Recovery Dynamics of Photosynthetic Performance and Antioxidant Defense in Resurrection Plants Ramonda serbica and Ramonda nathaliae After Freezing-Induced Desiccation
Abstract
1. Introduction
2. Results
2.1. Recovery of Relative Water Content
2.2. Photosynthetic Activity During Stress and Recovery
2.3. Photochemical Efficiency and Energy Dispersion During Stress and Recovery
2.4. Antioxidant Responses During Stress and Recovery
2.5. Protein Changes During Stress and Recovery
3. Discussion
3.1. Dynamics of Relative Water Content
3.2. Alterations in Photosynthesis and Chlorophyll Fluorescence Under Stress and During Recovery
3.3. Antioxidant Defense Mechanisms in Response to Stress and Recovery
3.4. The Role of Protective Proteins During Stress and Recovery
4. Materials and Methods
4.1. Habitat Description, Sampling, and Experiment Setup
4.2. Determination of Relative Water Content (RWC)
4.3. Quantification of Total Phenolic Content, Flavonoid Content, and Antioxidant Activity
4.4. Measurement of Photosynthesis and Chlorophyll Fluorescence
4.5. SDS-PAGE and Western Blot of Total Leaf Proteins
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of Food Insecurity of the World: How Does International Price Volatility Affect Domestic Economies and Food Security? FAO; WFP; IFAD: Rome, Italy, 2011; Available online: https://reliefweb.int/attachments/76706889-dc9c-31d0-bfc7-1e42c0430aff/Full%20Report.pdf (accessed on 20 May 2022).
- IPCC. Climate Change 2014 Synthesis Report; IPCC: Geneva, Szwitzerland, 2014; Volume 1059, p. 1072. [Google Scholar]
- Ruelland, E.; Vaultier, M.N.; Zachowski, A.; Hurry, V. Cold signalling and cold acclimation in plants. Adv. Bot. Res. 2009, 49, 35–150. [Google Scholar] [CrossRef]
- Gołębiowska-Pikania, G.; Kopeć, P.; Surówka, E.; Krzewska, M.; Dubas, E.; Nowicka, A.; Rapacz, M.; Wójcik-Jagła, M.; Malaga, S.; Żur, I. Changes in protein abundance and activity involved in freezing tolerance acquisition in winter barley (Hordeum vulgare L.). J. Proteom. 2017, 169, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Thomashow, M.F. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol. 1998, 118, 1–8. [Google Scholar] [CrossRef]
- Kaplan, F.; Kopka, J.; Sung, D.Y.; Zhao, W.; Popp, M.; Porat, R.; Guy, C.L. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J. 2007, 50, 967–981. [Google Scholar] [CrossRef] [PubMed]
- Guy, C.L. Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1990, 41, 187–223. [Google Scholar] [CrossRef]
- Chen, M.; Thelen, J.J. Acyl-lipid desaturase 1 primes cold acclimation response in Arabidopsis. Physiol. Plant. 2016, 158, 11–22. [Google Scholar] [CrossRef]
- Farrant, J.M.; Hilhorst, H. Crops for dry environments. Curr. Opin. Biotechnol. 2022, 74, 84–91. [Google Scholar] [CrossRef]
- Kastrati, F.; Gashi, B.; Mihailova, G.; Georgieva, K.; Popova, E.; Çoçaj, E. Photosynthetic activity and antioxidative defense during cold and freezing stress of the resurrection plants Ramonda nathaliae and Ramonda serbica. Plant Stress 2025, 15, 100741. [Google Scholar] [CrossRef]
- Mihailova, G.; Gashi, B.; Krastev, N.; Georgieva, K. Acquisition of Freezing Tolerance of Resurrection Species from Gesneriaceae, a Comparative Study. Plants 2023, 12, 1893. [Google Scholar] [CrossRef]
- Mihailova, G.; Solti, Á.; Sárvári, É.; Keresztes, Á.; Rapparini, F.; Velitchkova, M.; Simova-Stoilova, L.; Aleksandrov, V.; Georgieva, K. Freezing tolerance of photosynthetic apparatus in the homoiochlorophyllous resurrection plant Haberlea rhodopensis. Environ. Exp. Bot. 2020, 178, 104157. [Google Scholar] [CrossRef]
- Fernández-Marín, B.; Neuner, G.; Kuprian, E.; Laza, J.M.; García-Plazaola, J.I.; Verhoeven, A. First evidence of freezing tolerance in a resurrection plant: Insights into molecular mobility and zeaxanthin synthesis in the dark. Physiol. Plant. 2018, 163, 472–489. [Google Scholar] [CrossRef]
- Fernández-Marin, B.; Nadal, M.; Gago, J.; Ferine, A.R.; Lopez-Pozo, M.; Artetxe, U.; Garcia-Plazaola, J.I.; Verhoeven, A. Born to revive: Molecular and physiological mechanisms of double tolerance in a paleotropical and resurrection plant. New Phytol. 2020, 226, 741–759. [Google Scholar] [CrossRef]
- Gashi, B.; Millaku, F.; Abdullai, K.; Daskalova, D.; Dontcheva, S.; Krasniqi, E.; Mata, V.; Kongjika, E. Ecological and morphological characteristics and in vitro conservation of Ramonda serbica Panc in Kosovo. Ekoloji 2013, 22, 19–28. [Google Scholar] [CrossRef]
- Daskalova, E.; Dontcheva, S.; Zekaj, Z.; Bacu, A.; Sota, V.; Abdullai, K.; Gashi, B.; Minkov, I.; Toneva, V.; Kongjika, E. Initial determination of polymorphism and in vitro conservation of some Ramonda serbica and Ramonda nathaliae populations from Albania, Macedonia and Bulgaria. Biotechnol. Biotechnol. Equip. 2012, 26, 16–25. [Google Scholar] [CrossRef]
- Farrant, J.M.; Moore, J.P. Programming desiccation-tolerance: From plants to seeds to resurrection plants. Curr. Opin. Plant Biol. 2011, 14, 340–345. [Google Scholar] [CrossRef]
- Georgieva, K.; Mihailova, G.; Fernández-Marín, B.; Bertazza, G.; Govoni, A.; Arzac, M.I.; Laza, J.M.; Vilas, J.L.; García-Plazaola, J.I.; Rapparini, F. Protective strategies of Haberlea rhodopensis for acquisition of freezing tolerance: Interaction between dehydration and low temperature. Int. J. Mol. Sci. 2022, 23, 15050. [Google Scholar] [CrossRef] [PubMed]
- Gashi, B.; Abdullai, K.; Sota, V.; Kongjika, E. Micropropagation and in vitro conservation of the rare and threatened plants Ramonda serbica and Ramonda nathaliae. Physiol. Mol. Biol. Plants 2015, 21, 123–136. [Google Scholar] [CrossRef]
- Rakić, T.; Lazarević, M.; Jovanović, Ž.S.; Radović, S.; Siljak-Yakovlev, S.; Stevanović, B.; Stevanović, V. Resurrection plants of the genus Ramonda: Prospective survival strategies–unlock further capacity of adaptation, or embark on the path of evolution? Front. Plant Sci. 2014, 4, 550. [Google Scholar] [CrossRef]
- Gashi, B.; Babani, F.; Kongjika, E. Chlorophyll fluorescence imaging of photosynthetic activity and pigment contents of the resurrection plants Ramonda serbica and Ramonda nathaliae during dehydration and rehydration. Physiol. Mol. Biol. Plants. 2013, 19, 333–341. [Google Scholar] [CrossRef]
- Colville, L.; Kranner, I. Desiccation tolerant plants as model systems to study redox regulation of protein thiols. Plant Growth Regul. 2010, 62, 241–255. [Google Scholar] [CrossRef]
- Neeragunda Shivaraj, Y.; Barbara, P.; Gugi, B.; Vicré-Gibouin, M.; Driouich, A.; Ramasandra Govind, S.; Devaraja, A.; Kambalagere, Y. Perspectives on structural, physiological, cellular, and molecular responses to desiccation in resurrection plants. Scientifica 2018, 2018, 9464592. [Google Scholar] [CrossRef]
- Oliver, M.J.; Farrant, J.M.; Hilhorst, H.W.; Mundree, S.; Williams, B.; Bewley, J.D. Desiccation tolerance: Avoiding cellular damage during drying and rehydration. Annu. Rev. Plant Biol. 2020, 71, 435–460. [Google Scholar] [CrossRef]
- Morse, M.; Rafudeen, M.S.; Farrant, J.M. An overview of the current understanding of desiccation tolerance in the vegetative tissues of higher plants. Adv. Bot. Res. 2011, 57, 319–347. [Google Scholar] [CrossRef]
- Farrant, J.M. A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecol. 2000, 151, 29–39. [Google Scholar] [CrossRef]
- Kranner, I.; Beckett, R.P.; Wornik, S.; Zorn, M.; Pfeifhofer, H.W. Revival of a resurrection plant correlates with its antioxidant status. Plant J. 2002, 31, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.R.; Chaitanya, K.V.; Vivekanandan, M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 2004, 161, 1189–1202. [Google Scholar] [CrossRef]
- Laxa, M.; Liebthal, M.; Telman, W.; Chibani, K.; Dietz, K.J. The role of the plant antioxidant system in drought tolerance. Antioxidants 2019, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, K.; Mihailova, G.; Gigova, L.; Dagnon, S.; Simova-Stoilova, L.; Velitchkova, M. The role of antioxidant defense in freezing tolerance of resurrection plant Haberlea rhodopensis. Physiol. Mol. Biol. Plants 2021, 27, 1119–1133. [Google Scholar] [CrossRef]
- Georgieva, K.; Mihailova, G.; Gigova, L.; Popova, A.V.; Velitchkova, M.; Simova-Stoilova, L.; Sági-Kazár, M.; Zelenyánszki, H.; Solymosi, K.; Solti, Á. Antioxidative defense, suppressed nitric oxide accumulation, and synthesis of protective proteins in roots and leaves contribute to the desiccation tolerance of the resurrection plant Haberlea rhodopensis. Plants 2023, 12, 2834. [Google Scholar] [CrossRef]
- Mihailova, G.; Vasileva, I.; Gigova, L.; Gesheva, E.; Simova-Stoilova, L.; Georgieva, K. Antioxidant defense during recovery of resurrection plant Haberlea rhodopensis from drought-and freezing-induced desiccation. Plants 2022, 11, 175. [Google Scholar] [CrossRef]
- Oliver, M.J.; Guo, L.; Alexander, D.C.; Ryals, J.A.; Wone, B.W.; Cushman, J.C. A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell 2011, 23, 1231–1248. [Google Scholar] [CrossRef]
- Pandey, V.; Ranjan, S.; Deeba, F.; Pandey, A.K.; Singh, R.; Shirke, P.A.; Pathre, U.V. Desiccation-induced physiological and biochemical changes in resurrection plant, Selaginella bryopteris. J. Plant Physiol. 2010, 167, 1351–1359. [Google Scholar] [CrossRef]
- Mihailova, G.; Christov, N.K.; Sárvári, É.; Solti, Á.; Hembrom, R.; Solymosi, K.; Keresztes, Á.; Velitchkova, M.; Popova, A.V.; Simova-Stoilova, L.; et al. Reactivation of the photosynthetic apparatus of resurrection plant Haberlea rhodopensis during the early phase of recovery from drought-and freezing-induced desiccation. Plants 2022, 11, 2185. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, K.; Szigeti, Z.; Sarvari, E.; Gaspar, L.; Maslenkova, L.; Peeva, V.; Peli, E.; Tuba, Z. Photosynthetic activity of homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and rehydration. Planta 2007, 225, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Hu, Z.A.; Wang, H.X.; Wen, X.G.; Kuang, T.Y. A comparison of photosynthetic apparatus of the detached leaves of resurrection plant Boea hygrometrica with its non-tolerant relative Chirita heterotrichia in response to dehydration and rehydration. Plant Sci. 2003, 165, 851–861. [Google Scholar] [CrossRef]
- Mihailova, G.; Büchel, C.; Dietzel, L.; Georgieva, K. Desiccation induced changes in photosynthesis related proteins of shade and sun Haberlea rhodopensis plants. C. R. Acad. Bulg. Sci. 2016, 69, 37–44. [Google Scholar]
- Rapparini, F.; Neri, L.; Mihailova, G.; Petkova, S.; Georgieva, K. Growth irradiance affects the photoprotective mechanisms of the resurrection angiosperm Haberlea rhodopensis Friv. in response to desiccation and rehydration at morphological, physiological and biochemical levels. Environ. Exp. Bot. 2015, 113, 67–79. [Google Scholar] [CrossRef]
- Sárvári, É.; Mihailova, G.; Solti, Á.; Keresztes, Á.; Velitchkova, M.; Georgieva, K. Comparison of thylakoid structure and organization in sun and shade Haberlea rhodopensis populations under desiccation and rehydration. J. Plant Physiol. 2014, 171, 1591–1600. [Google Scholar] [CrossRef]
- Mihailova, G.; Petkova, S.; Büchel, C.; Georgieva, K. Desiccation of the resurrection plant Haberlea rhodopensis at high temperature. Photosynth. Res. 2011, 108, 5–13. [Google Scholar] [CrossRef]
- Georgieva, K.; Röding, A.; Büchel, C. Changes in some thylakoid membrane proteins and pigments upon desiccation of the resurrection plant Haberlea rhodopensis. J. Plant Physiol. 2009, 166, 1520–1528. [Google Scholar] [CrossRef]
- Sgherri, C.; Stevanovic, B.; Navari-Izzo, F. Role of phenolics in the antioxidative status of the resurrection plant Ramonda serbica during dehydration and rehydration. Physiol. Plant. 2004, 122, 478–485. [Google Scholar] [CrossRef]
- Dinakar, C.; Djilianov, D.; Bartels, D. Photosynthesis in desiccation tolerant plants: Energy metabolism and antioxidative stress defense. Plant Sci. 2012, 182, 29–41. [Google Scholar] [CrossRef]
- Nadal, M.; Carriquí, M.; Badel, E.; Cochard, H.; Delzon, S.; King, A.; Lamarque, L.J.; Flexas, J.; Torres-Ruiz, J.M. Photosynthesis, leaf hydraulic conductance and embolism dynamics in the resurrection plant Barbacenia purpurea. Physiol. Plant. 2023, 175, e14035. [Google Scholar] [CrossRef] [PubMed]
- Buckley, T.N.; Sack, L.; Farquhar, G.D. Optimal plant water economy. Plant Cell Environ. 2017, 40, 881–896. [Google Scholar] [CrossRef]
- Georgieva, K.; Maslenkova, L.; Peeva, V.; Markovska, Y.; Stefanov, D.; Tuba, Z. Comparative study on the changes in photosynthetic activity of the homoiochlorophyllous desiccation-tolerant Haberlea rhodopensis and desiccation-sensitive spinach leaves during desiccation and rehydration. Photosynth. Res. 2005, 85, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Degl’Innocenti, E.; Guidi, L.; Stevanovic, B.; Navari, F. CO2 fixation and chlorophyll a fluorescence in leaves of Ramonda serbica during a dehydration-rehydration cycle. J. Plant Physiol. 2008, 165, 723–733. [Google Scholar] [CrossRef]
- Rakić, T.; Gajić, G.; Lazarević, M.; Stevanović, B. Effects of different light intensities, CO2 concentrations, temperatures and drought stress on photosynthetic activity in two paleoendemic resurrection plant species Ramonda serbica and R. nathaliae. Environ. Exp. Bot. 2015, 109, 63–72. [Google Scholar] [CrossRef]
- Míguez, F.; Fernández-Marín, B.; Becerril, J.M.; García-Plazaola, J.I. Activation of photoprotective winter photoinhibition in plants from different environments: A literature compilation and meta-analysis. Physiol. Plant. 2015, 155, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Moyankova, D.; Mladenov, P.; Berkov, S.; Peshev, D.; Georgieva, D.; Djilianov, D. Metabolic profiling of the resurrection plant Haberlea rhodopensis during desiccation and recovery. Physiol. Plant. 2014, 152, 675–687. [Google Scholar] [CrossRef]
- Kumar, K.; Debnath, P.; Singh, S.; Kumar, N. An overview of plant phenolics and their involvement in abiotic stress tolerance. Stresses 2023, 3, 570–585. [Google Scholar] [CrossRef]
- Farrant, J.M.; Cooper, K.; Hilgart, A.; Abdalla, K.O.; Bentley, J.; Thomson, J.A.; Dace, H.J.; Peton, N.; Mundree, S.G.; Rafudeen, M.S. A molecular physiological review of vegetative desiccation tolerance in the resurrection plant Xerophyta viscosa (Baker). Planta 2015, 242, 407–426. [Google Scholar] [CrossRef]
- Goyal, K.; Walton, L.J.; Tunnacliffe, A. LEA proteins prevent protein aggregation due to water stress. Biochem. J. 2005, 388, 151–157. [Google Scholar] [CrossRef]
- Mladenov, P.; Zasheva, D.; Planchon, S.; Leclercq, C.C.; Falconet, D.; Moyet, L.; Brugière, S.; Moyankova, D.; Tchorbadjieva, M.; Ferro, M.; et al. Proteomics evidence of a systemic response to desiccation in the resurrection plant Haberlea rhodopensis. Int. J. Mol. Sci. 2022, 23, 8520. [Google Scholar] [CrossRef] [PubMed]
- Giarola, V.; Challabathula, D.; Bartels, D. Quantification of expression of dehydrin isoforms in the desiccation tolerant plant Craterostigma plantagineum using specifically designed reference genes. Plant Sci. 2015, 236, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Pantelić, A.; Stevanović, S.; Komić, S.M.; Kilibarda, N.; Vidović, M. In silico characterisation of the late embryogenesis abundant (LEA) protein families and their role in desiccation tolerance in Ramonda serbica Panc. Int. J. Mol. Sci. 2022, 23, 3547. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Yang, G.; Zhang, L.; Yang, X.; Zhao, S.; Ji, Z.; Zhou, Q.; Hu, M.; Wang, Y.; Chen, M.; et al. The resurrection genome of Boea hygrometrica: A blueprint for survival of dehydration. Proc. Natl. Acad. Sci. USA 2015, 112, 5833–5837. [Google Scholar] [CrossRef]
- Alamillo, J.M.; Bartels, D. Effects of desiccation on photosynthesis pigments and the ELIP-like dsp 22 protein complexes in the resurrection plant Craterostigma plantagineum. Plant Sci. 2001, 160, 1161–1170. [Google Scholar] [CrossRef]
- Hutin, C.; Nussaume, L.; Moise, N.; Moya, I.; Kloppstech, K.; Havaux, M. Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc. Natl. Acad. Sci. USA 2003, 100, 4921–4926. [Google Scholar] [CrossRef]
- Verhoeven, A. Sustained energy dissipation in winter evergreens. New Phytol. 2014, 201, 57–65. [Google Scholar] [CrossRef]
- Gechev, T.S.; Benina, M.; Obata, T.; Tohge, T.; Sujeeth, N.; Minkov, I.; Hille, J.; Temanni, M.R.; Marriott, A.S.; Bergström, E.; et al. Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell. Mol. Life Sci. 2013, 70, 689–709. [Google Scholar] [CrossRef]
- VanBuren, R.; Pardo, J.; Man Wai, C.; Evans, S.; Bartels, D. Massive tandem proliferation of ELIPs supports convergent evolution of desiccation tolerance across land plants. Plant Physiol. 2019, 179, 1040–1049. [Google Scholar] [CrossRef]
- Sun, X.; Sun, C.; Li, Z.; Hu, Q.; Han, L.; Luo, H. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress. Plant Cell Environ. 2016, 39, 1320–1337. [Google Scholar] [CrossRef]
- Waters, E.R.; Vierling, E. Plant small heat shock proteins–evolutionary and functional diversity. New Phytol. 2020, 227, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Alamillo, J.; Almoguera, C.; Bartels, D.; Jordano, J. Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum. Plant Mol. Biol. 1995, 29, 1093–1099. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, B.; Sun, D.; Deng, X. Molecular cloning and differential expression of sHSP gene family members from the resurrection plant Boea hygrometrica in response to abiotic stresses. Biologia 2013, 68, 651–661. [Google Scholar] [CrossRef]
- Mihailova, G.; Solti, Á.; Sárvári, É.; Hunyadi-Gulyás, É.; Georgieva, K. Protein changes in shade and sun Haberlea rhodopensis leaves during dehydration at optimal and low temperatures. Plants 2023, 12, 401. [Google Scholar] [CrossRef] [PubMed]
- McKinney, M.K.; Cravatt, B.F. Structure and function of fatty acid amide hydrolase. Annu. Rev. Biochem. 2005, 74, 411–432. [Google Scholar] [CrossRef]
- Teaster, N.D.; Motes, C.M.; Tang, Y.; Wiant, W.C.; Cotter, M.Q.; Wang, Y.S.; Kilaru, A.; Venables, B.J.; Hasenstein, K.H.; Gonzalez, G.; et al. N-Acylethanolamine metabolism interacts with abscisic acid signaling in Arabidopsis thaliana seedlings. Plant Cell 2007, 19, 2454–2469. [Google Scholar] [CrossRef]
- Illing, N.; Denby, K.J.; Collett, H.; Shen, A.; Farrant, J.M. The signature of seeds in resurrection plants: A molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues. Integr. Comp. Biol. 2005, 45, 771–787. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.C.D.; Farrant, J.M.; Oliver, M.J.; Ligterink, W.; Buitink, J.; Hilhorst, H.M. Key genes involved in desiccation tolerance and dormancy across life forms. Plant Sci. 2016, 251, 162–168. [Google Scholar] [CrossRef]
- Costa, M.C.D.; Artur, M.A.; Maia, J.; Jonkheer, E.; Derks, M.F.; Nijveen, H.; Williams, B.; Mundree, S.G.; Jiménez-Gómez, J.M.; Hesselink, T.; et al. A footprint of desiccation tolerance in the genome of Xerophyta viscosa. Nat. Plants. 2017, 3, 17038. [Google Scholar] [CrossRef]
- Kurtto, A.; Lampinen, R.; Junikka, L. (Eds.) Atlas Florae Europaeae. Distribution of Vascular Plants in Europe. 13 Rosaceae; The Committee for Mapping the Flora of Europe and Societas Biologica Fennica: Helsinki, Finland, 2004; pp. 14–15. [Google Scholar]
- Berisha, N.; Millaku, F.; Gashi, B.; Matevski, V. Ramondo-Ostryetum carpinifoliae—A new association from the hop-hornbeam forests of the Sharri Mountains, Kosovo. Hacquetia 2019, 18, 323–336. [Google Scholar] [CrossRef]
- Gavrilov, M.B.; Marković, S.B.; Janc, N.; Nikolić, M.; Valjarević, A.; Komac, B.; Zorn, M.; Punišić, M.; Bačević, N. Assessing average annual air temperature trends using the Mann–Kendall test in Kosovo. Acta Geogr. Slov. 2018, 58, 7–25. [Google Scholar] [CrossRef]
- Berisha, N.; Krasniqi, E.; Bytyqi, V. Biogeographical regionalization of Kosovo: Integrating vegetation, climate and topography. Mediterr. Bot. 2025, 46, e99744. [Google Scholar] [CrossRef]
- Gashi, B.; Kongjika, E.; Osmani, M.; Luma, V. Activity of δ-aminolevulinic acid dehydratase at Ramonda nathaliae and Ramonda serbica plants during dehydration and rehydration. Biol. Futur. 2019, 70, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K. Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J. Food Compos. Anal. 2007, 20, 125–132. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Gashi, B.; Buqaj, L.; Vataj, R.; Tuna, M. Chlorophyll biosynthesis suppression, oxidative level and cell cycle arrest caused by Ni, Cr and Pb stress in maize exposed to treated soil from the Ferronikel smelter in Drenas, Kosovo. Plant Stress 2024, 11, 100379. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
Time of Rehydration | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | Species | 0 h | 1 h | 3 h | 6 h | 9 h | 12 h | 24 h | 48 h | 72 h | 7 d | C |
TP (mg GAE/g DW) | RS | 67.85 B ± 0.49 | 75.92 A ± 0.89 | 76.24 A ± 1.40 | 52.43 C ± 1.55 | 53.70 C ± 1.40 | 52.22 C ± 1.79 | 46.26 D ± 1.30 | 44.83 D ± 2.37 | 33.77 E ± 0.39 | 30.87 E ± 0.36 | 24.93 F ± 0.76 |
RN | 59.41 B ± 5.34 | 89.44 A ± 0.45 | 90.68 A ± 0.29 | 56.71 B ± 2.29 | 55.74 B ± 1.63 | 48.85 C ± 1.74 | 46.54 CD ± 0.65 | 41.23 D ± 0.23 | 33.42 E ± 0.70 | 30.85 EF ± 0.49 | 26.26 F ± 1.04 | |
TF (mg CE/g DW) | RS | 68.76 B ± 0.32 | 73.48 A ± 1.12 | 73.25 A ± 1.22 | 56.91 C ± 0.77 | 46.31 D ± 0.65 | 31.84 EF ± 0.85 | 31.54 EF ± 0.74 | 33.57 E ± 0.55 | 29.46 F ± 0.62 | 25.71 G ± 0.35 | 21.97 H ± 0.89 |
RN | 70.10 B ± 0.94 | 78.45 A ± 0.65 | 78.47 A ± 0.46 | 54.37 C ± 1.14 | 47.36 D ± 1.16 | 37.41 E ± 0.91 | 32.88 F ± 0.38 | 34.35 F ± 0.55 | 25.54 G ± 0.51 | 23.44 G ± 0.68 | 18.67 H ± 0.32 | |
FRAP (μmol AAE/g DW) | RS | 1331.66 C ± 31.05 | 1557.72 A ± 4.41 | 1504.72 B ± 3.86 | 985.77 D ± 2.95 | 577.74 E ± 2.84 | 380.79 F ± 7.48 | 337.48 G ± 2.11 | 280.14 H ± 1.70 | 244.62 I ± 0.69 | 176.44 J ± 0.83 | 145.71 K ± 0.89 |
RN | 1844.82 B ± 14.50 | 1967.62 A ± 13.70 | 1873.26 B ± 15.84 | 1529.88 C ± 15.17 | 1203.28 D ± 45.60 | 747.74 E ± 4.47 | 450.89 F ± 2.70 | 338.88 G ± 1.36 | 283.07 H ± 0.82 | 186.97 I ± 1.25 | 155.27 I ± 0.45 | |
DPPH (μmol TE/g DW) | RS | 883.05 B ± 6.25 | 940.27 A ± 3.23 | 747.07 C ± 8.43 | 552.36 D ± 1.38 | 388.77 E ± 4.97 | 335.09 F ± 1.47 | 315.63 G ± 0.64 | 285.49 H ± 1.45 | 225.09 I ± 0.72 | 186.62 J ± 1.33 | 155.81 K ± 0.86 |
RN | 757.54 B ± 7.48 | 904.68 A ± 19.18 | 724.83 C ± 2.98 | 604.82 D ± 20.48 | 345.99 E ± 10.85 | 334.45 EF ± 2.24 | 334.42 EF ± 2.59 | 311.62 F ± 0.42 | 276.03 G ± 0.78 | 242.51 H ± 0.66 | 203.38 I ± 1.18 | |
TAC (mg AAE/g DW) | RS | 77.06 B ± 0.57 | 80.94 A ± 2.06 | 73.27 C ± 0.75 | 67.13 D ± 1.19 | 50.83 E ± 0.30 | 45.68 F ± 1.09 | 34.39 G ± 0.39 | 32.50 GH ± 0.59 | 30.71 H ± 0.29 | 27.93 I ± 0.30 | 21.45 J ± 0.59 |
RN | 117.93 A ± 1.08 | 64.34 B ± 1.11 | 63.47 B ± 2.40 | 46.22 C ± 3.74 | 44.57 CD ± 1.51 | 41.38 DE ± 0.63 | 38.20 EF ± 0.23 | 36.07 FG ± 0.24 | 33.14 GH ± 1.27 | 29.23 HI ± 0.27 | 28.26 I ± 0.19 | |
ABTS•+ (μmol TE/g DW) | RS | 1006.75 C ± 8.81 | 1158.60 A ± 12.86 | 1094.87 B ± 6.25 | 735.77 D ± 2.49 | 648.80 E ± 2.37 | 452.17 F ± 3.82 | 386.57 G ± 1.12 | 316.68 H ± 2.13 | 264.36 I ± 1.35 | 158.57 J ± 0.53 | 155.39 J ± 0.56 |
RN | 1258.73 B ± 3.96 | 1434.72 A ± 32.22 | 1232.13 B ± 28.02 | 895.73 C ± 35.76 | 564.35 D ± 16.65 | 336.86 E ± 1.44 | 302.87 EF ± 0.44 | 253.93 F ± 1.29 | 190.75 G ± 0.91 | 155.26 G ± 0.52 | 148.27 G ± 1.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gashi, B.; Kastrati, F.; Mihailova, G.; Georgieva, K.; Popova, E.; Çoçaj, E.; Lluga-Rizani, K.; Ramshaj, Q. Recovery Dynamics of Photosynthetic Performance and Antioxidant Defense in Resurrection Plants Ramonda serbica and Ramonda nathaliae After Freezing-Induced Desiccation. Plants 2025, 14, 2760. https://doi.org/10.3390/plants14172760
Gashi B, Kastrati F, Mihailova G, Georgieva K, Popova E, Çoçaj E, Lluga-Rizani K, Ramshaj Q. Recovery Dynamics of Photosynthetic Performance and Antioxidant Defense in Resurrection Plants Ramonda serbica and Ramonda nathaliae After Freezing-Induced Desiccation. Plants. 2025; 14(17):2760. https://doi.org/10.3390/plants14172760
Chicago/Turabian StyleGashi, Bekim, Fitim Kastrati, Gergana Mihailova, Katya Georgieva, Eva Popova, Erzë Çoçaj, Kimete Lluga-Rizani, and Qëndrim Ramshaj. 2025. "Recovery Dynamics of Photosynthetic Performance and Antioxidant Defense in Resurrection Plants Ramonda serbica and Ramonda nathaliae After Freezing-Induced Desiccation" Plants 14, no. 17: 2760. https://doi.org/10.3390/plants14172760
APA StyleGashi, B., Kastrati, F., Mihailova, G., Georgieva, K., Popova, E., Çoçaj, E., Lluga-Rizani, K., & Ramshaj, Q. (2025). Recovery Dynamics of Photosynthetic Performance and Antioxidant Defense in Resurrection Plants Ramonda serbica and Ramonda nathaliae After Freezing-Induced Desiccation. Plants, 14(17), 2760. https://doi.org/10.3390/plants14172760