Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = degradable mulch film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3733 KiB  
Article
Enhancing Sugarcane Yield and Weed Control Sustainability with Degradable Film Mulching
by Xin Yuan, Rudan Li, Guolei Tang, Shaolin Yang and Jun Deng
Plants 2025, 14(16), 2521; https://doi.org/10.3390/plants14162521 - 13 Aug 2025
Viewed by 204
Abstract
A two-year field study evaluated biodegradable plastic film (BPF; thicknesses: 0.006, 0.008, and 0.010 mm) versus polyethylene film (PE; 0.010 mm) and no-mulch control on sugarcane yield and weed suppression. Key results demonstrated that 0.010 mm BPF significantly enhanced sugarcane emergence (CV [...] Read more.
A two-year field study evaluated biodegradable plastic film (BPF; thicknesses: 0.006, 0.008, and 0.010 mm) versus polyethylene film (PE; 0.010 mm) and no-mulch control on sugarcane yield and weed suppression. Key results demonstrated that 0.010 mm BPF significantly enhanced sugarcane emergence (CV = 5.07% in ratoon), reduced weed biomass by 70%, and increased perennial yield by 3.83% (+5.6 t ha−1), while PE film decreased yield by 3.80%. Regression analysis identified the effective stem number, plant height, and stem diameter as primary yield predictors (R2 = 0.996). Logistic models revealed that film mulching duration >119 days was critical for achieving high yields (>122.2 t ha−1) and sustained weed control (R2 = 0.81). These findings establish 0.010 mm BPF as an optimal sustainable alternative to PE film for enhancing sugarcane productivity. Full article
Show Figures

Figure 1

24 pages, 1488 KiB  
Article
Assessment of the Agricultural Effectiveness of Biodegradable Mulch Film in Onion Cultivation
by Hyun Hwa Park, Young Ok Kim and Yong In Kuk
Plants 2025, 14(15), 2286; https://doi.org/10.3390/plants14152286 - 24 Jul 2025
Viewed by 373
Abstract
This study conducted a comprehensive evaluation of the effects of biodegradable (BD) mulching film in onion cultivation, with a focus on plant growth, yield, soil environment, weed suppression, and film degradation, in comparison to conventional polyethylene (PE) film and non-mulching (NM) treatment across [...] Read more.
This study conducted a comprehensive evaluation of the effects of biodegradable (BD) mulching film in onion cultivation, with a focus on plant growth, yield, soil environment, weed suppression, and film degradation, in comparison to conventional polyethylene (PE) film and non-mulching (NM) treatment across multiple regions and years (2023–2024). The BD and PE films demonstrated similar impacts on onion growth, bulb size, yield, and weed suppression, significantly outperforming NM, with yield increases of over 13%. There were no consistent differences in soil pH, electrical conductivity, and physical properties in crops that used either BD or PE film. Soil temperature and moisture were also comparable regardless of which film type was used, confirming BD’s viability as an alternative to PE. However, areas that used BD film had soils which exhibited reduced microbial populations, particularly Bacillus and actinomycetes which was likely caused by degradation by-products. BD film degradation was evident from 150 days post-transplantation, with near-complete decomposition at 60 days post-burial, whereas PE remained largely intact (≈98%) during the same period. These results confirm that BD film can match the agronomic performance of PE while offering the advantage of environmentally friendly degradation. Further research should optimize BD film durability and assess its cost-effectiveness for large-scale sustainable agriculture. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

13 pages, 1373 KiB  
Article
A Comparative Plant Growth Study of a Sprayable, Degradable Polyester–Urethane–Urea Mulch and Two Commercial Plastic Mulches
by Cuyler Borrowman, Karen Little, Raju Adhikari, Kei Saito, Stuart Gordon and Antonio F. Patti
Agriculture 2025, 15(15), 1581; https://doi.org/10.3390/agriculture15151581 - 23 Jul 2025
Viewed by 385
Abstract
The practice in agriculture of spreading polyethylene (PE) film over the soil surface as mulch is a common, global practice that aids in conserving water, increasing crop yields, suppressing weed growth, and decreasing growing time. However, these films are typically only used for [...] Read more.
The practice in agriculture of spreading polyethylene (PE) film over the soil surface as mulch is a common, global practice that aids in conserving water, increasing crop yields, suppressing weed growth, and decreasing growing time. However, these films are typically only used for a single growing season, and thus, their use and non-biodegradability come with some serious environmental consequences due to their persistence in the soil and potential for microplastic pollution, particularly when retrieval and disposal options are poor. On the microscale, particles < 5 mm from degraded films have been observed to disrupt soil structure, impede water and nutrient cycling, and affect soil organisms and plant health. On the macroscale, there are obvious and serious environmental consequences associated with the burning of plastic film and its leakage from poorly managed landfills. To maintain the crop productivity afforded by mulching with PE film while avoiding the environmental downsides, the development and use of biodegradable polymer technologies is being explored. Here, the efficacy of a newly developed, water-dispersible, sprayable, and biodegradable polyester–urethane–urea (PEUU)-based polymer was compared with two commercial PE mulches, non-degradable polyethylene (NPE) and OPE (ox-degradable polyethylene), in a greenhouse tomato growth trial. Water savings and the effects on plant growth and soil characteristics were studied. It was found that PEUU provided similar water savings to the commercial PE-based mulches, up to 30–35%, while showing no deleterious effects on plant growth. The results should be taken as preliminary indications that the sprayable, biodegradable PEUU shows promise as a replacement for PE mulch, with further studies under outside field conditions warranted to assess its cost effectiveness in improving crop yields and, importantly, its longer-term impacts on soil and terrestrial fauna. Full article
Show Figures

Figure 1

16 pages, 2657 KiB  
Article
Degradation of Biodegradable Mulch-Derived Microplastics and Their Effects on Bacterial Communities and Radish Growth in Three Vegetable-Cultivated Purple Soils
by Ruixue Ao, Zexian Liu, Yue Mu, Jiaxin Chen and Xiulan Zhao
Agriculture 2025, 15(14), 1512; https://doi.org/10.3390/agriculture15141512 - 13 Jul 2025
Viewed by 465
Abstract
Biodegradable mulch films (BDMs) are considered a promising solution for mitigating plastic residue pollution in agroecosystems. However, the degradation behavior and ecological impacts of their residues on soil–plant systems remain unclear. Here, a pot experiment was conducted using an acidic purple soil (AS), [...] Read more.
Biodegradable mulch films (BDMs) are considered a promising solution for mitigating plastic residue pollution in agroecosystems. However, the degradation behavior and ecological impacts of their residues on soil–plant systems remain unclear. Here, a pot experiment was conducted using an acidic purple soil (AS), a neutral purple soil (NS), and a calcareous purple soil (CS) to investigate the degradation of 1% (w/w) microplastics derived from polyethylene mulch film (PE-MPs) and polybutylene adipate terephthalate/polylactic acid (PBAT/PLA) mulch film (Bio-MPs), as well as their effects on soil properties, bacterial communities, and radish growth. PE-MPs degraded slightly, while the degradation of Bio-MPs followed the order of NS > CS > AS. PE-MPs and Bio-MPs enhanced the nitrification and radish growth in AS but had no significant effects on soil properties and radish growth in CS. Bio-MPs notably increased the relative abundance of PBAT/PLA degradation-related bacteria, such as Ramlibacter, Bradyrhizobium, and Microbacterium, across the three soils. In NS, Bio-MPs raised soil pH and enriched nitrogen-fixing and denitrifying bacteria, leading to a decrease in NO3-N content and radish biomass. Overall, the effects of Bio-MPs on soil–plant systems varied with soil properties, which are closely related to their degradation rates. These findings highlight the need to assess the ecological risks of BDM residues before their large-scale use in agriculture. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Graphical abstract

21 pages, 2787 KiB  
Article
Composted PBST Biodegradable Mulch Film Residues Enhance Crop Development: Insights into Microbial Community Assembly, Network Interactions, and Soil Metabolism
by Liuliu Li, Liyuan Liu, Guoyuan Zou, Xuexia Wang, Li Xu, Yong Yang, Jinfeng Liu, Huabo Liu and Dongsheng Liu
Plants 2025, 14(13), 1902; https://doi.org/10.3390/plants14131902 - 20 Jun 2025
Viewed by 519
Abstract
Biodegradable mulch film (BDM) is regarded as a key solution to combat plastic mulch film pollution due to its ability to degrade completely into CO2 and H2O through environmentally friendly microorganisms. However, commercial BDM often fails to degrade fully after [...] Read more.
Biodegradable mulch film (BDM) is regarded as a key solution to combat plastic mulch film pollution due to its ability to degrade completely into CO2 and H2O through environmentally friendly microorganisms. However, commercial BDM often fails to degrade fully after use, leading to the accumulation of BDM residues in soil and their transformation into microplastics (MPs) via various processes, posing a threat to the soil ecosystem. Given these discrepancies between the theoretical and practical degradation performance of BDM, there is an urgent need to understand the impacts of BDM residues on plant growth and soil health. This research conducted pot experiments spanning the entire growth cycle of Chinese cabbage to evaluate the impact of PBST-BDM raw material (R), PBST-BDM residues (M), and PBST-BDM composting product (P) on crop growth and soil quality. The findings revealed that R treatments had a slight effect on Chinese cabbage growth (e.g., a 5.80% increase in emergence rate in R 1% treatment, p < 0.05), while M treatments significantly hindered the emergence rate, plant height, leaf area, and biomass accumulation of Chinese cabbage by 30.4% (p < 0.05), 2.71 cm (p < 0.05), 39.0% (p < 0.05), and 1.86 g (p < 0.05) in the M 1% treatment compared to the control group (CK). In contrast, P treatments enhanced Chinese cabbage growth, with greater improvements at higher weight ratios, resulting in increases of 8.89% (p < 0.05), 4.96 cm (p < 0.05), 36.3% (p < 0.05), and 2.31 g (p < 0.05) in the P 1% treatment. Microbial network topology in the M 1% treatment is highly variable, with the increased proportion of positive correlations in the P 1% treatment hinting at stronger symbiotic interactions between species (p < 0.05). Analysis results of PCoA and PLS-DA showed significant differences in microbial community and soil metabolites between M 1% treatment and CK (p < 0.05). These findings suggest that, although composting post-use BDM may reduce their negative ecological effects, possibly via accelerating the early breakdown of residues, the feasibility and scalability of this approach require further validation under real-world field conditions. Full article
Show Figures

Figure 1

18 pages, 3417 KiB  
Article
Design and Preparation of Inherently Photostable Poly(Butylene Adipate-Co-Terephthalate) by Chemically Bonding UV-Stabilizing Moieties in Molecular Chains
by Xinpeng Zhang, Yan Ye, Yaqiao Wang, Hongli Bian, Jing Yuan, Jianping Ding, Wanli Li, Jun Xu and Baohua Guo
Polymers 2025, 17(11), 1567; https://doi.org/10.3390/polym17111567 - 4 Jun 2025
Viewed by 547
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising biodegradable polymer with balanced mechanical properties and excellent degradability, making it an ideal material to reduce plastic pollution. However, its susceptibility to ultraviolet (UV) degradation, due to photosensitive aromatic rings and carbonyl groups in its structure, limits [...] Read more.
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising biodegradable polymer with balanced mechanical properties and excellent degradability, making it an ideal material to reduce plastic pollution. However, its susceptibility to ultraviolet (UV) degradation, due to photosensitive aromatic rings and carbonyl groups in its structure, limits its use in outdoor settings like mulch films. Conventional methods of incorporating small-molecule UV stabilizers face challenges such as poor compatibility, uneven dispersion, and migration under environmental conditions, reducing their effectiveness over time. This study developed a novel strategy to enhance PBAT’s UV resistance by chemically bonding UV-stabilizing moieties directly into its molecular chains to address these limitations. A novel UV absorber containing a polymerizable group was synthesized and copolymerized with PBAT’s main chain, creating an intrinsically UV-stable PBAT. The UV-stable PBAT was evaluated for UV resistance, mechanical performance, and durability through accelerated aging and solvent extraction tests. The results demonstrated that UV-stable PBAT exhibited exceptional light stabilization effects, with no detectable UV absorber leaching in ethanol even after 114 h, whereas PBAT blends lost nearly 90% of UV-0 within 24 h. Furthermore, UV-stable PBAT maintained 67.1% tensile strength and 48.8% elongation at break after aging, which exhibited the best mechanical retention performance. Even when subjected to solvent extraction, the 42.6% tensile strength retention outperformed the PBAT blends. This innovative chemical modification overcomes the limitations of additive-based stabilization, offering improved durability, compatibility, and performance in outdoor applications. Our research provides key insights into the fundamental properties of PBAT films for UV resistance, demonstrating their potential for use in demanding fields such as agricultural films. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 2188 KiB  
Article
Employment of Biodegradable, Short-Life Mulching Film on High-Density Cropping Lettuce in a Mediterranean Environment: Potentials and Prospects
by Marco Pittarello, Maria Teresa Rodinò, Rossana Sidari, Maria Rosaria Panuccio, Francesca Cozzi, Valentino Branca, Beatrix Petrovičová and Antonio Gelsomino
Agriculture 2025, 15(11), 1219; https://doi.org/10.3390/agriculture15111219 - 3 Jun 2025
Viewed by 654
Abstract
Biodegradable mulch films were developed over the last decades to replace polyethylene, but their short durability and higher costs still limit their diffusion. This work aimed to test an innovative composite mulching film constituted by a mixture of carboxylmethyl cellulose, chitosan and sodium [...] Read more.
Biodegradable mulch films were developed over the last decades to replace polyethylene, but their short durability and higher costs still limit their diffusion. This work aimed to test an innovative composite mulching film constituted by a mixture of carboxylmethyl cellulose, chitosan and sodium alginate, enriched or not with an inorganic N- and P-source to help the microbial breakdown in soil. The trial was carried out using outdoor mesocosms cultivated with lettuce plants with high-density planting. Commercial Mater-Bi® and a polyethylene film were taken as control treatments. Air temperature and humidity monitored daily during the 51 d cropping cycle remained within the ideal range for lettuce growth with no mildew or fungi infection. Visible mechanical degradation of the experimental biopolymers occurred after 3 weeks; however, Mater-Bi® and polyethylene remained unaltered until harvest. Chemical soil variables (TOC, TN, CEC, EC) remained unchanged in all theses, whereas the pH varied. The yield, pigments, total phenols, flavonoids and ROS scavenging activity of lettuce were similar among treatments. Despite their shorter life service (~3 weeks), polysaccharide-based mulching films showed their potential to protect lettuce plants at an early stage and provide yield and nutraceutical values similar to conventionally mulched plants, while allowing a reduced environmental impact and disposal operations. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

18 pages, 2947 KiB  
Article
Evaluation of the Comprehensive Effects of Biodegradable Mulch Films on the Soil Hydrothermal Flux, Root Architecture, and Yield of Drip-Irrigated Rice
by Zhiwen Song, Guodong Wang, Quanyou Hao, Xin Zhu, Qingyun Tang, Lei Zhao, Qifeng Wu and Yuxiang Li
Agronomy 2025, 15(6), 1292; https://doi.org/10.3390/agronomy15061292 - 25 May 2025
Viewed by 677
Abstract
Biodegradable mulch films not only provide similar field benefits to conventional mulch films but also degrade naturally, rendering them an effective alternative to traditional polyethylene mulch films for mitigating “white pollution”. However, recent studies have focused on the material selection and soil ecological [...] Read more.
Biodegradable mulch films not only provide similar field benefits to conventional mulch films but also degrade naturally, rendering them an effective alternative to traditional polyethylene mulch films for mitigating “white pollution”. However, recent studies have focused on the material selection and soil ecological impacts of biodegradable mulch films, while their effects on soil water temperature regulation and root architecture in drip-irrigated rice cultivation remain unclear. To address this research gap, in this study, various treatments including no mulch (NM), conventional plastic mulch (PM), and four types of biodegradable mulch films (BM-W1, BM-B1, BM-B2, and BM-B3) were established, and their effects on the soil hydrothermal flux, root architecture, biomass accumulation, and resource use efficiency of drip-irrigated rice were analyzed at different growth stages. The results indicated the following: (1) Compared with the NM treatment, film mulching increased the soil hydrothermal fluxes and water retention capacity, thereby promoting root growth and biomass accumulation, ultimately increasing the effective panicle number and grain yield. (2) Among the biodegradable film treatments, BM-B3 (with a degradation period of 105 days) maintained relatively higher soil temperature for a longer duration, which increased surface root distribution in the mid-to-late growth stages, further improving fine root growth and biomass accumulation, consequently enhancing both yield and water use efficiency. In contrast, BM-B1 and BM-B2 exhibited excessively rapid degradation rates, leading to significant fluctuations in soil moisture and temperature, thereby negatively affecting water supply and nutrient uptake and ultimately restricting root growth and development. (3) The entropy weight (EW) technique for order of preference by similarity to ideal solution (TOPSIS) model results revealed that although the PM treatment was more advantageous in terms of soil temperature, root dry weight, and soil moisture content, BM-B3 provided a slightly higher yield than the PM treatment did and offered the advantage of biodegradability, making it a preferred alternative to conventional mulch film. In summary, this study revealed the mechanism by which biodegradable mulch films enhanced biomass accumulation and yield formation in drip-irrigated rice production by optimizing soil hydrothermal dynamics and root architecture, thereby exploring their potential as replacements for conventional mulch films. These findings provide a theoretical basis for the efficient and sustainable production of drip-irrigated rice in arid regions. Full article
(This article belongs to the Special Issue Crop Management in Water-Limited Cropping Systems)
Show Figures

Figure 1

17 pages, 4896 KiB  
Article
Urea–Formaldehyde Strengthened by Polyvinyl Alcohol: Impact on Mulch Film Properties and Cucumber Cultivation
by Tingting Shen, Yongjie Ma and Xueyan Zhang
Polymers 2025, 17(9), 1277; https://doi.org/10.3390/polym17091277 - 7 May 2025
Viewed by 923
Abstract
To address the problem of environmental pollution caused by the extensive use of low-density polyethylene (LDPE) mulch film, this study developed a novel sprayable mulch using natural fibers and biodegradable polymers. Urea–formaldehyde resin (UF), strengthened with polyvinyl alcohol (PVA), was used as a [...] Read more.
To address the problem of environmental pollution caused by the extensive use of low-density polyethylene (LDPE) mulch film, this study developed a novel sprayable mulch using natural fibers and biodegradable polymers. Urea–formaldehyde resin (UF), strengthened with polyvinyl alcohol (PVA), was used as a modifier to induce beneficial physicochemical structural changes in PVA-modified urea–formaldehyde (PUF) resins. Characterization of these resins was conducted using Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Preparation of the biodegradable mulch was conducted using Xuan paper waste residue (XP) as an enhancer, with PUF as the auxiliary agent. The resulting film (PUF-XP) was examined for differences in thickness, morphological characterization, and rate of weight loss, and the effects of different covering films on cucumber growth, root development, soil temperature, and weed control were evaluated. Characterization reveals that when the PVA content was 4% (W4UF), the film had the lowest free formaldehyde content (0.26%) and highest elongation at break (5.70%). In addition, W4UF could easily undergo thermal degradation at 278.4 °C and possessed a close-knit, three-dimensional structural network. W4UF was then mixed with paper powder and water in various proportions to produce three mulch films (BioT1, BioT2, and BioT3) that demonstrated excellent water retention and heat preservation and inhibited weed growth by 68.8–96.8%. Compared to no mulching (NM), BioT1 increased both the specific root length and root density, as well as improved the plant height, stem diameter, and total biomass of the cucumbers by 43.5%, 34.1%, and 33.9%, respectively. Therefore, a mass ratio of paper powder, water, and W4UF of 1:30:2 produced a biodegradable mulch film that could be used as an alternative to LDPE, mitigating the environmental pollution rendered by synthetic plastic mulch films and offering the potential for a sustainable agricultural application. Full article
Show Figures

Graphical abstract

18 pages, 9953 KiB  
Article
Impact of Steam-Exploded Feather Incorporation on the Biodegradation Performance of Renewable Biocomposites
by Julen Vadillo, Sarah Montes, Hans-Jürgen Grande, Eveline Beeckman, Steven Verstichel and Jonna Almqvist
Polymers 2025, 17(7), 910; https://doi.org/10.3390/polym17070910 - 28 Mar 2025
Viewed by 670
Abstract
The increasing environmental concerns regarding plastic waste, especially in agriculture, have driven the search for sustainable alternatives. Agricultural plastics, such as mulching films and greenhouse covers, are heavily reliant on petrochemical-derived materials, which persist in the environment and contribute to long-term pollution. This [...] Read more.
The increasing environmental concerns regarding plastic waste, especially in agriculture, have driven the search for sustainable alternatives. Agricultural plastics, such as mulching films and greenhouse covers, are heavily reliant on petrochemical-derived materials, which persist in the environment and contribute to long-term pollution. This study explores the use of biodegradable biocomposites made from steam explosion-treated chicken feathers and various polymer matrices to address these issues. Chicken feathers, a waste by-product of the poultry industry, present an excellent biodegradability as a result of the steam explosion treatment and contain nitrogen, potentially enhancing soil fertility. The biocomposites were characterized by thermal stability, mechanical properties, and biodegradability, and ecotoxicity assessments were carried out studying the incorporation of feathers into the soil. Results showed that the incorporation of treated chicken feathers increased the water absorption capacity of the composites, promoting faster disintegration and biodegradation. In particular, biocomposites made with polyhydroxyalkanoates and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) exhibited a significant increase in degradation rates, from 3–10% in the first month for pure matrices to 40–50% when reinforced with treated feathers. Meanwhile, those made from polylactic acid showed slower degradation. Furthermore, the addition of feathers positively influenced crop growth at low concentrations, acting as a slow-release fertilizer. However, high concentrations of feathers negatively affect plant growth due to excess nitrogen. These findings highlight the potential of poultry feathers as a valuable, sustainable filler for agricultural bioplastics, contributing to waste valorization and environmentally friendly farming practices. Full article
Show Figures

Figure 1

16 pages, 14208 KiB  
Article
Degradation Characteristics of Reed-Based PBAT Mulch and Their Effects on Plant Growth and Soil Properties
by Yipeng Wang, Qiuxia Zhang, Yinghao Huang, Jia Xu and Jixing Xie
Materials 2025, 18(7), 1477; https://doi.org/10.3390/ma18071477 - 26 Mar 2025
Viewed by 515
Abstract
Poly (butylene adipate-co-terephthalate) (PBAT) and PBAT/reed fiber (RF) mulch films were prepared. The molecular structural changes and surface morphological evolution during the degradation process were systematically characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The prepared PBAT/RF mulch film biodegradation [...] Read more.
Poly (butylene adipate-co-terephthalate) (PBAT) and PBAT/reed fiber (RF) mulch films were prepared. The molecular structural changes and surface morphological evolution during the degradation process were systematically characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The prepared PBAT/RF mulch film biodegradation rate reached 90.43% within 91 days under controlled composting conditions, which was 9.52% higher than a pure PBAT mulch film. The effects of adding PBAT and PBAT/RF microplastics on soil properties and soybean physiological indicators were dynamic. The study demonstrated that the incorporation of 5% PBAT/RF mulch film fragments into soil led to a 5.1% reduction in soil pH and a 17.2% increase in soluble organic carbon content. While the effects of 5% PBAT/RF on soil urease and neutral phosphatase activities were non-significant, sucrase activity decreased by 7.4% and catalase activity was reduced to 0.38 U/g. Additionally, the addition of 5% PBAT/RF resulted in a soybean germination rate of 93.74%, which was 4.0% higher than that observed in the group treated with 5% PBAT alone. The experimental data revealed a 7.2% reduction in leaf chlorophyll content, with concomitant growth inhibition in the soybean seedlings. The study demonstrated that the PBAT/RF composite film achieved 89% biodegradation within 180 days under field conditions, effectively mitigating post-application effects on agroecosystems compared to conventional polyethylene mulch. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

18 pages, 3489 KiB  
Article
Plastic Film Residue Reshaped Protist Communities and Induced Soil Nutrient Deficiency Under Field Conditions
by Ge Wang, Qian Sun, Maolu Wei, Miaomiao Xie, Ting Shen and Dongyan Liu
Agronomy 2025, 15(2), 419; https://doi.org/10.3390/agronomy15020419 - 7 Feb 2025
Cited by 1 | Viewed by 915
Abstract
The use of plastic agricultural mulching films presents a “double-edged sword”: while these films enhance crop yields, they also lead to the accumulation of plastic film residues in the soil, creating new pollutants (microplastics). Our understanding of the “plastisphere”, a niche formed by [...] Read more.
The use of plastic agricultural mulching films presents a “double-edged sword”: while these films enhance crop yields, they also lead to the accumulation of plastic film residues in the soil, creating new pollutants (microplastics). Our understanding of the “plastisphere”, a niche formed by agricultural film residues in the soil, where unique microbial communities and soil conditions converge remains limited. This is particularly true for protists, which are recognized as key determinants of soil health. Therefore, this study simulated a field experiment to analyze the effects of long-term plastic film residues on the structure of protist microbial communities in the rhizosphere, bulk soil and plastisphere of oilseed rape as well as their effects on soil nutrients. The results revealed that the residual plastic films underwent significant structural and chemical degradations. Protist diversity and co-occurrence network complexity were markedly reduced in plastisphere soils. In addition, soil moisture content, inorganic nitrogen and available phosphorus levels declined, leading to deficiencies in soil nutrients. Functional shifts in consumer protists and phototrophs along with weakened network interactions, have been identified as key drivers of impaired nutrient turnover. Our study underscores the critical role of protist communities in maintaining soil nutrient cycling and highlights the profound adverse effects of plastic film residues on soil ecosystems. These findings provide valuable insights into mitigating plastic residue accumulation to preserve long-term soil fertility and ensure sustainable agricultural productivity. Full article
(This article belongs to the Special Issue The Impact of Mulching on Crop Production and Farmland Environment)
Show Figures

Figure 1

33 pages, 4831 KiB  
Review
Microplastics in Agricultural Crops and Their Possible Impact on Farmers’ Health: A Review
by Eva Masciarelli, Laura Casorri, Marco Di Luigi, Claudio Beni, Massimiliano Valentini, Erica Costantini, Lisa Aielli and Marcella Reale
Int. J. Environ. Res. Public Health 2025, 22(1), 45; https://doi.org/10.3390/ijerph22010045 - 31 Dec 2024
Cited by 5 | Viewed by 4275
Abstract
The indiscriminate use of plastic products and their inappropriate management and disposal contribute to the increasing presence and accumulation of this material in all environmental zones. The chemical properties of plastics and their resistance to natural degradation lead over time to the production [...] Read more.
The indiscriminate use of plastic products and their inappropriate management and disposal contribute to the increasing presence and accumulation of this material in all environmental zones. The chemical properties of plastics and their resistance to natural degradation lead over time to the production of microplastics (MPs) and nanoplastics, which are dispersed in soil, water, and air and can be absorbed by plants, including those grown for food. In agriculture, MPs can come from many sources (mulch film, tractor tires, compost, fertilizers, and pesticides). The possible effects of this type of pollution on living organisms, especially humans, increase the need to carry out studies to assess occupational exposure in agriculture. It would also be desirable to promote alternative materials to plastic and sustainable agronomic practices to protect the safety and health of agricultural workers. Full article
Show Figures

Figure 1

13 pages, 425 KiB  
Article
Evaluation of the Effects of Degradable Mulching Film on the Growth, Yield and Economic Benefit of Garlic
by Jiangping Song, Huixia Jia, Yang Wang, Xiaohui Zhang, Wenlong Yang, Tingting Zhang, Naijian Wang, Jianqiang Yang and Haiping Wang
Agronomy 2025, 15(1), 93; https://doi.org/10.3390/agronomy15010093 - 31 Dec 2024
Cited by 2 | Viewed by 1275
Abstract
Polyethylene mulch film (PEM) is widely utilized in garlic cultivation, significantly enhancing garlic yield. However, the prolonged use of this material leads to serious environmental issues that adversely affect soil health and plant growth. To promote the adoption of biodegradable mulch film (BDM) [...] Read more.
Polyethylene mulch film (PEM) is widely utilized in garlic cultivation, significantly enhancing garlic yield. However, the prolonged use of this material leads to serious environmental issues that adversely affect soil health and plant growth. To promote the adoption of biodegradable mulch film (BDM) in garlic cultivation, we investigate the effects of BDMs with thicknesses of 0.006 mm, 0.008 mm, and 0.010 mm on garlic growth and soil properties, comparing them with the commonly used PEM 0.008 mm. The results indicated that the agronomic traits of garlic were significantly improved under both PEM and BDMs compared to no mulching, with yield increases ranging from 75.42% to 90.39%. The highest garlic yield was observed with the BDM 0.008 mm. Most above-ground agronomic traits of garlic did not exhibit significant differences between PEM and BDMs, although a few traits showed slight increases under the BDMs 0.008 mm and 0.010 mm. The quality characteristics of garlic bulbs, including the contents of soluble sugar, vitamin C, and allicin, did not differ significantly between PEM and BDMs. Soil temperature was significantly higher under both PEM and BDMs compared to no mulching. In comparison to PEM 0.008 mm, the application of BDMs 0.006 mm and 0.008 mm significantly enhanced potassium availability in the soil. Furthermore, the activities of catalase, phosphatase, and invertase were notably increased under the BDM 0.008 mm, suggesting that this type of mulch could improve the physicochemical properties of the soil. Additionally, the BDM 0.008 mm remained intact throughout the low-temperature overwintering period, began to partially degrade as temperatures rose in March and April, and exhibited considerable fragmentation during the maturity and harvest periods of garlic. Its degradation rate was well aligned with the growth requirements of garlic. Taken together, these findings suggested that the BDM 0.008 mm is particularly effective, resulting in significant yield increase and an appropriate degradation rate. These results provided a valuable reference for the selection and application of BDM in garlic cultivation. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

20 pages, 5977 KiB  
Article
Preparation of Wheat-Straw-Fiber-Based Degradable Mulch Film for Sustained Release of Carbendazim and Its Application for Soybean Root Rot Control
by Shuang Liu, Zhe Jin, Pengfei Zhou, Huimin Shang, Haiyan Yang, Longhai Li, Rui Li, Ying Zhang and Haitao Chen
Agronomy 2025, 15(1), 71; https://doi.org/10.3390/agronomy15010071 - 30 Dec 2024
Viewed by 985
Abstract
In order to sustain control over soybean root rot, wheat-straw-fiber-based mulch film (WFM) coated with carbendazim (C) and chitosan (CS) mixture (C-CS-WFM) were prepared through bar coating technology. The Box–Behnken design method was employed to investigate the effects of chitosan concentration, wet film [...] Read more.
In order to sustain control over soybean root rot, wheat-straw-fiber-based mulch film (WFM) coated with carbendazim (C) and chitosan (CS) mixture (C-CS-WFM) were prepared through bar coating technology. The Box–Behnken design method was employed to investigate the effects of chitosan concentration, wet film thickness, and carbendazim loading on the dry tensile strength (DTS), wet tensile strength (WTS), and air permeance (AP) of C-CS-WFM. Eventually, the optimization process parameters were determined as follows: a chitosan concentration of 1.83–2.39%, a wet film thickness of 18–24 μm, and a carbendazim loading of 0.05–0.12 g/m2. These parameters achieved the desired physical properties of C-CS-WFM, i.e., the DTS is not less than 3.5 kN/m, the WTS is not less than 0.8 kN/m, and the AP does not exceed 2.1 μm/(Pa·s). The results showed that after the introduction of the C-CS coating, the DTS and WTS of C-CS-WFM were enhanced by 11.4% and 14.9%, respectively. In contrast, the AP was reduced by 15.6%. FT-IR analysis indicated that carbendazim was embedded in the C-CS composite material without any chemical interaction. Through SEM and sustained-release kinetic analysis, it was found that the sustained-release mechanism of C-CS-WFM conformed to the Ritger–Peppas kinetic model, and its release mechanism was the physical diffusion and matrix erosion. The results of the in vitro antifungal test and pot experiment demonstrated that C-CS-WFM could effectively inhibit the growth of Fusarium solani and promote the growth of plants. This study provided new ideas for the comprehensive prevention and control of soybean root rot. Full article
(This article belongs to the Special Issue Recent Advances in Legume Crop Protection)
Show Figures

Figure 1

Back to TopTop