Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,286)

Search Parameters:
Keywords = degree modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
53 pages, 2561 KiB  
Review
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential
by Stanila Stoeva-Grigorova, Nadezhda Ivanova, Yoana Sotirova, Maya Radeva-Ilieva, Nadezhda Hvarchanova and Kaloyan Georgiev
Pharmaceutics 2025, 17(8), 985; https://doi.org/10.3390/pharmaceutics17080985 - 30 Jul 2025
Viewed by 95
Abstract
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs [...] Read more.
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs and cells that are in need. For decades, green tea catechins (GTCs) have been a case in point. Because of their low redox potential and favorable positioning of hydroxyl groups, these flavonoid representatives (namely, catechin—C, epicatechin—EC, epicatechin gallate—ECG, epigallocatechin—EGC, epigallocatechin gallate—EGCG) are among the most potent plant-derived (and not only) antioxidants. The proven anti-inflammatory, neuroprotective, antimicrobial, and anticarcinogenic properties of these phytochemicals further contribute to their favorable pharmacological profile. Doubtlessly, GTCs hold the potential to “cope” with the majority of today‘s socially significant diseases, yet their mass use in clinical practice is still limited. Several factors related to the compounds’ membrane penetrability, chemical stability, and solubility overall determine their low bioavailability. Moreover, the antioxidant-to-pro-oxidant transitioning behavior of GTCs is highly conditional and, to a certain degree, unpredictable. The nanoparticulate delivery systems represent a logical approach to overcoming one or more of these therapeutic challenges. This review particularly focuses on the lipid-based nanotechnologies known to be a leading choice when it comes to drug permeation enhancement and not drug release modification nor drug stabilization solely. It is our goal to present the privileges of encapsulating green tea catechins in either vesicular or particulate lipid carriers with respect to the increasingly popular trends of advanced phytotherapy and functional nutrition. Full article
Show Figures

Graphical abstract

21 pages, 6561 KiB  
Article
Design and Experimental Study of a Flapping–Twist Coupled Biomimetic Flapping-Wing Mechanism
by Rui Meng, Bifeng Song, Jianlin Xuan and Yugang Zhang
Drones 2025, 9(8), 535; https://doi.org/10.3390/drones9080535 - 30 Jul 2025
Viewed by 173
Abstract
Medium and large-sized birds exhibit remarkable agility and maneuverability in flight, with their flapping motion encompassing degrees of freedom in flapping, twist, and swing, which enables them to adapt effectively to harsh ecological environments. This study proposes a flapping–twist coupled driving mechanism for [...] Read more.
Medium and large-sized birds exhibit remarkable agility and maneuverability in flight, with their flapping motion encompassing degrees of freedom in flapping, twist, and swing, which enables them to adapt effectively to harsh ecological environments. This study proposes a flapping–twist coupled driving mechanism for large-scale flapping-wing aircraft by mimicking the motion patterns of birds. The mechanism generates simultaneous twist and flapping motions based on the phase difference of double cranks, allowing for the adjustment of twist amplitude through modifications in crank radius and phase difference. The objective of this work is to optimize the lift and thrust of the flapping wing to enhance its flight performance. To achieve this, we first derived the kinematic model of the mechanism and conducted motion simulations. To mitigate the effects of the flapping wing’s flexibility, a rigid flapping wing was designed and manufactured. Through wind tunnel experiments, the flapping wing system was tested. The results demonstrated that, compared to the non-twist condition, there exists an optimal twist amplitude that slightly increases the lift of the flapping wing while significantly enhancing the thrust. It is hoped that this study will provide guidance for the design of multi-degree-of-freedom flapping wing mechanisms. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

17 pages, 4345 KiB  
Article
Preparation of Superhydrophobic P-TiO2-SiO2/HDTMS Self-Cleaning Coatings with UV-Aging Resistance by Acid Precipitation Method
by Le Zhang, Ying Liu, Xuefeng Bai, Hao Ding, Xuan Wang, Daimei Chen and Yihe Zhang
Nanomaterials 2025, 15(14), 1127; https://doi.org/10.3390/nano15141127 - 20 Jul 2025
Viewed by 344
Abstract
The superhydrophobic coatings for outdoor use need to be exposed to sunlight for a long time; therefore, their UV-aging resistances are crucial in practical applications. In this study, the primary product of titanium dioxide (P-TiO2) was used as the raw material. [...] Read more.
The superhydrophobic coatings for outdoor use need to be exposed to sunlight for a long time; therefore, their UV-aging resistances are crucial in practical applications. In this study, the primary product of titanium dioxide (P-TiO2) was used as the raw material. Nano-silica (SiO2) was coated onto the surface of P-TiO2 by the acid precipitation method to prepare P-TiO2-SiO2 composite particles. Then, they were modified and sprayed simply to obtain a superhydrophobic P-TiO2-SiO2/HDTMS coating. The results indicated that amorphous nano-SiO2 was coated on the P-TiO2 surface, forming a micro–nano binary structure, which was the essential structure to form superhydrophobic coatings. Additionally, the UV-aging property of P-TiO2 was significantly enhanced after being coated with SiO2. After continuous UV irradiation for 30 days, the color difference (ΔE*) and yellowing index (Δb*) values of the coating prepared with P-TiO2-SiO2 increased from 0 to 0.75 and 0.23, respectively. In contrast, the ΔE* and Δb* of the coating prepared with P-TiO2 increased from 0 to 1.68 and 0.74, respectively. It was clear that the yellowing degree of the P-TiO2-SiO2 coating was lower than that of P-TiO2, and its UV-aging resistance was significantly improved. After modification with HDTMS, the P-TiO2-SiO2 coating formed a superhydrophobic P-TiO2-SiO2/HDTMS coating. The water contact angle (WCA) and water slide angle (WSA) on the surface of the coating were 154.9° and 1.3°, respectively. Furthermore, the coating demonstrated excellent UV-aging resistance. After continuous UV irradiation for 45 days, the WCA on the coating surface remained above 150°. Under the same conditions, the WCAs of the P-TiO2/HDTMS coating decreased from more than 150° to 15.3°. This indicated that the retention of surface hydrophobicity of the P-TiO2-SiO2/HDTMS coating was longer than that of P-TiO2/HDTMS, and the P-TiO2-SiO2/HDTMS coating’s UV-aging resistance was greater. The superhydrophobic P-TiO2-SiO2/HDTMS self-cleaning coating reported in this study exhibited outstanding UV-aging resistance, and it had the potential for long-term outdoor use. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

16 pages, 8045 KiB  
Article
Modification of G-C3N4 by the Surface Alkalinization Method and Its Photocatalytic Depolymerization of Lignin
by Zhongmin Ma, Ling Zhang, Lihua Zang and Fei Yu
Materials 2025, 18(14), 3350; https://doi.org/10.3390/ma18143350 - 17 Jul 2025
Viewed by 294
Abstract
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, [...] Read more.
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, such as a wide band gap and rapid carrier recombination, severely limit its catalytic performance. In this paper, a g-C3N4 modification strategy of K⁺ doping and surface alkalinization is proposed, which is firstly applied to the photocatalytic depolymerization of the lignin β-O-4 model compound (2-phenoxy-1-phenylethanol). K⁺ doping is achieved by introducing KCl in the precursor thermal polymerization stage to weaken the edge structure strength of g-C3N4, and post-treatment with KOH solution is combined to optimize the surface basic groups. The structural/compositional evolution of the materials was analyzed by XRD, FTIR, and XPS. The morphology/element distribution was visualized by SEM-EDS, and the optoelectronic properties were evaluated by UV–vis DRS, PL, EIS, and transient photocurrent (TPC). K⁺ doping and surface alkalinization synergistically regulate the layered structure of the material, significantly increase the specific surface area, introduce nitrogen vacancies and hydroxyl functional groups, effectively narrow the band gap (optimized to 2.35 eV), and inhibit the recombination of photogenerated carriers by forming electron capture centers. Photocatalytic experiments show that the alkalinized g-C3N4 can completely depolymerize 2-phenoxy-1-phenylethanol with tunable product selectivity. By adjusting reaction time and catalyst dosage, the dominant product can be shifted from benzaldehyde (up to 77.28% selectivity) to benzoic acid, demonstrating precise control over oxidation degree. Mechanistic analysis shows that the surface alkaline sites synergistically optimize the Cβ-O bond breakage path by enhancing substrate adsorption and promoting the generation of active oxygen species (·OH, ·O2). This study provides a new idea for the efficient photocatalytic depolymerization of lignin and lays an experimental foundation for the interface engineering and band regulation strategies of g-C3N4-based catalysts. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

11 pages, 1461 KiB  
Article
Global–Local Cooperative Optimization in Photonic Inverse Design Algorithms
by Mingzhe Li, Tong Wang, Yi Zhang, Yulin Shen, Jie Yang, Ke Zhang, Dehui Pan and Ming Xin
Photonics 2025, 12(7), 725; https://doi.org/10.3390/photonics12070725 - 17 Jul 2025
Viewed by 285
Abstract
We developed the Global–Local Integrated Topology inverse design algorithm (denoted as the GLINT algorithm), which employs a trajectory-based optimization strategy with waveguide–substrate material-flipping structural modifications, enabling the direct optimization of discrete waveguide–substrate binary structures. Compared to the conventional Direct Binary Search (DBS), the [...] Read more.
We developed the Global–Local Integrated Topology inverse design algorithm (denoted as the GLINT algorithm), which employs a trajectory-based optimization strategy with waveguide–substrate material-flipping structural modifications, enabling the direct optimization of discrete waveguide–substrate binary structures. Compared to the conventional Direct Binary Search (DBS), the GLINT algorithm not only significantly enhances computational efficiency through its global search–local refinement framework but also achieves a superior 20 nm × 20 nm optimization resolution while maintaining its optimization speed—substantially advancing the design capability. Utilizing this algorithm, we designed and experimentally demonstrated a 3.5 µm × 3.5 µm dual-port wavelength division multiplexer (WDM), achieving a minimum crosstalk of −11.3 dB and a 2 µm × 2 µm 90-degree bending waveguide exhibiting a 0.31–0.52 dB insertion loss over the 1528–1600 nm wavelength range, both fabricated on silicon-on-insulator (SOI) wafers. Additionally, a 4.5 µm × 4.5 µm three-port WDM structure was also designed and simulated, demonstrating crosstalk as low as −36.5 dB. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

14 pages, 1354 KiB  
Article
Assessment of the Interactions Between Hemicellulose Xylan and Kaolinite Clay: Structural Characterization and Adsorptive Behavior
by Enzo Díaz, Leopoldo Gutiérrez, Elizabeth Elgueta, Dariela Núñez, Isabel Carrillo-Varela and Vicente A. Hernández
Polymers 2025, 17(14), 1958; https://doi.org/10.3390/polym17141958 - 17 Jul 2025
Viewed by 292
Abstract
In this study, a methacrylic derivative of xylan (XYLMA) was synthesized through transesterification reactions, with the aim of evaluating its physicochemical behavior and its interaction with kaolinite particles. Structural characterization by FT-IR and NMR spectroscopy confirmed the incorporation of methacrylic groups into the [...] Read more.
In this study, a methacrylic derivative of xylan (XYLMA) was synthesized through transesterification reactions, with the aim of evaluating its physicochemical behavior and its interaction with kaolinite particles. Structural characterization by FT-IR and NMR spectroscopy confirmed the incorporation of methacrylic groups into the xylan (XYL) structure, with a degree of substitution of 0.67. Thermal analyses (TGA and DSC) showed a decrease in melting temperature and enthalpy in XYLMA compared to XYL, attributed to a loss of structural rigidity. Thermal analyses (TGA and DSC) revealed a decrease in the melting temperature and enthalpy of XYLMA compared to XYL, which is attributed to a loss of structural rigidity and a reduction in the crystalline order of the biopolymer. Aggregation tests in solution revealed that XYLMA exhibits amphiphilic behavior, forming micellar structures at a critical aggregation concentration (CAC) of 62 mg L−1. In adsorption studies on kaolinite, XYL showed greater affinity than XYLMA, especially at acidic pH, due to reduced electrostatic forces and a greater number of hydroxyl groups capable of forming hydrogen bonds with the mineral surface. In contrast, modification with methacrylic groups in XYLMA reduced its adsorption capacity, probably due to the formation of supramolecular aggregates. These results suggest that interactions between xylan and kaolinite clay are key to understanding the role that hemicelluloses play in increasing copper recovery when added to flotation cells during the processing of copper sulfide ores with high clay content. Full article
Show Figures

Figure 1

15 pages, 3148 KiB  
Article
Elucidating the Role of Graphene Oxide Surface Architecture and Properties in Loess Soil Remediation Efficacy
by Zirui Wang, Haotian Lu, Zhigang Li, Yuwei Wu and Junping Ren
Nanomaterials 2025, 15(14), 1098; https://doi.org/10.3390/nano15141098 - 15 Jul 2025
Viewed by 263
Abstract
Loess Plateau is the region with the most concentrated loess distribution and the deepest loess soil layer in the world, and it is facing serious problems of soil erosion and ecological degradation. The nano carbon modification of soil surface properties is a novel [...] Read more.
Loess Plateau is the region with the most concentrated loess distribution and the deepest loess soil layer in the world, and it is facing serious problems of soil erosion and ecological degradation. The nano carbon modification of soil surface properties is a novel strategy for soil improvement and enhancing the soil’s capacity to sequester carbon, which has been extensively researched. However, the mechanisms underlying the influence of carbon surface structure on the efficacy of loess soil remediation remain unclear. Herein, graphene oxide (GO) with a unique two-dimensional structure and adjustable surface properties was optimized as a model carbon filler to investigate the modification effect on loess. As a result, the addition amount of 0.03% GO significantly reduced the disintegration amount of loess, but, if inhibited for a long time, the disintegration effect would weaken. The highly reduced GO can delay the loess disintegration rate due to its enhanced hydrophobicity, but the inhibitory effect fails over a long period of time. After adjusting the reduce degree with a 50% SA (sodium ascorbate), the water-holding capacity of the modified soil in the high suction range is enhanced. This study reveals the synergistic mechanism of the sheet structure and surface properties of GO on the water stability of loess, providing a reference for the prevention and control of soil erosion and ecological restoration in the Loess Plateau. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

46 pages, 6649 KiB  
Review
Matrix WaveTM System for Mandibulo-Maxillary Fixation—Just Another Variation on the MMF Theme?—Part II: In Context to Self-Made Hybrid Erich Arch Bars and Commercial Hybrid MMF Systems—Literature Review and Analysis of Design Features
by Carl-Peter Cornelius, Paris Georgios Liokatis, Timothy Doerr, Damir Matic, Stefano Fusetti, Michael Rasse, Nils Claudius Gellrich, Max Heiland, Warren Schubert and Daniel Buchbinder
Craniomaxillofac. Trauma Reconstr. 2025, 18(3), 33; https://doi.org/10.3390/cmtr18030033 - 15 Jul 2025
Viewed by 428
Abstract
Study design: Trends in the utilization of Mandibulo-Maxillary Fixation (MMF) are shifting nowadays from tooth-borne devices over specialized screws to hybrid MMF devices. Hybrid MMF devices come in self-made Erich arch bar modifications and commercial hybrid MMF systems (CHMMFSs). Objective: We survey the [...] Read more.
Study design: Trends in the utilization of Mandibulo-Maxillary Fixation (MMF) are shifting nowadays from tooth-borne devices over specialized screws to hybrid MMF devices. Hybrid MMF devices come in self-made Erich arch bar modifications and commercial hybrid MMF systems (CHMMFSs). Objective: We survey the available technical/clinical data. Hypothetically, the risk of tooth root damage by transalveolar screws is diminished by a targeting function of the screw holes/slots. Methods: We utilize a literature review and graphic displays to disclose parallels and dissimilarities in design and functionality with an in-depth look at the targeting properties. Results: Self-made hybrid arch bars have limitations to meet low-risk interradicular screw insertion sites. Technical/clinical information on CHMMFSs is unevenly distributed in favor of the SMARTLock System: positive outcome variables are increased speed of application/removal, the possibility to eliminate wiring and stick injuries and screw fixation with standoff of the embodiment along the attached gingiva. Inferred from the SMARTLock System, all four CHMMFs possess potential to effectively prevent tooth root injuries but are subject to their design features and targeting with the screw-receiving holes. The height profile and geometry shape of a CHMMFS may restrict three-dimensional spatial orientation and reach during placement. To bridge between interradicular spaces and tooth equators, where hooks or tie-up-cleats for intermaxillary cerclages should be ideally positioned under biomechanical aspects, can be problematic. The movability of their screw-receiving holes according to all six degrees of freedom differs. Conclusion: CHMMFSs allow simple immobilization of facial fractures involving dental occlusion. The performance in avoiding tooth root damage is a matter of design subtleties. Full article
Show Figures

Figure 1

31 pages, 18606 KiB  
Article
Research on Thermal Environment Influencing Mechanism and Cooling Model Based on Local Climate Zones: A Case Study of the Changsha–Zhuzhou–Xiangtan Urban Agglomeration
by Mengyu Ge, Zhongzhao Xiong, Yuanjin Li, Li Li, Fei Xie, Yuanfu Gong and Yufeng Sun
Remote Sens. 2025, 17(14), 2391; https://doi.org/10.3390/rs17142391 - 11 Jul 2025
Cited by 1 | Viewed by 348
Abstract
Urbanization has profoundly transformed land surface morphology and amplified thermal environmental modifications, culminating in intensified urban heat island (UHI) phenomena. Local climate zones (LCZs) provide a robust methodological framework for quantifying thermal heterogeneity and dynamics at local scales. Our study investigated the Changsha–Zhuzhou–Xiangtan [...] Read more.
Urbanization has profoundly transformed land surface morphology and amplified thermal environmental modifications, culminating in intensified urban heat island (UHI) phenomena. Local climate zones (LCZs) provide a robust methodological framework for quantifying thermal heterogeneity and dynamics at local scales. Our study investigated the Changsha–Zhuzhou–Xiangtan urban agglomeration (CZXA) as a case study and systematically examined spatiotemporal patterns of LCZs and land surface temperature (LST) from 2002 to 2019, while elucidating mechanisms influencing urban thermal environments and proposing optimized cooling strategies. Key findings demonstrated that through multi-source remote sensing data integration, long-term LCZ classification was achieved with 1,592 training samples, maintaining an overall accuracy exceeding 70%. Landscape pattern analysis revealed that increased fragmentation, configurational complexity, and diversity indices coupled with diminished spatial connectivity significantly elevate LST. Rapid development of the city in the vertical direction also led to an increase in LST. Among seven urban morphological parameters, impervious surface fraction (ISF) and pervious surface fraction (PSF) demonstrated the strongest correlations with LST, showing Pearson coefficients of 0.82 and −0.82, respectively. Pearson coefficients of mean building height (BH), building surface fraction (BSF), and mean street width (SW) also reached 0.50, 0.55, and 0.66. Redundancy analysis (RDA) results revealed that the connectivity and fragmentation degree of LCZ_8 (COHESION8) was the most critical parameter affecting urban thermal environment, explaining 58.5% of LST. Based on these findings and materiality assessment, the regional cooling model of “cooling resistance surface–cooling source–cooling corridor–cooling node” of CZXA was constructed. In the future, particular attention should be paid to the shape and distribution of buildings, especially large, openly arranged buildings with one to three stories, as well as to controlling building height and density. Moreover, tailored protection strategies should be formulated and implemented for cooling sources, corridors, and nodes based on their hierarchical significance within urban thermal regulation systems. These research outcomes offer a robust scientific foundation for evidence-based decision-making in mitigating UHI effects and promoting sustainable urban ecosystem development across urban agglomerations. Full article
Show Figures

Figure 1

22 pages, 7569 KiB  
Article
Chaos Suppression in Spiral Bevel Gears Through Profile Modifications
by Milad Asadi, Farhad S. Samani, Antonio Zippo and Moslem Molaie
Vibration 2025, 8(3), 38; https://doi.org/10.3390/vibration8030038 - 6 Jul 2025
Viewed by 203
Abstract
Spiral bevel gears are used in a wide range of industries, such as automotive and aerospace, to transfer power between intersecting axes. However, a certain level of vibration is always present in the systems, primarily due to the complex dynamic forces generated during [...] Read more.
Spiral bevel gears are used in a wide range of industries, such as automotive and aerospace, to transfer power between intersecting axes. However, a certain level of vibration is always present in the systems, primarily due to the complex dynamic forces generated during the meshing of the gear teeth affected by the tooth profile. To address these challenges, this research developed a comprehensive dynamic model with eight degrees of freedom, capturing both translational and rotational movements of the system’s components. The study focused on evaluating the effects of two different tooth profile modifications, namely topology and flank modifications, on the vibration characteristics of the system. The system comprised a spiral bevel gear pair with mesh stiffness in forward rotation. The results highlighted that optimizing the tooth profile and minimizing tooth surface deviation significantly reduce vibration amplitudes and improve dynamic stability. These findings not only enhance the performance and lifespan of spiral bevel gears but also provide a robust foundation for the design and optimization of advanced gear systems in industrial applications, ensuring higher efficiency and reliability. In this paper, it was observed that some modifications led to a 68% reduction in vibration levels. Additionally, three modifications helped improve the vibrational behavior of the system, preventing chaotic behavior, which can lead to system failure, and transforming the system’s behavior into periodic motion. Full article
Show Figures

Figure 1

28 pages, 1957 KiB  
Article
Design and Synthesis of Sulfonium and Selenonium Derivatives Bearing 3′,5′-O-Benzylidene Acetal Side Chain Structure as Potent α-Glucosidase Inhibitors
by Xiaosong He, Jiahao Yi, Jianchen Yang, Genzoh Tanabe, Osamu Muraoka and Weijia Xie
Molecules 2025, 30(13), 2856; https://doi.org/10.3390/molecules30132856 - 4 Jul 2025
Viewed by 381
Abstract
A group of sulfonium and selenonium salts bearing diverse benzylidene acetal substituents on their side chain moiety were designed and synthesized. Compared with our previous study, structural modifications in this study focused on multi-substitution of the phenyl ring and bioisosteric replacements at the [...] Read more.
A group of sulfonium and selenonium salts bearing diverse benzylidene acetal substituents on their side chain moiety were designed and synthesized. Compared with our previous study, structural modifications in this study focused on multi-substitution of the phenyl ring and bioisosteric replacements at the sulfonium cation center. In vitro biological evaluation showed that selenonium replacement could significantly improve their α-glucosidase inhibitory activity. The most potent inhibitor 20c (10.0 mg/kg) reduced postprandial blood glucose by 48.6% (15 min), 52.8% (30 min), and 48.1% (60 min) in sucrose-loaded mice, outperforming acarbose (20.0 mg/kg). Docking studies of 20c with ntMGAM presented a new binding mode. In addition to conventional hydrogen bonding and electrostatic interaction, amino residue Ala-576 was first identified to contribute to binding affinity through π-alkyl and alkyl interactions with the chlorinated substituent and aromatic ring. The selected compounds exhibited a high degree of safety in cytotoxicity tests against normal cells. Kinetic characterization of α-glucosidase inhibition confirmed a fully competitive inhibitory mode of action for these sulfonium salts. Full article
(This article belongs to the Special Issue Trends of Drug Synthesis in Medicinal Chemistry)
Show Figures

Graphical abstract

13 pages, 3756 KiB  
Article
Expanding the Phenotypic Spectrum Associated with DPH5-Related Diphthamide Deficiency
by Davide Politano, Cecilia Mancini, Massimiliano Celario, Francesca Clementina Radio, Fulvio D'Abrusco, Jessica Garau, Silvia Kalantari, Gaia Visani, Simone Carbonera, Simone Gana, Marco Ferilli, Luigi Chiriatti, Camilla Cappelletti, Katia Ellena, Elena Prodi, Renato Borgatti, Enza Maria Valente, Simona Orcesi, Marco Tartaglia and Fabio Sirchia
Genes 2025, 16(7), 799; https://doi.org/10.3390/genes16070799 - 2 Jul 2025
Viewed by 471
Abstract
Background/Objectives: Neurodevelopmental disorders (NDDs) represent a clinically diverse group of conditions that affect brain development, often leading to varying degrees of functional impairment. Many NDDs, particularly syndromic forms, are caused by genetic mutations affecting critical cellular pathways. Ribosomopathies, a subgroup of NDDs, are [...] Read more.
Background/Objectives: Neurodevelopmental disorders (NDDs) represent a clinically diverse group of conditions that affect brain development, often leading to varying degrees of functional impairment. Many NDDs, particularly syndromic forms, are caused by genetic mutations affecting critical cellular pathways. Ribosomopathies, a subgroup of NDDs, are linked to defects in ribosomal function, including those involving the synthesis of diphthamide, a post-translational modification of translation elongation factor 2 (eEF2). Loss-of-function (LoF) mutations in genes involved in diphthamide biosynthesis, such as DPH1, DPH2, and DPH5, result in developmental delay (DD), intellectual disability (ID), and multisystemic abnormalities. DPH5-related diphthamide deficiency syndrome has recently been reported as an ultrarare disorder linked to LoF mutations in DPH5, encoding a methyltransferase required for diphthamide synthesis. Methods: Clinical, neurological, and dysmorphological evaluations were performed by a multidisciplinary team. Brain MRI was acquired on a 3T scanner. Craniofacial abnormalities were assessed using the GestaltMatcher phenotyping tool. Whole exome sequencing (WES) was conducted on leukocyte-derived DNA with a trio-based approach. Bioinformatic analyses included variant annotation, filtering, and pathogenicity prediction using established databases and tools. Results: The affected subject carried a previously reported missense change, p.His260Arg, suggesting the occurrence of genotype–phenotype correlations and a hypomorphic behavior of the variant, likely explaining the overall milder phenotype compared to the previously reported patients with DPH5-related diphthamide deficiency syndrome. Conclusions: Overall, the co-occurrence of short stature, relative macrocephaly, congenital heart defects, variable DD/ID, minor skeletal and ectodermal features, and consistent craniofacial features suggests a differential diagnosis with Noonan syndrome and related phenotypes. Full article
(This article belongs to the Special Issue Advances in Neurogenetics and Neurogenomics)
Show Figures

Figure 1

13 pages, 2053 KiB  
Article
Rheological Features of Aqueous Polymer Solutions Tailored by Hydrodynamic Cavitation
by Santiago Nicolás Fleite, María del Pilar Balbi, María Alejandra Ayude and Miryan Cassanello
Fluids 2025, 10(7), 169; https://doi.org/10.3390/fluids10070169 - 29 Jun 2025
Viewed by 247
Abstract
Hydrodynamic cavitation (HC) has emerged as a versatile method for modifying the rheological properties of polymer solutions, offering advantages such as scalability and operational simplicity. This work investigates the effect of HC on aqueous polyacrylamide (PAM) solutions, focusing on viscosity and viscoelasticity changes [...] Read more.
Hydrodynamic cavitation (HC) has emerged as a versatile method for modifying the rheological properties of polymer solutions, offering advantages such as scalability and operational simplicity. This work investigates the effect of HC on aqueous polyacrylamide (PAM) solutions, focusing on viscosity and viscoelasticity changes as a function of the number of passes through a vortex-type HC device and the presence of dissolved salts (CaCl2 or KCl). Viscosity measurements were modeled using the power law equation, while oscillatory tests were used to determine storage and loss moduli. The results show that HC substantially reduced viscosity and elastic behavior, with the degree of modification strongly influenced by the number of passes. A critical molecular size limit was suggested, below which further degradation becomes limited. Salt addition enhanced depolymerization, likely due to charge screening, hydrodynamic radius reduction, and the increased solubility and mobility of polymer chains within cavitation bubbles. HC eliminated elasticity in all cases, yielding solutions with near-Newtonian behavior. The transformation is attributed to molecular weight reduction and changes in molecular size distribution. These findings support the use of HC as a practical approach to tailor the flow properties of PAM solutions, while highlighting intrinsic limitations imposed by cavitation dynamics and polymer chain dimensions. Full article
(This article belongs to the Special Issue Cavitation and Bubble Dynamics)
Show Figures

Figure 1

27 pages, 3625 KiB  
Article
Effect of Synthetic Wax on the Rheological Properties of Polymer-Modified Bitumen
by Marek Iwański, Małgorzata Cholewińska and Grzegorz Mazurek
Materials 2025, 18(13), 3067; https://doi.org/10.3390/ma18133067 - 27 Jun 2025
Viewed by 339
Abstract
The goal of this study is to evaluate how the inclusion of synthetic wax, added in 0.5% increments from 1.5% to 3.5%, affects the characteristics of PMB 45/80-65 (polymer-modified bitumen) during both short-term (RTFOT) and long-term (PAV) aging processes. Tests were carried out [...] Read more.
The goal of this study is to evaluate how the inclusion of synthetic wax, added in 0.5% increments from 1.5% to 3.5%, affects the characteristics of PMB 45/80-65 (polymer-modified bitumen) during both short-term (RTFOT) and long-term (PAV) aging processes. Tests were carried out to assess the fundamental properties of the binder, leading to the determination of the penetration index (PI) and the plasticity range (PR). The binder’s properties were examined at below-freezing operating temperatures, with creep stiffness measured using a bent beam rheometer (BBR) at −10 °C, −16° C, −22 °C, and −28 °C. The rheological properties of the asphaltenes were evaluated based on both linear and nonlinear viscoelasticity. The experimental study explored temperature effects on the rheological properties of composite materials using a DSR dynamic shear rheometer at 40 °C, 60 °C, and 80 °C over a frequency range of 0.005 to 10 Hz. The main parameters of interest were composite viscosity (η*) and zero shear viscosity (η0). Viscoelastic parameters, including the dynamic modulus (G*) and phase shift angle (δ), were determined, and Black’s curves were used to illustrate the relationship between these parameters, where G*/sinδ was determined. The MSCR test was employed to investigate the impact of bitumen on the asphalt mixture’s resistance to permanent deformation and to assess the degree and efficacy of asphalt modification. The test measured two parameters, irreversible creep compliance (Jnr) and recovery (R), under stress levels of 0.1 kPa (LVE) and 3.2 kPa (N-LVE). The Christensen–Anderson–Marasteanu model was used to describe the bitumen behavior during binder aging, as reflected in the rheological study results. Ultimately, this study revealed that synthetic wax influences the rheological properties of PMB 45/80-65 polymer bitumen. Specifically, it mitigated the stiffness reduction in modified bitumen caused by polymer degradation during aging at an amount less than 2.5% of synthetic wax. Full article
(This article belongs to the Special Issue Advances in Asphalt Materials (Second Volume))
Show Figures

Figure 1

17 pages, 4710 KiB  
Article
Differential Pasting and Rheological Properties of Diverse Underutilized Starches Modified by Acetic Anhydride and Vinyl Acetate
by Song Xu, Bilatu Agza Gebre, Chuangchuang Zhang, Solomon Abate Mekonnen, Mengting Ma, Hui Zhang, Zhongquan Sui and Harold Corke
Foods 2025, 14(13), 2227; https://doi.org/10.3390/foods14132227 - 24 Jun 2025
Viewed by 378
Abstract
Underutilized starch sources are gaining increasing recognition. However, the inherent functional deficiencies of native starch have limited its application in food industry. To counteract the deficiencies in its native characteristics, starch can be modified by acetylation. Two waxy starches (proso millet and amaranth) [...] Read more.
Underutilized starch sources are gaining increasing recognition. However, the inherent functional deficiencies of native starch have limited its application in food industry. To counteract the deficiencies in its native characteristics, starch can be modified by acetylation. Two waxy starches (proso millet and amaranth) and four non-waxy starches (foxtail millet, quinoa, buckwheat, and oat) were modified by acetic anhydride and vinyl acetate, respectively. Degree of substitution of acetylated starches revealed that granule size did not significantly affect acetylation efficiency in starches from different plant origins. Acetylation increased peak and final viscosity of starches, with vinyl acetate exhibiting a more pronounced effect than acetic anhydride. Acetic anhydride decreased K and increased n values of non-waxy starches, showing reduced thickening ability. In contrast, vinyl acetate modification showed opposite trends, suggesting increased viscosity and pseudoplasticity. For non-waxy starches, G′25°C, G′0.1Hz, G′20Hz and gel hardness decreased after acetylation, indicating that acetylation contributed to a less solid and less elastic gel network. The extent of change in vinyl acetate modification was more pronounced than that of acetic anhydride. For waxy starch, vinyl acetate modification decreased tan δ25°C and increased gel hardness. In summary, acetylation reagent type was the major factor determining the pasting properties of acetylated starch, but the presence or absence of amylose would influence the rheological and gel properties of acetic anhydride and vinyl acetate modified starches. These findings could help unlock the potential applications of acetylated underutilized starches in the food industry. Full article
(This article belongs to the Special Issue Starch: Properties and Functionality in Food Systems)
Show Figures

Figure 1

Back to TopTop