Design and Experimental Study of a Flapping–Twist Coupled Biomimetic Flapping-Wing Mechanism
Abstract
1. Introduction
2. Design of the Flapping–Twist Coupling Mechanism
2.1. Design Inspiration
2.2. Mechanism Design
2.3. Mechanism Simulation Verification
2.4. Flapping Wing Design
3. Wind Tunnel Experiment
3.1. Experimental Setup
3.2. Wind Tunnel and Other Experimental Devices
3.3. Data Acquisition and Processing
3.4. Gravity Interference and Axis Transformation
4. Results and Analysis
4.1. Aerodynamic Characteristics
4.2. Characteristics of Instantaneous Value Variations
4.3. Variation Trend of Lift and Thrust with the Amplitude of Twist
4.4. Trends of Lift and Thrust with Wind Speed
4.5. The Trend of Lift and Thrust with Angle of Attack
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FWAV | Flapping-wing Aerial Vehicle |
DOF | Degree Of Freedom |
CFD | Computational Fluid Dynamics |
LEV | Leading Edge Vortex |
Nomenclature
α | half of phase angle in the flapping cycle, deg |
β | half of twist amplitude in the flapping cycle, deg |
φ | flapping amplitude, deg |
r | radial dimension, mm |
Lift | the lift force, g |
Tnet | the net thrust, g |
x,y,z | cartesian coordinate system |
T | flapping period |
t | time, s |
E | elastic modulus |
I | wing moment of inertia |
EI | chordwise stiffness |
References
- Pornsin-Sirirak, T.N.; Tai, Y.C.; Ho, C.M. Microbat: A palm-sized electrically powered ornithopter. Proc. NASA/JPL Workshop Biomorphic Robot. 2001, 14, 17. [Google Scholar]
- Keennon, M.; Joel, G. Development of two MAVs and vision of the future of MAV design. In Proceedings of the AIAA International Air and Space Symposium and Exposition: The Next 100 Years, Dayton, OH, USA, 14–17 July 2003; p. 2901. [Google Scholar]
- Send, W.; Fischer, M.; Jebens, K.; Mugrauer, R.; Nagarathinam, A.; Scharstein, F. Artificial hinged-wing bird with active twist and partially linear kinematics. In Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences, Brisbane, Australia, 23–28 September 2012; Volume 10, pp. 1–10. [Google Scholar]
- Jiang, H.; Zhou, C.; Xie, P. Design and kinematic analysis of seagull inspired flapping wing robot. In Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA), Ningbo, China, 1 August 2016; pp. 1382–1386. [Google Scholar]
- Pan, E.; Xu, H.; Yuan, H.; Peng, J.; Xu, W. HIT-Hawk and HIT-Phoenix: Two kinds of flapping-wing flying robotic birds with wingspans beyond 2 meters. Biomim. Intell. Robot. 2021, 1, 100002. [Google Scholar] [CrossRef]
- Pan, E.; Chen, L.; Zhang, B.; Xu, W. A kind of large-sized flapping wing robotic bird: Design and experiments. In Proceedings of the Intelligent Robotics and Applications: 10th International Conference, Proceedings, Part III; Springer: Cham, Switzerland, 2017; Volume 10, pp. 538–550. [Google Scholar]
- Chen, A.; Song, B.; Wang, Z.; Xue, D.; Liu, K. A novel actuation strategy for an agile bioinspired FWAV performing a morphing-coupled wingbeat pattern. IEEE Trans. Robot. 2022, 39, 452–469. [Google Scholar] [CrossRef]
- Liu, T.; Kuykendoll, K.; Rhew, R.; Jones, S. Avian wing geometry and kinematics. AIAA J. 2006, 44, 954–963. [Google Scholar] [CrossRef]
- Tang, D.; Liu, D.; Zhu, H.; Huang, X.; Fan, Z.; Lei, M. Shape reconstructions and morphing kinematics of an eagle during perching manoeuvres. Chin. Phys. B 2020, 29, 024703. [Google Scholar] [CrossRef]
- Beratlis, N.; Capuano, F.; Krishnan, K.; Gurka, R.; Squires, K.; Balaras, E. Direct numerical simulations of a great horn owl in flapping flight. Integr. Comp. Biol. 2020, 60, 1091–1108. [Google Scholar] [CrossRef]
- Wolf, T.; Konrath, R. Avian wing geometry and kinematics of a free-flying barn owl in flapping flight. Exp. Fluids 2015, 56, 28. [Google Scholar] [CrossRef]
- Xie, Y.; Lu, K.; Zhang, D.; Xie, G. Computational analysis of propulsion performance of modified pitching motion airfoils in laminar flow. Math. Probl. Eng. 2014, 1, 420436. [Google Scholar] [CrossRef]
- Ajanic, E.; Paolini, A.; Coster, C.; Floreano, D.; Johansson, C. Robotic avian wing explains aerodynamic advantages of wing folding and stroke tilting in flapping flight. Adv. Intell. Syst. 2023, 5, 2200148. [Google Scholar] [CrossRef]
- Lu, K.; Xie, Y.; Zhang, D. Numerical study of large amplitude, nonsinusoidal motion and camber effects on pitching airfoil propulsion. J. Fluids Struct. 2013, 36, 184–194. [Google Scholar] [CrossRef]
- Yu, M.; Wang, Z.; Hu, H. High fidelity numerical simulation of airfoil thickness and kinematics effects on flapping airfoil propulsion. J. Fluids Struct. 2013, 42, 166–186. [Google Scholar] [CrossRef]
- Lin, S.; Hu, J. Aerodynamic performance study of flapping-wing flow fields. In Proceedings of the 23rd AIAA Applied Aerodynamics Conference, Toronto, ON, Canada, 6–9 June 2005; p. 4611. [Google Scholar]
- Heathcote, S.; Gursul, I. Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA J. 2007, 45, 1066–1079. [Google Scholar] [CrossRef]
- Chang, X.; Zhang, L.; Ma, R.; Wang, N. Numerical investigation on aerodynamic performance of a bionic flapping wing. Appl. Math. Mech. 2019, 40, 1625–1646. [Google Scholar] [CrossRef]
- Han, Y.; Yang, H.; Han, J. Twist-coupled flapping mechanism for bird-type flapping-wing air vehicles. J. Mech. Robot. 2023, 15, 051017. [Google Scholar] [CrossRef]
- Chellapurath, M.; Noble, S.; Sreejalekshmi, K. Design and kinematic analysis of flapping wing mechanism for common swift inspired micro aerial vehicle. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 4026–4036. [Google Scholar] [CrossRef]
- Jiang, S.; Hu, Y.; Li, Q.; Ma, L.; Wang, Y.; Zhou, X.; Liu, Q. Design and analysis of an innovative flapping wing micro aerial vehicle with a figure eight wingtip trajectory. Mech. Sci. 2021, 12, 603–613. [Google Scholar] [CrossRef]
- Ji, B.; Zhu, Q.; Guo, S.; Yang, F.; Li, Y.; Zhu, Z.; Li, Y. Design and experiment of a bionic flapping wing mechanism with flapping–twist–swing motion based on a single rotation. AIP Adv. 2020, 10, 065018. [Google Scholar] [CrossRef]
- Meng, R.; Song, B.; Xuan, J.; Yang, X. Design and verification of a large-scaled flapping-wing aircraft named “cloud owl”. Appl. Sci. 2023, 13, 5667. [Google Scholar] [CrossRef]
- Chung, W. Synthesis of spatial mechanism UR-2SS for path generation. J. Mech. Robot. 2015, 7, 041009. [Google Scholar] [CrossRef]
- Balta, M.; Ahmed, K.; Wang, P.; McCarthy, J.; Taha, H. Design and manufacturing of flapping wing mechanisms for micro air vehicles. In Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, TX, USA, 9–13 January 2017; p. 0509. [Google Scholar]
- Wang, P.; Michael, M. Design of a flapping wing mechanism to coordinate both wing swing and wing pitch. J. Mech. Robot. 2018, 10, 025003. [Google Scholar] [CrossRef]
- Xu, K.; Liu, H. Design of a compliant flapping-wing mechanism with flapping–twist–swing motion. IEEE/ASME Trans. Mechatron. 2022, 27, 5197–5207. [Google Scholar] [CrossRef]
- Zhao, L.; Jiao, Z. Efficiency-optimal rigidity configuration of passive torsional flapping wings. AIAA J. 2021, 59, 4354–4366. [Google Scholar] [CrossRef]
- Fan, X.; Breuer, K.; Vejdani, H. Wing fold and twist greatly improves flight efficiency for bat-scale flapping wing robots. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 7391–7397. [Google Scholar]
- Shen, Y.; Zhang, S.; Huang, W.; Shang, C.; Sun, T.; Shi, Q. Characterization of wing kinematics by decoupling joint movement in the pigeon. Biomimetics 2024, 9, 555. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Goyal, T.; Kamle, S.; Mohite, P.; Lau, E. Realisation and testing of novel fully articulated bird-inspired flapping wings for efficient and agile UAVs. Aeronaut. J. 2021, 125, 2114–2148. [Google Scholar] [CrossRef]
- Folkertsma, G.; Straatman, W.; Nijenhuis, N.; Venner, C.; Stramigioli, S. Robird: A robotic bird of prey. IEEE Robot. Autom. Mag. 2017, 24, 22–29. [Google Scholar] [CrossRef]
- Jiang, J.; Zou, W.; Xiong, L.; Ma, H.; Zhou, N.; Zhang, C. Design and Dynamics Analysis of a Flapping-Wing Vehicle with Active Wing Twisting. IEEE/ASME Trans. Mechatron. 2025, 1–11. [Google Scholar] [CrossRef]
- Huang, M. Optimization of flapping wing mechanism of bionic eagle. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 3260–3272. [Google Scholar] [CrossRef]
- Pu, W.; Shen, Q.; Yang, Y.; Lu, Y.; Yan, Y. Structural Design and Kinematic Modeling of Highly Biomimetic Flapping-Wing Aircraft with Perching Functionality. Biomimetics 2024, 9, 736. [Google Scholar] [CrossRef]
- Wang, Q.; Goosen, J.; Van Keulen, F. An efficient fluid–structure interaction model for optimizing twistable flapping wings. J. Fluids Struct. 2017, 73, 82–99. [Google Scholar] [CrossRef]
- Soto, C.; Bhattacharya, S. The effect of dynamic twisting on the flow field and the unsteady forces of a heaving flat plate. Bioinspiration Biomim. 2023, 18, 026010. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, C.; Meng, Y.; Yang, C. Kinematic optimization of a flexible wing undergoing flapping and pitching. Shock. Vib. 2021, 1, 9635584. [Google Scholar] [CrossRef]
- Gong, C.; Han, J.; Yuan, Z.; Fang, Z.; Chen, G. Numerical investigation of the effects of different parameters on the thrust performance of three-dimensional flapping wings. Aerosp. Sci. Technol. 2019, 84, 431–445. [Google Scholar] [CrossRef]
- Bachmann, T. Anatomical, Morphometrical and Biomechanical Studies of Barn Owls’ and Pigeons’ Wings. Ph.D. Thesis, ARWTH Aachen University, Aachen, Germany, 2010. [Google Scholar]
- Zhao, L.; Shang, Y.; Jiao, Z. A new approach based on undulate propulsion theory for flapping wing analysis and design. In Proceedings of the International Conference on Fluid Power and Mechatronics (FPM), Harbin, China, 5 August 2015; pp. 781–786. [Google Scholar]
- Au, L.; Phan, H.; Park, S.; Park, H. Effect of corrugation on the aerodynamic performance of three-dimensional flapping wings. Aerosp. Sci. Technol. 2020, 105, 106041. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, Q.; Deng, X.; Sane, S. Aerodynamic effects of flexibility in flapping wings. J. R. Soc. Interface 2010, 7, 485–497. [Google Scholar] [CrossRef]
- Xue, D.; Song, B.; Song, W.; Yang, W.; Xu, W.; Wu, T. Computational simulation and free flight validation of body vibration of flapping-wing MAV in forward flight. Aerosp. Sci. Technol. 2019, 95, 105491. [Google Scholar] [CrossRef]
References | Twist Form | Wingspan/m | Mechanism Form | Degree of Freedom | Adjustable (Twist) | Twist Amplitude/° | Partial Drive Mechanism Model |
---|---|---|---|---|---|---|---|
[1] | Passive twist | 0.14 | Four-bar linkage | 1 | No | / | |
[27] | Passive twist | 0.24 | Spatial five-bar linkage and flexible beam | 3 | No | / | |
[28] | Passive twist | 0.85 | Flat four-bar linkage | 2 | No | / | |
[23] | Passive twist | 1.8 | Spatial four-bar linkage | 1 | No | / | |
[5] | Passive twist | 2 | Spatial four-bar linkage | 1 | No | / | |
[21] | Active twist | 0.27 | Four-bar linkage and eccentric ball slider | 3 | No | 50 | |
[20] | Active twist | 0.3 | Conical rocker and bevel gear system | 3 | No | 36 | |
[29] | Active twist | 0.36 | Spatial four-bar linkage | 2 | No | 15 | |
[19] | Active twist | 0.6 | Four-bar linkage and spatial four-bar | 3 | No | 40 | |
[13] | Active twist | 0.66 | Bevel gear set | 3 | No | 40 | |
[30] | Active twist | 0.7 | Four-bar linkage and spatial four-bar linkage | 3 | No | 80 | |
[31] | Active twist | 0.9 | Servomotor drive | 3 | No | 30 | |
[22] | Active twist | 0.9 | Spatial six-bar linkage | 3 | No | 55 | |
[32] | Active twist | 1.12 | Double crank rocker | 2 | Yes | 0–15 | |
[33] | Active twist | 1.3 | Conical rocker mechanism and crank slider system | 2 | No | 20 | |
[34] | Active twist | 1.5 | Double crank rocker | 3 | No | 22.7 | |
[3] | Active twist | 2 | Four-bar linkage and servomotor drive | 2 | No | 18 |
Bird Types | Weight Range/g | Wingspan Range/m | Twist Amplitude (Cruising)/° |
---|---|---|---|
Pigeon | 250~360 | 0.65~0.75 | 83 |
Herring Gull | 800~1500 | 1.4~1.6 | 31 |
Eagle | 3000~7000 | 1.8~2.3 | 20 |
Experimental Variables | Value |
---|---|
Angle of attack (°) | 0, 5, 10, 15 |
Wind speed (m/s) | 6, 8, 10 |
Flapping frequency (Hz) | 1.4, 1.7, 2, 2.3, 2.6 |
Twist amplitude (°) | 0, 5, 10, 15, 20, 22.5, 25, 27.5, 30, 35, 40, 45 |
Twist Amplitude (°) | Flapping Frequency (Hz) | Cruising Lift (g) |
---|---|---|
10 | 2.68 | 424 |
22.5 | 2.3 | 420 |
35 | 2.45 | 426 |
40 | 2.58 | 416 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, R.; Song, B.; Xuan, J.; Zhang, Y. Design and Experimental Study of a Flapping–Twist Coupled Biomimetic Flapping-Wing Mechanism. Drones 2025, 9, 535. https://doi.org/10.3390/drones9080535
Meng R, Song B, Xuan J, Zhang Y. Design and Experimental Study of a Flapping–Twist Coupled Biomimetic Flapping-Wing Mechanism. Drones. 2025; 9(8):535. https://doi.org/10.3390/drones9080535
Chicago/Turabian StyleMeng, Rui, Bifeng Song, Jianlin Xuan, and Yugang Zhang. 2025. "Design and Experimental Study of a Flapping–Twist Coupled Biomimetic Flapping-Wing Mechanism" Drones 9, no. 8: 535. https://doi.org/10.3390/drones9080535
APA StyleMeng, R., Song, B., Xuan, J., & Zhang, Y. (2025). Design and Experimental Study of a Flapping–Twist Coupled Biomimetic Flapping-Wing Mechanism. Drones, 9(8), 535. https://doi.org/10.3390/drones9080535