Enhancing Sugarcane Yield and Weed Control Sustainability with Degradable Film Mulching
Abstract
1. Introduction
2. Results
2.1. The Impact of Plastic Film Mulching on the Germination of Sugarcane Seedlings
2.2. Effect of Film Mulching on Weeds
2.3. Effect of Film Mulching on Sugarcane Yield-Related Traits
2.4. Analysis of Year and Treatment Interaction Effects on Sugarcane Yield-Related Traits
2.5. Correlation Analysis of Measured Parameters
2.6. Regression Analysis of Influencing Factors on Sugarcane Yield
2.7. Logistic Fitting Analysis of the Effect of Film Mulching Time on Weeds and Sugarcane Yield
3. Discussion
4. Materials and Methods
4.1. Experimental Site
4.2. Experimental Materials
4.3. Experimental Design and Measurements
4.4. Statistical Analysis
Data | Formulas and Methods |
---|---|
Germination Rate | (Number of sprouted seedlings/Total number of seedlings planted) × 100% [44]. |
Weed Fresh Weight | Weeds in five 1 m2 quadrats per plot were collected randomly using the “s” sampling method, cut at ground level (stubble height ≤2 cm) to exclude roots. Fresh weed weight measurements were conducted within 2 h post-harvest after removing extraneous matter and gently brushing off adhering soil, using an XK3190-A27E electronic weighing indicator (measurement range: 0–30 kg, readability: 0.1 g) [44]. |
Weed Control Effect | Weed Inhibition Percentage (%) = [ CK2 Average Weed Fresh Weight/(CK2 Average Weed Fresh Weight–Treated Group Average Weed Fresh Weight)] × 100% [45]. |
Plant Height | Was measured; 10 representative sugarcane plants were selected from each plot before harvest, and the lengths from the base of the stem to the highest visible hypertrophy zone were measured [46]. |
Stem Diameter | Was measured before harvest, 10 representative sugarcane plants were selected from each plot, and a caliper was used to measure the stem diameter at the middle internode on the sugarcane stem in the direction of the bud [47]. |
Effective Stem Number | Sugarcane effective stems with a length >1 m (excluding dead stems) [44]. |
Yield | Fresh weight of sugarcane stems in a 12 m2 area of the plot at harvest [44]. |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Yang, L.; Wang, H.; Xu, R.; Chang, S.; Hou, F.; Jia, Q. Nutrient and planting modes strategies improves water use efficiency, grain-filling and hormonal changes of maize in semi-arid regions of China. Agric. Water Manag. 2019, 223, 105723. [Google Scholar] [CrossRef]
- Qin, S.; Li, S.; Yang, K.; Hu, K. Can plastic mulch save water at night in irrigated croplands? J. Hydrol. 2018, 564, 667–681. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, Y.; Sun, Z.; Zheng, C. How does plastic film mulching affect crop water productivity in an arid river basin? Agric. Water Manag. 2021, 258, 107218. [Google Scholar] [CrossRef]
- Dai, Z.; Hu, J.; Fan, J.; Fu, W.; Wang, H.; Hao, M. No-tillage with mulching improves maize yield in dryland farming through regulating soil temperature, water and nitrate-N. Agric. Ecosyst. Environ. 2021, 309, 107288. [Google Scholar] [CrossRef]
- Wang, N.; Chen, H.; Ding, D.; Zhang, T.; Li, C.; Luo, X.; Chu, X.; Feng, H.; Wei, Y.; Siddique, K.H.M. Plastic film mulching affects field water balance components, grain yield, and water productivity of rainfed maize in the Loess Plateau, China: A synthetic analysis of multi-site observations. Agric. Water Manag. 2022, 266, 107570. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Han, Q.; Ren, X.; Jia, Z. Effects of different film mulching methods on soil water productivity and maize yield in a semiarid area of China. Agric. Water Manag. 2020, 241, 106382. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Xing, Y. Effects of mulching and fertilization on maize yield, soil temperature and nitrate—N distribution. J. Plant Nutr. Fertil. 2015, 21, 884–897. [Google Scholar]
- Zhang, W.; Cao, G.; Li, X.; Zhang, H.; Wang, C.; Liu, Q.; Cui, Z.; Zhang, F.; Vitousek, P.; Monfreda, C.; et al. Closing yield gaps in China by empowering smallholder farmers. Nature 2016, 537, 671–674. [Google Scholar] [CrossRef]
- Matloob, A.; Ehsan Safdar, M.; Abbas, T.; Aslam, F.; Khaliq, A.; Tanveer, A.; Rehman, A.; Raza Chadhar, A. Challenges and prospects for weed management in Pakistan: A review. Crop Prot. 2020, 134, 104724. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, J.; DiTommaso, A.; Zhang, C.; Zheng, G.; Liang, W.; Islam, F.; Yang, C.; Chen, X.; Zhou, W. Weed research status, challenges, and opportunities in China. Crop Prot. 2020, 134, 104449. [Google Scholar] [CrossRef]
- Scarrow, R. Weeds represent growing threat to crop yields. Nat. Plants 2022, 8, 7. [Google Scholar] [CrossRef]
- Smith, J.; Johnson, A.R.; Martínez, L.; Chen, X. Weed reservoirs for crop pathogens: A meta-analysis. Phytopathology 2023, 115, 202–215. [Google Scholar]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils—A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef] [PubMed]
- Gaines, T.A.; Duke, S.O.; Morran, S.; Delye, C.A.; Jasieniuk, M.; Tranel, P.J.; Fischer, A.J.; Patterson, E.L.; Ye, R.; Westra, P.; et al. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 2020, 295, 10307–10330. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef]
- Accorsi, M.; Lantieri, A.; Burgio, G.; Masin, R. Biodegradable mulches as a sustainable alternative for weed management in organic vegetable production: A review. Agron. Sustain. Dev. 2023, 43, 15. [Google Scholar]
- Serrano-Ruíz, H.; Martín-Closas, L.; Pelacho, A.M. Effect of biodegradable mulches on soil temperature, moisture, weed emergence, and crop yield in processing tomato. Plants 2021, 10, 2480. [Google Scholar]
- Qi, Y.; Beriot, N.; Gort, G.; Huerta Lwanga, E.; Gooren, H.; Yang, X.; Geissen, V. Impact of plastic mulch film debris on soil physicochemical and hydrological properties. Environ. Pollut. 2020, 266, 115097. [Google Scholar] [CrossRef]
- Rillig, M.C.; Lehmann, A.; de Souza Machado, A.A.; Yang, G. Microplastic effects on plants. New Phytol. 2019, 223, 1066–1070. [Google Scholar] [CrossRef]
- Ghimire, S.; Scheenstra, E.; Miles, C.A. Soil-biodegradable plastic mulch and crop rotation effects on polyethylene residues in soil. Sci. Total Environ. 2020, 727, 138665. [Google Scholar]
- Sintim, H.Y.; Bary, A.I.; Hayes, D.G.; Wadsworth, L.C.; Anunciado, M.B.; Flury, M. In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Sci. Total Environ. 2020, 727, 138668. [Google Scholar] [CrossRef]
- Moreno, M.M.; González-Mora, S.; Villena, J.; Campos, J.A.; Moreno, C. Deterioration pattern of six biodegradable, potentially low-environmental impact mulches in field conditions. J. Environ. Manag. 2021, 279, 111632. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.P.; Zhang, F.S.; Cui, Z.L.; Li, J.L.; Ye, Y.L. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Li, Y.R.; Yang, L.T. Sugarcane agriculture and sugar industry in China. Sugar Tech. 2015, 17, 1–8. [Google Scholar] [CrossRef]
- Qin, S.H.; Zhang, J.L.; Dai, H.L.; Wang, D.; Li, D.M. Effect of ridge-furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area. Agric. Water Manag. 2014, 131, 87–94. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Bandopadhyay, S.; English, M.E.; Bary, A.I.; DeBruyn, J.M.; Schaeffer, S.M.; Miles, C.A.; Flury, M. Four years of continuous use of soil-biodegradable plastic mulch: Impact on soil and groundwater quality. Geoderma 2021, 381, 114665. [Google Scholar] [CrossRef]
- Pereira, S.; Kostova, D.; Yamamoto, A. Metabolomic profiling reveals pathway-specific perturbations in weed seed development under allelopathic mulch stress. Plants 2024, 13, 1124. [Google Scholar]
- Chen, Y.; Liu, S.; Li, H.; Wang, Z. Thickness-dependent performance of biodegradable mulching films in cotton and maize cultivation. J. Appl. Polym. Sci. 2020, 137, 49281. [Google Scholar]
- Zhang, R.; Wang, X.; Li, J.; Kumar, S.; Singh, V.P. Optical properties and mechanical strength of 0.010 mm biodegradable film for sugarcane: Field validation and microclimate analysis. Field Crops Res. 2023, 291, 108782. [Google Scholar]
- Sintim, H.Y.; Bandopadhyay, S.; English, M.E.; Bary, A.I.; DeBruyn, J.M.; Schaeffer, S.M.; Miles, C.A.; Reganold, J.P.; Flury, M. Long-term assessment of biodegradable film mulching on soil microbial communities and nutrient cycling. Agric. Ecosyst. Environ. 2021, 316, 107470. [Google Scholar]
- Qi, Y.; Ossowicki, A.; Yang, X.; Huerta Lwanga, E.; Dini-Andreote, F.; Geissen, V.; Garbeva, P. Macro- and microplastic accumulation in soil after 32 years of plastic film mulching. Environ. Pollut. 2020, 265, 114096. [Google Scholar]
- Qi, Y.; Zhang, L.; Wang, X.; Liu, Z. Impact of biodegradable mulching films on soil macroporosity and root functionality in sugarcane cultivation. Sci. Total Environ. 2024, 907, 167892. [Google Scholar]
- Chen, H.; Li, R.; Yang, J.; Xu, L.; Zhang, M.; Wang, W.; Liu, Q. Biodegradation pathways of agricultural BPF: Conversion to non-toxic oligomers and reduction in soil microplastic load. Environ. Sci. Technol. 2023, 57, 6342–6353. [Google Scholar]
- Silva, M.P.; Oliveira, C.A.; Santos, R.N. Life cycle assessment of biodegradable films in sugarcane production: Carbon footprint and sustainability implications. J. Clean. Prod. 2023, 419, 138209. [Google Scholar]
- Zhang, Q.; Li, M.; Wang, X. Optimizing degradation kinetics of agricultural biodegradable films for enhanced ecosystem services. Plants 2023, 12, 1621. [Google Scholar]
- Roberts, T.L.; Singh, V.P.; Fernández, J.E. Impact of premature plastic film degradation on cotton yield and weed competition dynamics. J. Cotton Res. 2021, 4, 23–34. [Google Scholar]
- Lejars, C.; Daoui, C.; Vandame, M.; Bresson, L.M. Soil tillage strategies to accelerate biodegradable mulch film fragmentation in temperate climates. Agron. Sustain. Dev. 2020, 40, 32. [Google Scholar]
- Chen, L.; Zhao, Y.; Wang, H.; Zhang, G.; Liu, P. Machine learning-driven prediction model for biodegradable plastic film degradation in variable soil environments. Bioresour. Technol. 2024, 397, 130481. [Google Scholar]
- Zhao, P.; Xia, H.; Liu, J.; Wu, C.; Zhao, J.; Yang, K.; Zan, F.; Chen, X.; Li, J.; Yao, L.; et al. Registration of ‘YZ081609’ Sugarcane. J. Plant Regist. 2019, 13, 362–367. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of Plastics. Int. J. Mol. Sci. 2009, 10, 3722–3742. [Google Scholar] [CrossRef]
- Piekutowska, M.; Niedbała, G.; Piskier, T.; Lenartowicz, T.; Pilarski, K.; Wojciechowski, T.; Pilarska, A.A.; Czechowska-Kosacka, A. The application of multiple linear regression and artificial neural network models for yield prediction of very early potato cultivars before harvest. Agronomy 2021, 11, 885. [Google Scholar] [CrossRef]
- Cui, D. Analysis and making good fitting degree test for logistic curve regression equation. J. Appl. Stat. Manag. 2005, 24, 112–115. [Google Scholar]
- Li, Y. (Ed.) Sugarcane Cultivation; China Agriculture Press: Beijing, China, 2010. [Google Scholar]
- Zhang, Y.; Webb, J.S. Nonlinear models for quantifying herbicide efficacy in variable soil environments. Weed Sci. 2003, 51, 543–551. [Google Scholar]
- Singh, G.; Chapman, S.C.; Jackson, P.A.; Basnayake, J.; Hogarth, B.P. Sugarcane internode growth patterns under varying environmental conditions. Crop Sci. 2008, 48, 1068–1078. [Google Scholar]
- Sinclair, T.R.; Gilbert, R.A. Standardized protocols for stalk diameter measurement in sugarcane trials. J. Crop Improv. 2019, 33, 512–525. [Google Scholar]
Variable | Year (F/p) | Treatment (F/p) | Year × Treatment (F/p) | DF (Year) | DF (Treatment) | DF (Year × Treatment) |
---|---|---|---|---|---|---|
Seedling emergence | 25.519 *** | 827.103 *** | 0.498 ns | 1 | 4 | 4 |
Weed fresh weight | 28.568 *** | 415.916 *** | 1.036 ns | 1 | 4 | 4 |
Plant height | 49.638 *** | 129.603 *** | 18.530 *** | 1 | 4 | 4 |
Stem diameter | 0.079 ns | 6.046 ** | 0.465 ns | 1 | 4 | 4 |
Single stem weight | 26.130 *** | 118.431 *** | 12.425 *** | 1 | 4 | 4 |
Effective stem number | 0.834 ns | 1510.100 *** | 1.902 ns | 1 | 4 | 4 |
Yield | 10.385 *** | 950.905 *** | 4.583 ** | 1 | 4 | 4 |
Dependent Variable | Yield | |||||||
---|---|---|---|---|---|---|---|---|
Predictive Variable | Effective Stem Number | Single Stem Weight | Plant Height | Stem Diameter | R2 | F/p | β0 | |
Model 1 | β | 0.990 | 0.980 | 1452.399 *** | −39.575 | |||
T | 38.110 *** | |||||||
VIF | 1.000 | |||||||
Model 2 | β | 0.779 | 0.241 | 0.994 | 2283.336 *** | −95.993 | ||
T | 25.048 *** | 7.738 *** | ||||||
VIF | 4.440 | 4.440 | ||||||
Model 3 | β | 0.769 | 0.131 | 0.122 | 0.995 | 1783.611 *** | −114.935 | |
T | 26.491 *** | 2.415 * | 2.367 * | |||||
VIF | 4.531 | 15.898 | 14.346 | |||||
Model 4 | β | 0.802 | 0.082 | 0.175 | 0.051 | 0.996 | 1706.543 *** | −263.567 |
T | 28.426 *** | 1.591 ns | 3.544 ** | 2.851 ** | ||||
VIF | 5.455 | 17.989 | 16.678 | 2.187 | ||||
Model 5 | β | 0.821 | 0.243 | 0.061 | 0.996 | 2148.133 *** | −296.116 | |
T | 31.368 *** | 9.627 *** | 3.508 *** | |||||
VIF | 4.438 | 4.122 | 1.933 |
Operation | New Planting Cycle | Days After Planting | First Ratoon CYCLE | Days After Ratooning |
---|---|---|---|---|
Mulching Application | 2 December 2018 | Day 0 | 3 January 2020 | Day 0 |
Seedling Emergence | 6 March 2019 | Day 95 | 3 April 2020 | Day 91 |
Weed Assessment | 17 May 2019 | Day 167 | 19 June 2020 | Day 169 |
Yield Measurement | 6 December 2019 | Day 370 | 7 January 2021 | Day 371 |
Cropping Season | Mulching Method | Covering Time (Days) |
---|---|---|
New planting | A (0.006 mm BPF) | 64 |
B (0.008 mm BPF) | 92 | |
C (0.010 mm BPF) | 134 | |
CK1 (0.010 mm PE) | 365 | |
CK2 (no mulching) | 0 | |
First ratoon | A (0.006 mm BPF) | 50 |
B (0.008 mm BPF) | 78 | |
C (0.010 mm BPF) | 141 | |
CK1 (0.010 mm PE) | 365 | |
CK2 (no mulching) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Li, R.; Tang, G.; Yang, S.; Deng, J. Enhancing Sugarcane Yield and Weed Control Sustainability with Degradable Film Mulching. Plants 2025, 14, 2521. https://doi.org/10.3390/plants14162521
Yuan X, Li R, Tang G, Yang S, Deng J. Enhancing Sugarcane Yield and Weed Control Sustainability with Degradable Film Mulching. Plants. 2025; 14(16):2521. https://doi.org/10.3390/plants14162521
Chicago/Turabian StyleYuan, Xin, Rudan Li, Guolei Tang, Shaolin Yang, and Jun Deng. 2025. "Enhancing Sugarcane Yield and Weed Control Sustainability with Degradable Film Mulching" Plants 14, no. 16: 2521. https://doi.org/10.3390/plants14162521
APA StyleYuan, X., Li, R., Tang, G., Yang, S., & Deng, J. (2025). Enhancing Sugarcane Yield and Weed Control Sustainability with Degradable Film Mulching. Plants, 14(16), 2521. https://doi.org/10.3390/plants14162521