”, were significantly upregulated after low-temperature treatment. In contrast, the majority of genes with lower expression were related to “photosynthesis”, “protein–chromophore linkage”, and “chloroplast thylakoid membrane”. Among them, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) database analysis revealed that approximately 20 DEGs were identified and annotated as dehydrin genes (DHNs). Quantitative PCR (qPCR) validation also confirmed that these DHNs were upregulated under cold stress. Moreover, SiDHN3, a new dehydrin gene, was cloned by Rapid Amplification of cDNA Ends (RACE). SiDHN3’s heterologous expression in E. coli showed enhanced salt, osmotic, freeze–thaw, and cold stress tolerance. A functional analysis of SiDHN3’s truncated derivatives revealed that the K-segment was critical for its protective function under freeze–thaw and cold stresses. Collectively, our study demonstrated the potential role of various DHNs as a functional protein, enhancing tolerance to cold stress in the high-altitude adaptation of plants. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 2283 KB  
Article
Recovery Dynamics of Photosynthetic Performance and Antioxidant Defense in Resurrection Plants Ramonda serbica and Ramonda nathaliae After Freezing-Induced Desiccation
by Bekim Gashi, Fitim Kastrati, Gergana Mihailova, Katya Georgieva, Eva Popova, Erzë Çoçaj, Kimete Lluga-Rizani and Qëndrim Ramshaj
Plants 2025, 14(17), 2760; https://doi.org/10.3390/plants14172760 - 3 Sep 2025
Viewed by 1140
Abstract
Resurrection plants such as Ramonda serbica and Ramonda nathaliae are gaining scientific attention due to their exceptional ability to withstand extreme drought and cold. This study is the first to evaluate the changes in photosynthetic activity, antioxidant defense, and the role of protective [...] Read more.
Resurrection plants such as Ramonda serbica and Ramonda nathaliae are gaining scientific attention due to their exceptional ability to withstand extreme drought and cold. This study is the first to evaluate the changes in photosynthetic activity, antioxidant defense, and the role of protective proteins during the early hours of recovery of these species after freezing-induced desiccation. Specimens collected from natural habitats where temperatures dropped below −10 °C were rehydrated under controlled conditions, and measurements were taken at multiple time points from 1 h up to 7 days after recovery. Both species demonstrated a gradual increase in photosynthesis, with the CO2 assimilation rate significantly improving after 24 h and reaching full restoration by day 7. This recovery aligned with increases in relative water content and stomatal conductance. Photosystem II efficiency was fully restored within 72 h. Notably, R. nathaliae exhibited higher thermal dissipation during stress than R. serbica. Antioxidant activity peaked between 1 and 3 h of rehydration and returned to baseline by day 7. Additionally, early rehydration stages triggered the accumulation of stress-related proteins such as dehydrins, early light-inducible proteins, small heat shock proteins, and fatty acid amide hydrolase. These results provide valuable insights into the desiccation–rehydration mechanisms of Ramonda species, demonstrating that they fully recover physiological functions within seven days and highlighting species-specific stress responses during early rehydration. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

20 pages, 13905 KB  
Article
Dehydrin Protein TaCOR410 Improves Drought Resistance of Wheat Through Autophagy
by Mei Yan, Hua-Dong Song, Jia-Lian Wei, Kai-Yong Fu, Gang Li, Yong-Bo Li and Cheng Li
Plants 2025, 14(17), 2726; https://doi.org/10.3390/plants14172726 - 2 Sep 2025
Viewed by 1161
Abstract
Drought seriously affects wheat yield; it is therefore important to study the molecular mechanism of wheat resistance to drought stress to ensure national food security. Plants can remove harmful substances through autophagy, thus improving their drought resistance. The results of previous studies have [...] Read more.
Drought seriously affects wheat yield; it is therefore important to study the molecular mechanism of wheat resistance to drought stress to ensure national food security. Plants can remove harmful substances through autophagy, thus improving their drought resistance. The results of previous studies have shown that autophagy is involved in the drought stress response; however, the molecular mechanism of autophagy in response to drought stress has yet to be elucidated. In this study, molecular biological methods such as immunohistochemistry, Co-Immunoprecipitation (Co-IP), and pull-down were used to explain the molecular mechanism of autophagy in response to drought stress at the protein level. We found that a dehydrin protein called cold-regulated 410 (TaCOR410) interacts with autophagy-related 8 (TaATG8, a key protein of wheat autophagy). TaCOR410 interacted with TaATG8 through its ATG8-interacting motif (AIM), and interaction was inhibited after mutation of the AIM. Interference with TaCOR410 inhibited autophagy and reduced the drought resistance of wheat. In contrast, transient transfection of TaCOR410 promoted autophagy. In wheat, overexpression of TaATG8 improved the drought resistance of wheat. Following interference with TaATG5, TaATG7 inhibited autophagy and reduced the drought resistance of wheat. From the above results, it is evident that autophagy can improve the drought resistance of wheat and can respond to drought stress through the interaction of TaCOR410 with TaATG8. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

21 pages, 5244 KB  
Article
Identification and Functional Validation of the PeDHN Gene Family in Moso Bamboo
by Yaqin Ye, Yanting Chang, Wenbo Zhang, Tiankui Chu, Hanchen Tian, Yayun Deng, Zehui Jiang, Yanjun Ma and Tao Hu
Plants 2025, 14(10), 1520; https://doi.org/10.3390/plants14101520 - 19 May 2025
Cited by 1 | Viewed by 1068
Abstract
As climate change intensifies soil drought and salinization, enhancing the drought and salt tolerance of moso bamboo (Phyllostachys edulis) is urgent. DHN genes are crucial for plant stress responses and have gained attention in plant resistance to drought and salinity. This [...] Read more.
As climate change intensifies soil drought and salinization, enhancing the drought and salt tolerance of moso bamboo (Phyllostachys edulis) is urgent. DHN genes are crucial for plant stress responses and have gained attention in plant resistance to drought and salinity. This study identified nine DHN family members (PeDHN1PeDHN9) from moso bamboo, which were classified into K2S-type, YK2S-type, and Y2K2S-type dehydrins based on their characteristic motifs. We employed integrated bioinformatics approaches to analyze their gene structure, phylogeny, biological properties, and expression patterns under various stress conditions. Five genes (PeDHN2/4/5/6/8), which may have significant functional roles in moso bamboo, were selected for cloning. Subcellular localization experiments showed that YK2S-type dehydrins (PeDHN2/5/6) localized to both the nucleus and the plasma membrane, while K2S-type dehydrins (PeDHN4/8) were exclusively localized to the plasma membrane, indicating functional differentiation. qRT-PCR analysis revealed that the expression of PeDHN2/4/5/6/8 was significantly responsive to stress treatments with ABA, NaCl, and PEG. Additionally, overexpressing these genes in rice significantly enhanced seed germination rates and root development under salt and ABA stress, further confirming that PeDHN2/4/5/6/8 contribute to enhancing plant stress tolerance. Yeast one-hybrid assays demonstrated that two PeABF1 proteins could bind to the promoter of PeDHN4, suggesting that PeDHN4 may regulate stress responses through the ABA signaling pathway. Thus, these findings demonstrate that PeDHN2/4/5/6/8 are closely related to the response of moso bamboo to drought and saline-alkali environments. This research offers insights for moso bamboo cultivation and theoretical foundations for bamboo genetic improvement in stress environments. Full article
Show Figures

Figure 1

17 pages, 8308 KB  
Article
Aluminum Stress of Oriental Melon (Cucumis melo L.) Is Linked to the Dehydrin CmDHN3
by Chong Zhang, Qiang Chen, Xinqi Guo, Hongbo Pang and Ying Zhang
Horticulturae 2025, 11(5), 480; https://doi.org/10.3390/horticulturae11050480 - 30 Apr 2025
Viewed by 838
Abstract
Dehydrins (DHNs; late embryogenesis-abundant D11 family) are a class of hydrophilic proteins involved in plant abiotic stress response. However, there is less information regarding DHN gene function in cucurbit crops. Herein, 34 DHN gene family members were identified and characterized in Cucumis sativus [...] Read more.
Dehydrins (DHNs; late embryogenesis-abundant D11 family) are a class of hydrophilic proteins involved in plant abiotic stress response. However, there is less information regarding DHN gene function in cucurbit crops. Herein, 34 DHN gene family members were identified and characterized in Cucumis sativus, Cucumis melo, Citrullus lanatus, Benincasa hispida, Lagenaria siceraria, and Cucurbita maxima. The DHN genes in the six cucurbit crops exhibited greater collinearity within subfamilies than between different subfamilies. Responses to stress (including low-temperature, salt, cadmium, and aluminum stress) varied among the DHN members, with a significant alteration in the expression of the acidic SnKn-type DHN gene CmDHN3 in response to aluminum stress. Subcellular localization analysis confirmed that CmDHN3 is expressed in the nucleus and cytoplasm. Virus-induced gene silencing (VIGS) revealed a remarkable decrease in CmDHN3 expression, which markedly increased malondialdehyde content, relative conductivity, and proline content in the roots and leaves of plants under aluminum stress. Transcriptome analysis showed that the decreased CmDHN3 expression reduced the expression of water channel protein-encoding genes. Interactions between CmDHN3 and CmAQP1 (MELO3C007188) and between CmDHN3 and CmAQP2 (MELO3C020774) were confirmed using yeast two-hybrid assays. These results clarify the pathway by which dehydrin genes are involved in the transcriptional-level response of melon to aluminum stress and provide a theoretical basis to comprehensively analyze the functions of this gene family in cucurbit crops. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

21 pages, 4470 KB  
Article
Ethylene Signaling Modulates Dehydrin Expression in Arabidopsis thaliana Under Prolonged Dehydration
by Irina I. Vaseva, Heorhii Balzhyk, Maria Trailova, Tsvetina Nikolova, Zornitsa Katerova, Simona Galabova, Dessislava Todorova, Iskren Sergiev and Valya Vassileva
Int. J. Mol. Sci. 2025, 26(9), 4148; https://doi.org/10.3390/ijms26094148 - 27 Apr 2025
Viewed by 1625
Abstract
Dehydrins are stress-inducible proteins with protective functions, characterized by high hydrophilicity, thermostability, and a low degree of secondary structure. They stabilize cellular membranes, preserve macromolecule conformation, and support enzymatic and structural protein functions. Their accumulation in plant tissues under drought is regulated by [...] Read more.
Dehydrins are stress-inducible proteins with protective functions, characterized by high hydrophilicity, thermostability, and a low degree of secondary structure. They stabilize cellular membranes, preserve macromolecule conformation, and support enzymatic and structural protein functions. Their accumulation in plant tissues under drought is regulated by abscisic acid (ABA)-dependent and ABA-independent pathways. Ethylene plays a key role in stress adaptation, but its relationship with dehydrin accumulation remains unclear. This study investigates how ethylene influences dehydrin expression in Arabidopsis thaliana during prolonged dehydration using transcript profiling and immunodetection in wild-type (Col-0), ethylene-constitutive (ctr1-1), and ethylene-insensitive (ein3eil1) mutants. Comparative analyses showed increased survival of ctr1-1 plants under dehydration stress, likely due to reduced oxidative damage. Analysis of dehydrin-coding genes identified multiple Ethylene Response Factor (ERF) binding sites, flanking the transcription start sites, which suggests a fine-tuned ethylene-dependent regulation. The ability of ethylene signaling to either suppress or stabilize particular dehydrins was demonstrated by RT-qPCR and immunodetection experiments. Under drought stress, ethylene signaling appeared to suppress root-specific dehydrins. A Y-segment-containing protein with approximate molecular weight of 20 kDa showed decreased levels in ctr1-1 and higher accumulation in ein3eil1, indicating that ethylene signaling acts as a negative regulator. These results provide new information on the dual role of ethylene in dehydrin control, highlighting its function as a molecular switch in stress adaptive responses. Full article
(This article belongs to the Special Issue The Role of Cytokinins and Other Phytohormones in Plant Life)
Show Figures

Graphical abstract

14 pages, 4776 KB  
Article
Exploring the Role of TaERF4a in Enhancing Drought Tolerance and Regulating Dehydrin WZY1-2 Gene Expression in Wheat
by Ying Yang, Xinfei Li, Qinying Li, Wenqiang Li, Aina Wang and Hao Liu
Plants 2025, 14(8), 1214; https://doi.org/10.3390/plants14081214 - 15 Apr 2025
Viewed by 990
Abstract
Dehydrins (DHNs) belong to the second family of late embryogenesis abundant (LEA) proteins, which are widely distributed in plants. We cloned a SK3-type DHN gene named WZY1-2 in Zheng yin 1 cultivar of Triticum aestivum. An ERF-type transcription factor TaERF4a [...] Read more.
Dehydrins (DHNs) belong to the second family of late embryogenesis abundant (LEA) proteins, which are widely distributed in plants. We cloned a SK3-type DHN gene named WZY1-2 in Zheng yin 1 cultivar of Triticum aestivum. An ERF-type transcription factor TaERF4a was found to be involved in the regulation of the dehydrin WZY1-2 gene in our last report. The stress-responsive ability and dual-luciferase assay demonstrated that TaERF4a positively regulates WZY1-2 gene transcription under stress conditions. In this study, we further characterized the role of the transcription factor TaERF4a in plant drought tolerance. Arabidopsis thaliana heterologously overexpressing TaERF4a exhibited higher survival rate, increased superoxide dismutase (SOD) activity, elevated proline and chlorophyll content, and reduced malondialdehyde (MDA) content under drought conditions. Conversely, silencing TaERF4a in Chinese spring wheat using the virus-induced gene silencing (VIGS) method increased the sensitivity of plants to drought stress. Furthermore, we identified the specific binding site of TaERF4a in the WZY1-2 promoter. Electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter assay demonstrated that TaERF4a activates the expression of the WZY1-2 dehydrin gene through binding to the DRE cis-element in its promoter. Taken together, the results of our study indicate that TaERF4a positively regulates the expression of the dehydrin WZY1-2 gene and enhances drought tolerance in plants. Full article
Show Figures

Figure 1

15 pages, 20976 KB  
Article
Overexpression of Suaeda salsa SsDHN Gene Enhances Salt Resistance in Tobacco by Improving Photosynthetic Characteristics and Antioxidant Activity
by Hui Ma, Jiangmei Guo, Sijia Lu, Li Zhang, Shuisen Chen, Jinwei Lin, Tianqi Zheng, Fengming Zhuang, Hui Li and Ming Zhong
Int. J. Mol. Sci. 2025, 26(3), 1185; https://doi.org/10.3390/ijms26031185 - 30 Jan 2025
Cited by 5 | Viewed by 1503
Abstract
Salt stress is a major abiotic stress that interferes with plant growth and affects crop production. Dehydrin (DHN), a member of the late embryogenesis abundant (LEA) protein family, was considered to be a stress protein involved in the protective reaction of plant dehydration. [...] Read more.
Salt stress is a major abiotic stress that interferes with plant growth and affects crop production. Dehydrin (DHN), a member of the late embryogenesis abundant (LEA) protein family, was considered to be a stress protein involved in the protective reaction of plant dehydration. Our previous research has shown that overexpression of the Suaeda salsa SsDHN gene enhances tolerance to salt stress in tobacco. However, the research on its protection in photosynthesis under salt stress remains unclear. In this study, gene overexpression (SsDHN-OE) tobacco plants were utilized to study the effect of the SsDHN gene on plant photosynthesis under salt stress. Our findings showed that overexpression of SsDHN increased the biomass, leaf area, root length, and root surface area in tobacco seedlings under salt stress conditions. The transgenic tobacco with overexpression of SsDHN had obvious stomatal closure, which effectively alleviated the adverse effects of salt stress on photosynthetic efficiency. Overexpression of the SsDHN gene in tobacco can effectively reduce the degree of photoinhibition and chloroplast damage caused by salt stress. Moreover, the SsDHN-overexpressing transgenic tobacco plants exhibited a decrease in oxidative damage and protected membrane structures related to photosynthesis by increasing antioxidant enzyme activity and antioxidant substance content. It was further found that the expression levels of photosynthetic and antioxidant-related genes Rubisco, SBPase, POD7, CAT3, APX2, and SOD3 were significantly up-regulated by overexpressing the SsDHN gene in tobacco seedlings under salt stress. In conclusion, the SsDHN gene might improve the salt stress resistance of tobacco seedlings and be involved in regulating photosynthesis and antioxidant activity under salt stress. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 3730 KB  
Article
Genome-Wide Characterization of Wholly Disordered Proteins in Arabidopsis
by Wenfen Long, Liang Zhao, Huimin Yang, Xinyi Yang, Yulong Bai, Xiuhua Xue, Doudou Wang and Shengcheng Han
Int. J. Mol. Sci. 2025, 26(3), 1117; https://doi.org/10.3390/ijms26031117 - 28 Jan 2025
Cited by 2 | Viewed by 1996
Abstract
Intrinsically disordered proteins (IDPs) include two types of proteins: partial disordered regions (IDRs) and wholly disordered proteins (WDPs). Extensive studies focused on the proteins with IDRs, but less is known about WDPs because of their difficult-to-form folded tertiary structure. In this study, we [...] Read more.
Intrinsically disordered proteins (IDPs) include two types of proteins: partial disordered regions (IDRs) and wholly disordered proteins (WDPs). Extensive studies focused on the proteins with IDRs, but less is known about WDPs because of their difficult-to-form folded tertiary structure. In this study, we developed a bioinformatics method for screening more than 50 amino acids in the genome level and found a total of 27 categories, including 56 WDPs, in Arabidopsis. After comparing with 56 randomly selected structural proteins, we found that WDPs possessed a more wide range of theoretical isoelectric point (PI), a more negative of Grand Average of Hydropathicity (GRAVY), a higher value of Instability Index (II), and lower values of Aliphatic Index (AI). In addition, by calculating the FCR (fraction of charged residue) and NCPR (net charge per residue) values of each WDP, we found 20 WDPs in R1 (FCR < 0.25 and NCPR < 0.25) group, 15 in R2 (0.25 ≤ FCR ≤ 0.35 and NCPR ≤ 0.35), 19 in R3 (FCR > 0.35 and NCPR ≤ 0.35), and two in R4 (FCR > 0.35 and NCPR > 0.35). Moreover, the gene expression and protein-protein interaction (PPI) network analysis showed that WDPs perform different biological functions. We also showed that two WDPs, SIS (Salt Induced Serine rich) and RAB18 (a dehydrin family protein), undergo the in vitro liquid-liquid phase separation (LLPS). Therefore, our results provide insight into understanding the biochemical characters and biological functions of WDPs in plants. Full article
(This article belongs to the Special Issue Structure, Function and Dynamics in Proteins: 2nd Edition)
Show Figures

Figure 1

20 pages, 2444 KB  
Article
Order in Chaos: Lesser-Conserved and Repeat Structures in Dehydrins
by G. Richard Strimbeck
Biomolecules 2025, 15(1), 137; https://doi.org/10.3390/biom15010137 - 16 Jan 2025
Cited by 1 | Viewed by 1305
Abstract
Dehydrins (Dhns) are a group of intrinsically disordered land plant proteins that are closely associated with tolerance of dehydrative stress. Dhns are recognized and classified by the presence and sequence of five different conserved segments, varying in length from 8 to 15 residues, [...] Read more.
Dehydrins (Dhns) are a group of intrinsically disordered land plant proteins that are closely associated with tolerance of dehydrative stress. Dhns are recognized and classified by the presence and sequence of five different conserved segments, varying in length from 8 to 15 residues, separated by highly variable disordered regions. In addition to one or more copies of the diagnostic, fifteen-residue K segment, most Dhns can be classified into one of three major groups based on the mutually exclusive presence of three other conserved segments (H, Y, or F), with all three groups typically incorporating multi-serine S segments. Many Dhns also include repeat structures. From an input library of 8675 non-redundant candidate sequences, a specialized R script identified and classified 2658 complete and 236 partial Dhn sequences in all major green plant (Viridiplantae) lineages, including a few green algal genera. An examination of the connecting segments bridging the conserved segments identified additional conserved patterns, suggesting that multi-Y, S-K, and K-S domains may act as functional units. Dhn Decoder identified 857 Dhns with repeat structures, ranging from 3 short, simple repeats to elaborate variations with up to 45 repeats or repeats of up to 85 residues comprising 1 or more of the conserved segments, suggesting that internal sequence duplication is an important mode of evolution in Dhns. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

16 pages, 2562 KB  
Article
Morphological, Physiological, and Transcriptional Changes in Crocus sativus L. Under In Vitro Polyethylene Glycol-Induced Water Stress
by Suman Gusain and Rohit Joshi
Biology 2025, 14(1), 78; https://doi.org/10.3390/biology14010078 - 15 Jan 2025
Cited by 5 | Viewed by 2352
Abstract
Saffron (Crocus sativus L.), a perennial geophyte from the Iridaceae family, blooms in autumn and thrives in Mediterranean-like climates. It is highly valued for its therapeutic and commercial uses. While saffron cultivation generally requires minimal water, insufficient irrigation can negatively impact its [...] Read more.
Saffron (Crocus sativus L.), a perennial geophyte from the Iridaceae family, blooms in autumn and thrives in Mediterranean-like climates. It is highly valued for its therapeutic and commercial uses. While saffron cultivation generally requires minimal water, insufficient irrigation can negatively impact its yield. Although numerous studies have explored the detrimental impact of drought on saffron under field conditions, its impact in vitro remains largely unexplored. The present study aims to investigate the effects of polyethylene glycol (PEG) 6000 at concentrations of 0%, 5%, and 10% in inducing drought stress on saffron shoots under controlled conditions. The research focuses on evaluating morphological, physiological, and biochemical changes and analyzing the expression of drought-responsive genes. Shoot establishment was carried out on Murashige and Skoog (MS) medium supplemented with 6 mg/L 6-benzyladenine (BAP) and 1 mg/L naphthaleneacetic acid (NAA), while PEG 6000 was used to induce drought stress. Various morphological, biochemical, and molecular parameters were assessed 30 days after stress induction. Increasing PEG concentrations in the medium significantly reduced shoot regeneration, leading to increased apical tissue browning. Significant chlorophyll and carotenoid level changes were observed in shoots exposed to higher PEG concentrations. PEG-induced drought led to decreased plant growth and biomass and lowered relative water content of leaves. Lipid peroxidation, membrane damage, and H2O2 content increased, indicating heightened stress levels. Proline concentration significantly increased in plants subjected to 5% and 10% PEG compared to controls. Non-enzymatic antioxidant activity (phenolics, flavonoids, % inhibition, total reducing power, and total antioxidant activity) also increased with the severity of stress. In contrast, a decrease in the activity of superoxide dismutase (SOD) and peroxidase was observed in PEG-treated shoots. Significant changes in the expression of drought-related genes, such as DREB1, DREB2, AREB1, DHN1 (Dehydrin), and SnRK2, were observed in shoots exposed to 5% and 10% PEG. In conclusion, the study highlights that PEG, as an inducer of drought stress, negatively impacts saffron’s growth and physiological responses under in vitro conditions. It also triggers significant changes in biochemical and molecular mechanisms, indicating the plant’s susceptibility to water scarcity. Full article
(This article belongs to the Special Issue Molecular Genetics in Plant Responses to Abiotic Stress)
Show Figures

Figure 1

22 pages, 7428 KB  
Article
Genome-Wide Identification, Phylogenetic Evolution, and Abiotic Stress Response Analyses of the Late Embryogenesis Abundant Gene Family in the Alpine Cold-Tolerant Medicinal Notopterygium Species
by Xuanye Wu, Xiaojing He, Xiaoling Wang, Puyuan Liu, Shaoheng Ai, Xiumeng Liu, Zhonghu Li and Xiaojuan Wang
Int. J. Mol. Sci. 2025, 26(2), 519; https://doi.org/10.3390/ijms26020519 - 9 Jan 2025
Cited by 2 | Viewed by 1624
Abstract
Late embryogenesis abundant (LEA) proteins are a class of proteins associated with osmotic regulation and plant tolerance to abiotic stress. However, studies on the LEA gene family in the alpine cold-tolerant herb are still limited, and the phylogenetic evolution and biological functions of [...] Read more.
Late embryogenesis abundant (LEA) proteins are a class of proteins associated with osmotic regulation and plant tolerance to abiotic stress. However, studies on the LEA gene family in the alpine cold-tolerant herb are still limited, and the phylogenetic evolution and biological functions of its family members remain unclear. In this study, we conducted genome-wide identification, phylogenetic evolution, and abiotic stress response analyses of LEA family genes in Notopterygium species, alpine cold-tolerant medicinal herbs in the Qinghai–Tibet Plateau and adjacent regions. The gene family identification analysis showed that 23, 20, and 20 LEA genes were identified in three Notopterygium species, N. franchetii, N. incisum, and N. forrestii, respectively. All of these genes can be classified into six LEA subfamilies: LEA_1, LEA_2, LEA_5, LEA_6, DHN (Dehydrin), and SMP (seed maturation protein). The LEA proteins in the three Notopterygium species exhibited significant variations in the number of amino acids, physical and chemical properties, subcellular localization, and secondary structure characteristics, primarily demonstrating high hydrophilicity, different stability, and specific subcellular distribution patterns. Meanwhile, we found that the members of the same LEA subfamily shared similar exon–intron structures and conserved motifs. Interestingly, the chromosome distributions of LEA genes in Notopterygium species were scattered. The results of the collinearity analysis indicate that the expansion of the LEA gene family is primarily driven by gene duplication. A Ka/Ks analysis showed that paralogous gene pairs were under negative selection in Notopterygium species. A promoter cis-acting element analysis showed that most LEA genes possessed multiple cis-elements connected to plant growth and development, stress response, and plant hormone signal transduction. An expression pattern analysis demonstrated the species-specific and tissue-specific expression of NinLEAs. Experiments on abiotic stress responses indicated that the NinLEAs play a crucial role in the response to high-temperature and drought stresses in N. franchetii leaves and roots. These results provide novel insights for further understanding the functions of the LEA gene family in the alpine cold-tolerant Notopterygium species and also offer a scientific basis for in-depth research on the abiotic stress response mechanisms and stress-resistant breeding. Full article
(This article belongs to the Special Issue Research on Plant Genomics and Breeding: 2nd Edition)
Show Figures

Figure 1

19 pages, 3457 KB  
Article
Cross-Stressful Adaptation to Drought and High Salinity Is Related to Variable Antioxidant Defense, Proline Metabolism, and Dehydrin b Expression in White Clover
by Yao Ling, Duo Wang, Yan Peng, Dandan Peng and Zhou Li
Agronomy 2025, 15(1), 126; https://doi.org/10.3390/agronomy15010126 - 7 Jan 2025
Cited by 4 | Viewed by 1676
Abstract
A previous exposure to drought priming (DP) or salt priming (SP) could significantly improve future tolerance to both the same and different abiotic stresses, which is an effective mitigation strategy for plants to adapt to changing environmental conditions. If the type of stress [...] Read more.
A previous exposure to drought priming (DP) or salt priming (SP) could significantly improve future tolerance to both the same and different abiotic stresses, which is an effective mitigation strategy for plants to adapt to changing environmental conditions. If the type of stress priming is different from subsequent abiotic stress, this indicates that plants are trained to acquire cross tolerance. The objective of this study was to explore DP-regulated cross tolerance to salt stress and SP-induced cross tolerance to drought associated with changes in growth, antioxidant defense, proline metabolism, and the expression of the dehydration-responsive gene Dehydrin b involved in the stabilization of membrane systems, cryoprotection of intracellular proteins, and enhancement in water retention capacity in white clover (Trifolium repens). Plants were pretreated by initial DP or SP and then subjected to subsequent salt stress or drought stress for 10 days, respectively. The results demonstrated that DP significantly increased number of roots during subsequent salt stress, whereas SP significantly improved stem length, root length, and number of roots under drought stress, which indicated that the SP exhibited more pronounced and positive effects on mitigating subsequent drought-induced growth retardant. Both salt stress and drought resulted in significant increases in electrolyte leakage and contents of superoxide anion, hydrogen peroxide, and malonaldehyde due to reduced superoxide dismutase, peroxide, and catalase, as well as key enzyme activities in the ascorbate–glutathione cycle. SP or DP could significantly enhance these enzyme activities to alleviate subsequent drought- or salt-induced oxidative damage. SP or DP also significantly improved the accumulation of proline contributing to better water homeostasis by promoting biosynthetic enzyme activities (Δ1-pyrroline-5-carboxylate synthetase and aminotransferase) and restricting proline dehydrogenase activity for proline degradation under drought or salt stress, respectively. In addition, SP significantly up-regulated the expression of dehydrin b under drought stress, but DP failed to induce the expression of dehydrin b in response to subsequent salt stress. The current findings proved that the pre-exposure of white clover plants to DP or SP could effectively mitigate the negative effects of subsequent salt stress or drought related to some common and different pathways. Plants pretreated by initial DP or SP exhibited better adaption to subsequent different stress by regulating growth, physiological, metabolic, and transcriptional changes. Full article
Show Figures

Figure 1

15 pages, 9746 KB  
Article
Saussurea involucrata SiLEA5 Enhances Tolerance to Drought Stress in Solanum lycopersicum
by Xiaoyan Liu, Aowei Li, Guanghong Luo and Jianbo Zhu
Foods 2024, 13(22), 3641; https://doi.org/10.3390/foods13223641 - 15 Nov 2024
Cited by 2 | Viewed by 1903
Abstract
Drought adversely affects plant growth, which leads to reduced crop yields and exacerbates food insecurity. Late embryogenesis abundant (LEA) proteins are crucial for plants’ responses to abiotic stresses. This research further investigates the role of SiLEA5 by utilizing transgenic tomatoes under drought stress. [...] Read more.
Drought adversely affects plant growth, which leads to reduced crop yields and exacerbates food insecurity. Late embryogenesis abundant (LEA) proteins are crucial for plants’ responses to abiotic stresses. This research further investigates the role of SiLEA5 by utilizing transgenic tomatoes under drought stress. The expression of SiLEA5 was upregulated under drought and abscisic acid (ABA) treatment, resulting in decreased electrolyte leakage and malondialdehyde content, alongside increased levels of osmotic regulators and antioxidant enzyme activity. These biochemical alterations reduce oxidative damage and enhance drought resistance. qRT-PCR analysis revealed the upregulation of ABA signaling genes and key enzymes involved in proline biosynthesis (P5CS) and dehydrin (DHN) synthesis under drought stress. Additionally, overexpression of SiLEA5 increased the net photosynthetic rate (Pn) and fruit yield of tomatoes by regulating stomatal density and aperture. These findings suggest that SiLEA5 may be a potential target for improving drought tolerance in tomatoes and other crops. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

Back to TopTop