Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (296)

Search Parameters:
Keywords = defence factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1119 KiB  
Systematic Review
Phishing Attacks in the Age of Generative Artificial Intelligence: A Systematic Review of Human Factors
by Raja Jabir, John Le and Chau Nguyen
AI 2025, 6(8), 174; https://doi.org/10.3390/ai6080174 - 31 Jul 2025
Viewed by 363
Abstract
Despite the focus on improving cybersecurity awareness, the number of cyberattacks has increased significantly, leading to huge financial losses, with their risks spreading throughout the world. This is due to the techniques deployed in cyberattacks that mainly aim at exploiting humans, the weakest [...] Read more.
Despite the focus on improving cybersecurity awareness, the number of cyberattacks has increased significantly, leading to huge financial losses, with their risks spreading throughout the world. This is due to the techniques deployed in cyberattacks that mainly aim at exploiting humans, the weakest link in any defence system. The existing literature on human factors in phishing attacks is limited and does not live up to the witnessed advances in phishing attacks, which have become exponentially more dangerous with the introduction of generative artificial intelligence (GenAI). This paper studies the implications of AI advancement, specifically the exploitation of GenAI and human factors in phishing attacks. We conduct a systematic literature review to study different human factors exploited in phishing attacks, potential solutions and preventive measures, and the complexity introduced by GenAI-driven phishing attacks. This paper aims to address the gap in the research by providing a deeper understanding of the evolving landscape of phishing attacks with the application of GenAI and associated human implications, thereby contributing to the field of knowledge to defend against phishing attacks by creating secure digital interactions. Full article
Show Figures

Figure 1

30 pages, 3414 KiB  
Article
In Vitro Neuroprotective Effects of a Mixed Extract of Bilberry, Centella asiatica, Hericium erinaceus, and Palmitoylethanolamide
by Rebecca Galla, Sara Ferrari, Ivana Miletto, Simone Mulè and Francesca Uberti
Foods 2025, 14(15), 2678; https://doi.org/10.3390/foods14152678 - 30 Jul 2025
Viewed by 339
Abstract
Oxidative stress, driven by impaired antioxidant defence systems, is a major contributor to cognitive decline and neurodegenerative processes in brain ageing. This study investigates the neuroprotective effects of a natural compound mixture—composed of Hericium erinaceus, Palmitoylethanolamide, Bilberry extract, and Centella asiatica—using [...] Read more.
Oxidative stress, driven by impaired antioxidant defence systems, is a major contributor to cognitive decline and neurodegenerative processes in brain ageing. This study investigates the neuroprotective effects of a natural compound mixture—composed of Hericium erinaceus, Palmitoylethanolamide, Bilberry extract, and Centella asiatica—using a multi-step in vitro strategy. An initial evaluation in a 3D intestinal epithelial model demonstrated that the formulation preserves barrier integrity and may be bioaccessible, as evidenced by transepithelial electrical resistance (TEER) and the expression of tight junctions. Subsequent analysis in an integrated gut–brain axis model under oxidative stress conditions revealed that the formulation significantly reduces inflammatory markers (NF-κB, TNF-α, IL-1β, and IL-6; about 1.5-fold vs. H2O2), reactive oxygen species (about 2-fold vs. H2O2), and nitric oxide levels (about 1.2-fold vs. H2O2). Additionally, it enhances mitochondrial activity while also improving antioxidant responses. In a co-culture of neuronal and astrocytic cells, the combination upregulates neurotrophic factors such as BDNF and NGF (about 2.3-fold and 1.9-fold vs. H2O2). Crucially, the formulation also modulates key biomarkers associated with cognitive decline, reducing APP and phosphorylated tau levels (about 98% and 1.6-fold vs. H2O2) while increasing Sirtuin 1 and Nrf2 expression (about 3.6-fold and 3-fold vs. H2O2). These findings suggest that this nutraceutical combination may support the cellular pathways involved in neuronal resilience and healthy brain ageing, offering potential as a functional food ingredient or dietary supplement. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

25 pages, 4837 KiB  
Article
Multimodal Computational Approach for Forecasting Cardiovascular Aging Based on Immune and Clinical–Biochemical Parameters
by Madina Suleimenova, Kuat Abzaliyev, Ainur Manapova, Madina Mansurova, Symbat Abzaliyeva, Saule Doskozhayeva, Akbota Bugibayeva, Almagul Kurmanova, Diana Sundetova, Merey Abdykassymova and Ulzhas Sagalbayeva
Diagnostics 2025, 15(15), 1903; https://doi.org/10.3390/diagnostics15151903 - 29 Jul 2025
Viewed by 189
Abstract
Background: This study presents an innovative approach to cardiovascular disease (CVD) risk prediction based on a comprehensive analysis of clinical, immunological and biochemical markers using mathematical modelling and machine learning methods. Baseline data include indices of humoral and cellular immunity (CD59, CD16, [...] Read more.
Background: This study presents an innovative approach to cardiovascular disease (CVD) risk prediction based on a comprehensive analysis of clinical, immunological and biochemical markers using mathematical modelling and machine learning methods. Baseline data include indices of humoral and cellular immunity (CD59, CD16, IL-10, CD14, CD19, CD8, CD4, etc.), cytokines and markers of cardiovascular disease, inflammatory markers (TNF, GM-CSF, CRP), growth and angiogenesis factors (VEGF, PGF), proteins involved in apoptosis and cytotoxicity (perforin, CD95), as well as indices of liver function, kidney function, oxidative stress and heart failure (albumin, cystatin C, N-terminal pro B-type natriuretic peptide (NT-proBNP), superoxide dismutase (SOD), C-reactive protein (CRP), cholinesterase (ChE), cholesterol, and glomerular filtration rate (GFR)). Clinical and behavioural risk factors were also considered: arterial hypertension (AH), previous myocardial infarction (PICS), aortocoronary bypass surgery (CABG) and/or stenting, coronary heart disease (CHD), atrial fibrillation (AF), atrioventricular block (AB block), and diabetes mellitus (DM), as well as lifestyle (smoking, alcohol consumption, physical activity level), education, and body mass index (BMI). Methods: The study included 52 patients aged 65 years and older. Based on the clinical, biochemical and immunological data obtained, a model for predicting the risk of premature cardiovascular aging was developed using mathematical modelling and machine learning methods. The aim of the study was to develop a predictive model allowing for the early detection of predisposition to the development of CVDs and their complications. Numerical methods of mathematical modelling, including Runge–Kutta, Adams–Bashforth and backward-directed Euler methods, were used to solve the prediction problem, which made it possible to describe the dynamics of changes in biomarkers and patients’ condition over time with high accuracy. Results: HLA-DR (50%), CD14 (41%) and CD16 (38%) showed the highest association with aging processes. BMI was correlated with placental growth factor (37%). The glomerular filtration rate was positively associated with physical activity (47%), whereas SOD activity was negatively correlated with it (48%), reflecting a decline in antioxidant defence. Conclusions: The obtained results allow for improving the accuracy of cardiovascular risk prediction, and form personalised recommendations for the prevention and correction of its development. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

29 pages, 4588 KiB  
Article
The HCV-Dependent Inhibition of Nrf1/ARE-Mediated Gene Expression Favours Viral Morphogenesis
by Olga Szostek, Patrycja Schorsch, Daniela Bender, Mirco Glitscher and Eberhard Hildt
Viruses 2025, 17(8), 1052; https://doi.org/10.3390/v17081052 - 28 Jul 2025
Viewed by 303
Abstract
The life cycle of the hepatitis C virus (HCV) is closely linked to lipid metabolism. Recently, the stress defence transcription factor, nuclear factor erythroid 2 related factor-1 (Nrf1), has been described as a cholesterol sensor that protects the liver from excess cholesterol. Nrf1, [...] Read more.
The life cycle of the hepatitis C virus (HCV) is closely linked to lipid metabolism. Recently, the stress defence transcription factor, nuclear factor erythroid 2 related factor-1 (Nrf1), has been described as a cholesterol sensor that protects the liver from excess cholesterol. Nrf1, like its homologue Nrf2, further responds to oxidative stress by binding with small Maf proteins (sMaf) to the promotor antioxidant response element (ARE). Given these facts, investigating the crosstalk between Nrf1 and HCV was a logical next step. In HCV-replicating cells, we observed reduced levels of Nrf1. Furthermore, activation of Nrf1-dependent target genes is impaired due to sMaf sequestration in replicase complexes. This results in a shortage of sMaf proteins in the nucleus, trapping Nrf1 at the replicase complexes and further limiting its function. Weakened Nrf1 activity contributes to impaired cholesterol removal, which occurs alongside an elevated intracellular cholesterol level and inhibited LXRα promoter activation. Furthermore, inhibition of Nrf1 activity correlated with a kinome profile characteristic of steatosis and enhanced inflammation—factors contributing to HCV pathogenesis. Our results indicate that activation of Nrf1-dependent target genes is impaired in HCV-positive cells. This, in turn, favours viral morphogenesis, as evidenced by enhanced replication and increased production of viral progeny. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

28 pages, 1694 KiB  
Review
The Influence of Micronutrients and Environmental Factors on Thyroid DNA Integrity
by Katarzyna D. Arczewska and Agnieszka Piekiełko-Witkowska
Nutrients 2025, 17(13), 2065; https://doi.org/10.3390/nu17132065 - 21 Jun 2025
Viewed by 1080
Abstract
Micronutrients and environmental factors are key exogenous agents influencing thyroid DNA integrity. Micronutrients act as cofactors in DNA replication, repair, and antioxidant defence, while environmental exposure, such as radiation, heavy metals, and endocrine-disrupting chemicals, can directly damage DNA, leading to genomic instability. Although [...] Read more.
Micronutrients and environmental factors are key exogenous agents influencing thyroid DNA integrity. Micronutrients act as cofactors in DNA replication, repair, and antioxidant defence, while environmental exposure, such as radiation, heavy metals, and endocrine-disrupting chemicals, can directly damage DNA, leading to genomic instability. Although many studies have confirmed the link between micronutrient status and thyroid health, the effects of nutrient imbalances and environmental stressors on thyroid DNA remain underexplored. This narrative review examines how these factors may compromise thyroid genome stability and contribute to disease development. The analysis focused on the roles of iodine, selenium, iron, zinc, copper and vitamins D, B9, and B12 as well as environmental exposures such as radiation, heavy metals, and endocrine-disrupting chemicals. The findings suggest that both micronutrient imbalance and environmental stress can impair DNA integrity in thyroid cells. Understanding these complex relationships is critical for developing effective strategies to maintain thyroid health and mitigate the risk of thyroid diseases associated with compromised genomic integrity. Methodology: This narrative review was based on 254 articles retrieved through a manual search of the PubMed and Google Scholar databases, covering the years 2000–2025 and focusing on the influence of micronutrients and environmental factors on thyroid DNA integrity and repair. Several seminal earlier publications, fundamental to a comprehensive understanding of the topic, were also included. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

17 pages, 1843 KiB  
Article
Comparison of Rectal and Gastrointestinal Core Temperatures During Heat Tolerance Testing
by Melissa J. Crowe, Michael T. Meehan and Rhondda E. Jones
Medicina 2025, 61(6), 1111; https://doi.org/10.3390/medicina61061111 - 19 Jun 2025
Viewed by 489
Abstract
Background and Objectives: Military capability may be reduced in hot environments with individuals at risk of exertional heat stroke (EHS). Heat tolerance testing (HTT) can be used to indicate readiness to return to duty following EHS. HTT traditionally relies on rectal core [...] Read more.
Background and Objectives: Military capability may be reduced in hot environments with individuals at risk of exertional heat stroke (EHS). Heat tolerance testing (HTT) can be used to indicate readiness to return to duty following EHS. HTT traditionally relies on rectal core temperature (Tre) assessment via a rectal probe. This study investigated the use of gastrointestinal core temperature (Tgi) as an alternative to Tre during HTT. A secondary aim was to compare physiological factors between heat-tolerant and heat-intolerant trials. Materials and Methods: Australian Defence Force personnel undergoing HTT following known or suspected heat stroke volunteered (n = 23 cases participating in 26 trials) along with 14 controls with no known heat illness history. Confusion matrices enabled comparison of HTT outcome based on Tgi and Tre. The validity of Tgi compared to Tre during HTT was assessed using correlation and bias. Comparisons between heat-tolerant and intolerant trials were performed using non-parametric tests. Results: Although Tgi correlated closely with Tre (Spearman’s rank correlation ρ = 0.893; median bias 0.2 °C) there was no consistent pattern in the differences between measures. Importantly, the two measures only agreed on heat tolerance outcome in 80% of trials with Tgi failing to detect heat intolerance identified by Tre in 6 of 8 trials. If Tgi was relied upon for diagnostic outcome, return to duty may occur before full recovery. None of the assessed covariates were related to the difference between Tre and Tgi. In addition, resting heart rate and systolic blood pressure were significantly lower and body surface area to mass ratio significantly higher in heat-tolerant compared to intolerant trials. Conclusions: It is not recommended to rely on Tgi instead of Tre during HTT. Resting heart rate and systolic blood pressure findings point to the importance of aerobic exercise in conveying heat tolerance along with body composition. Full article
(This article belongs to the Section Sports Medicine and Sports Traumatology)
Show Figures

Figure 1

13 pages, 1678 KiB  
Article
Heat-Treated Probiotics’ Role in Counteraction of Skin UVs-Induced Damage In Vitro
by Giorgia Mondadori, Angela Amoruso, Annalisa Visciglia, Giovanni Deusebio, Daniela Pinto, Marco Pane and Fabio Rinaldi
Cosmetics 2025, 12(3), 121; https://doi.org/10.3390/cosmetics12030121 - 11 Jun 2025
Viewed by 1134
Abstract
Prolonged exposure to ultraviolet (UV) radiations represents a significant risk factor and may lead to various skin disorders, premature aging, and an increased susceptibility to skin cancers. Recently, probiotics have emerged as promising candidates for fortifying the skin’s natural defences through their diverse [...] Read more.
Prolonged exposure to ultraviolet (UV) radiations represents a significant risk factor and may lead to various skin disorders, premature aging, and an increased susceptibility to skin cancers. Recently, probiotics have emerged as promising candidates for fortifying the skin’s natural defences through their diverse mechanisms. The aim of the present work was exploring the potential of five heat-treated probiotics (SkinbacTM, Probiotical Research S.r.l., Novara, Italy), as protective agents against UVA and UVB damages on human keratinocyte line (HaCaT) and human skin 3D model (Phenion® Full-Thickness Skin Model, Henkel AG & Co. KGaA, Dusseldorf, Germany). The protective role toward artificially induced oxidative stress was evaluated by determining the residual viability after UV exposure and analyzing gene expression of markers involved in apoptosis (Tumor protein 53), inflammation/immunosuppression (Interleukin 6), oxidative stress (oxidative stress response enzyme heme oxygenase 1), investigated using quantitative real-time PCR. Additionally, we examined the protective effects of these strains, testing them on Normal Human Epidermal Keratinocytes (NHEK) irradiated with UVC, specifically, evaluating the expression of tight junction proteins, including claudin 1, claudin 4, and occludin, by ELISA. The tested heat-treated probiotics effectively protected from UVA, UVB, and UVC damage on all end points analyzed, revealing their capacity to enhance barrier protection in cases of damage and their potential for innovative skincare strategies centered around probiotic-based formulations for enhanced protection against UV-induced skin damage. Full article
(This article belongs to the Special Issue Laser Therapy and Phototherapy in Cosmetic Dermatology)
Show Figures

Figure 1

27 pages, 1369 KiB  
Article
Insights into the Red Seaweed Asparagopsis taxiformis Using an Integrative Multi-Omics Analysis
by Min Zhao, Tomas Lang, Zubaida Patwary, Andrew L. Eamens, Tianfang Wang, Jessica Webb, Giuseppe C. Zuccarello, Ana Wegner-Thépot, Charlotte O’Grady, David Heyne, Lachlan McKinnie, Cecilia Pascelli, Nori Satoh, Eiichi Shoguchi, Alexandra H. Campbell, Nicholas A. Paul and Scott F. Cummins
Plants 2025, 14(10), 1523; https://doi.org/10.3390/plants14101523 - 19 May 2025
Viewed by 845
Abstract
The red seaweed Asparagopsis taxiformis (Bonnemaisoniaceae, Rhodophyta) produces a bioactive natural product, bromoform, which, when fed to ruminant livestock, can eradicate methane emissions. However, to cultivate enough A. taxiformis to produce a yield that would have a meaningful impact on global greenhouse gas [...] Read more.
The red seaweed Asparagopsis taxiformis (Bonnemaisoniaceae, Rhodophyta) produces a bioactive natural product, bromoform, which, when fed to ruminant livestock, can eradicate methane emissions. However, to cultivate enough A. taxiformis to produce a yield that would have a meaningful impact on global greenhouse gas emissions, we need to advance our current understanding of the biology of this seaweed species. Here, we used both a domesticated diploid tetrasporophyte (>1.5 years in culture) and wild samples to establish a high-quality draft nuclear genome for A. taxiformis (lineage 6 based upon phylogenetic analyses using the cox2-3 spacer). The constructed nuclear genome is 142 Mb in size (including 70.67% repeat regions) and was determined to encode for approximately 10,474 protein-coding genes, including those associated with secondary metabolism, photosynthesis, and defence. To obtain information regarding molecular differences between cultured and wild tetrasporophytes, we further explored differential gene expression relating to their different growth environments. Cultured tetrasporophytes, which contained a relatively higher level of bromoform compared to wild tetrasporophytes, demonstrated an enrichment of regulatory factors, such as protein kinases and transcription factors, whereas wild tetrasporophytes were enriched for the expression of defence and stress-related genes. Wild tetrasporophytes also expressed a relatively high level of novel secretory genes encoding proteins with von Willebrand factor A protein domains (named rhodophyte VWAs). Gene expression was further confirmed by proteomic investigation of cultured tetrasporophytes, resulting in the identification of over 400 proteins, including rhodophyte VWAs, and numerous enzymes and phycobiliproteins, which will facilitate future functional characterisation of this species. In summary, as the most comprehensive genomic resource for any Asparagopsis species, this resource for lineage 6 provides a novel avenue for seaweed researchers to interrogate genomic information, which will greatly assist in expediating production of Asparagopsis to meet demand by both aquaculture and agriculture, and to do so with economic and environmental sustainability. Full article
(This article belongs to the Special Issue Molecular Research of the Seaweeds)
Show Figures

Figure 1

13 pages, 1513 KiB  
Article
Intra- and Post-Operative Bacteriological Surveys of Surgical Site in Horses: A Single-Centre Study
by Anna Cerullo, Matteo Riccardo Di Nicola, Nicola Scilimati, Alice Bertoletti, Giuseppe Pollicino, Barbara Moroni, Marco Pepe, Sara Nannarone, Rodolfo Gialletti and Fabrizio Passamonti
Microorganisms 2025, 13(4), 928; https://doi.org/10.3390/microorganisms13040928 - 17 Apr 2025
Viewed by 650
Abstract
Bacterial contamination of the surgical site in horses is a major risk factor for the development of surgical site infections (SSIs), which increase morbidity, mortality, the hospitalisation period, antibiotic use, and management costs. While contamination is a prerequisite for infection, its progression to [...] Read more.
Bacterial contamination of the surgical site in horses is a major risk factor for the development of surgical site infections (SSIs), which increase morbidity, mortality, the hospitalisation period, antibiotic use, and management costs. While contamination is a prerequisite for infection, its progression to clinical infection depends on additional factors that compromise host defences. The present study, conducted at the Veterinary Teaching Hospital of the University of Perugia over an 11-month period, investigated bacterial contamination in 70 surgeries (53 clean and 17 clean-contaminated) at the end of the procedure. To exclude pre-existing contamination, a sterile swab was collected after surgical scrub, and only cases that entered surgery with a sterile operative field were considered. A swab, biopsy, and fine-needle aspiration from the wound margins were then performed at the end of the surgery to conduct a qualitative assessment of the bacterial contamination of the surgical sites. Risk factors for surgical field contamination were analysed separately for clean and clean-contaminated procedures. Specifically, for clean-contaminated surgeries, the presence of emergency conditions, surgery duration, and intra-operative complications were evaluated. For clean surgeries, risk factors included the type of operating room, surgical duration, tissue involved, use of local anaesthetics, and placement of surgical drapes. The results revealed bacterial contamination rates of 49.1% in clean surgeries and 41.2% in clean-contaminated surgeries. Coagulase-negative staphylococci were the most frequently isolated bacteria, followed by Burkholderia cepacia, Bacillus sp., and Stenotrophomonas maltophilia. A statistical analysis showed no significant results on the predictive factors of the contamination evaluated. However, the observed trends suggest the importance of further investigating these risk factors in a larger sample size. These results emphasise the importance of effective prophylactic measures to limit surgical site contamination. Future research will focus on optimising pre-operative and intra-operative prophylaxis strategies to reduce bacterial contamination to sub-pathogenic levels, thereby enhancing post-operative outcomes. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

20 pages, 981 KiB  
Review
Transcription Factors Involved in Plant Stress and Growth and Development: NAC
by Chenjia Zheng, Qin Yang, Xin Wang, Yu Chen, Ruoyu He, Xinmeng Li, Huanhuan Pan, Renying Zhuo, Tongbao Qu and Wenmin Qiu
Agronomy 2025, 15(4), 949; https://doi.org/10.3390/agronomy15040949 - 14 Apr 2025
Viewed by 1124
Abstract
Transcription factors play a key role in plant growth and development. As the largest family of plant-specific transcription factors, the NAC family plays a central role in coordinating plant growth and development and environmental adaptation through its unique molecular design paradigm of “fixed [...] Read more.
Transcription factors play a key role in plant growth and development. As the largest family of plant-specific transcription factors, the NAC family plays a central role in coordinating plant growth and development and environmental adaptation through its unique molecular design paradigm of “fixed N-terminal structural domain + variable C-terminal regulatory domain”. This review systematically analyses the multidimensional regulatory mechanisms of NAC transcription factors in developmental processes such as cell wall remodelling, root system architecture, leaf senescence and fruit ripening, and reveals their molecular basis for responding to biotic/abiotic stresses through strategies such as hormone signalling integration (ABA, SA, JA, etc.), antioxidant defence activation and metabolic reprogramming. The study found that NAC proteins precisely control plant growth through multiple regulatory mechanisms and have evolved to form both conservative and diverse functional modules, which are of great value for crop improvement. However, research still faces three major challenges: the NAC regulatory network in different crops is still unclear, the coordinated response to multiple stresses has not been solved, and the ecological risks of gene editing have not been assessed. To this end, this paper proposes to build an ‘NAC regulatory map database’ and use synthetic biology and artificial intelligence technology to design smarter, stress-tolerant and high-yielding crops, overcoming the limitations of traditional research. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 2657 KiB  
Article
The Impact of Recreational Diving to a Depth of 40 m on Selected Intracellular DAMPs
by Anna Nowakowska, Małgorzata Marchelek-Myśliwiec, Marta Skórka-Majewicz, Wojciech Żwierełło, Konrad Grzeszczak and Izabela Gutowska
Int. J. Mol. Sci. 2025, 26(7), 3061; https://doi.org/10.3390/ijms26073061 - 27 Mar 2025
Viewed by 627
Abstract
Increasingly popular, recreational diving is a physical activity that takes place under extreme environmental conditions, which include hyperoxia, hyperbaria and exposure to cold water. The effects of these factors on the human body induce increased levels of reactive oxygen and nitrogen species in [...] Read more.
Increasingly popular, recreational diving is a physical activity that takes place under extreme environmental conditions, which include hyperoxia, hyperbaria and exposure to cold water. The effects of these factors on the human body induce increased levels of reactive oxygen and nitrogen species in divers’ bodies, which may modulate damage-associated molecular pattern (DAMPs), their receptors and the antioxidant response. This study involved 21 divers who descended to a depth of 40 metres. Determinations of selected intracellular DAMPs (high-mobility group box protein 1,HMGB1, S100 calcium-binding proteins A9 and A8, S100A8 and S100A9, heat shock protein family A member 1A, HSPA1A (Hsp70), heat shock protein family B, (small) member 1, HSPB1(Hsp27), thioredoxin, TXN), their receptors (Toll-like receptor 4, TLR4 and receptors for advanced glycation end products, RAGE), nuclear factor-κB (NF-κB) and antioxidant defence markers were performed before, after and 1 h after the dive. A significant transient reduction in HMGB1 expression was observed immediately after the dive at both the mRNA and protein levels. We noted an increase in S100A9 expression, which occurred 1 h post-dive compared to the post-dive time point, and a post-dive decrease in TLR4 expression only at the mRNA level. Diving also influenced the expression of genes encoding key enzymes associated with glutathione synthesis, (glutamate-cysteine ligase, catalytic subunit, GCLC and glutathione synthetase, GSS), and reduced plasma glutathione levels. However, no significant changes were observed in the expression of NF-κB, nitric oxide synthase 2 (NOS2) or circulating DAMP receptors (TLR4 and RAGE). The findings suggest an adaptive response to diving-induced oxidative stress, which appears to be a protective mechanism against an excessive inflammatory response. To our knowledge, this is the first study to analyse the role of intracellular DAMPs in recreational divers. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

13 pages, 819 KiB  
Review
Should Medical Experts Giving Evidence in Criminal Trials Adhere to EFNSI Forensic Guidelines in Evaluative Reporting
by Neil Allan Robertson Munro
Forensic Sci. 2025, 5(1), 13; https://doi.org/10.3390/forensicsci5010013 - 17 Mar 2025
Viewed by 473
Abstract
Miscarriages of justice led to concerns that forensic science reports were prosecution-biassed and led to elementary errors of probability. The European Network of Forensic Science Institutes (EFNSI) and other institutes developed standards requiring reporting of the probability of evidence under all hypotheses (usually [...] Read more.
Miscarriages of justice led to concerns that forensic science reports were prosecution-biassed and led to elementary errors of probability. The European Network of Forensic Science Institutes (EFNSI) and other institutes developed standards requiring reporting of the probability of evidence under all hypotheses (usually prosecution and defence hypotheses) with the likelihood ratio (LR). LR=pEHppEHd, values > 1, being probative for a prosecution hypothesis. In elementary two-variable conditional probability theory (Baye’s theorem), the LR is also an updating factor which multiplies the odds of guilt for each item of evidence considered. Although this is not true for multiple-variable probability theory, the value of the LR as a valid measure of evidential probity remains. Forensic scientists are experts in evidence and should not stray into the role of the Court to consider the probability of the hypotheses given the totality of the evidence: pHp,Hd,E1,E2En. Medical experts may be required to assist the court with diagnoses (the hypothesis), but this privilege is balanced by vigilance that experts do not stray beyond their expertise. A narrow interpretation of expertise hinders the evaluation of the evidence under hypotheses adjacent to the area of expertise. This paradox may be overcome by experts declaring competence in areas adjacent to their main area of expertise. Regulatory bodies do not currently require medical experts to adhere to EFNSI guidelines in evaluative reporting. Legal opinion is divided on whether probability theory can be applied to cases requiring medical expertise. Medical experts should, in their reports, clearly separate evaluating the probability of the evidence (where evaluative reporting should apply) and evaluating the probability of hypotheses where methodology should be prioritised over opinion. The reckless misapplication of elementary probability theory, typically transposing conditional probabilities or neglecting prior odds, may lead to the jury being misled into believing posterior odds of guilt are many orders of magnitude greater than reality. Medical experts should declare training in elementary probability theory. Inaccurate probabilities are a joint enterprise between all who inform or advise the jury, so all must be trained in elementary probability theory. Full article
Show Figures

Figure 1

26 pages, 2151 KiB  
Review
Multidimensional Perspective of Sustainable Agroecosystems and the Impact on Crop Production: A Review
by Zanele Adams, Albert Thembinkosi Modi and Simon Kamande Kuria
Agriculture 2025, 15(6), 581; https://doi.org/10.3390/agriculture15060581 - 9 Mar 2025
Cited by 1 | Viewed by 2133
Abstract
Agroecosystems form a natural ecosystem component, allowing the proper classification of a regional biome at a global scale. It is important to view agroecosystems from a micro-environmental perspective given that they are characterised by a combination of factors, including the interaction of soil–plant–atmosphere [...] Read more.
Agroecosystems form a natural ecosystem component, allowing the proper classification of a regional biome at a global scale. It is important to view agroecosystems from a micro-environmental perspective given that they are characterised by a combination of factors, including the interaction of soil–plant–atmosphere conditions, which are largely responsive to human management practices. The published literature generally provides a limited explanation of the multidimensional nature of agroecosystems. In combination, agroecosystem practices promote efficient water use and nutrient cycling in defence of regenerative agriculture ethos. Sustainable agroecosystem practices can be combined to explain how to mitigate the risks to biodiversity. This study aims to present a review of predominant advances in sustainable crop production from the perspective of the agroecosystem. A hybrid methodology of data mining and interpretation was used to establish the meaning and relationships of the major research areas that have emerged over time and dominate the narrative of sustainable agroecosystem definition and practices. Crop diversification, sustainable soil management, integrated pest management, sustainable water resource management, and precision agriculture were selected using document summarisation and entity relation modelling to generate and explain relationships between various components of sustainable agroecosystems based on the existing literature. A major finding is the confirmation of comparable applications in different regions, whose explanation is enhanced by recent advances in data summation. This review concludes that sustainable agroecosystems are separable in meaning and impact. However, it is reasonable to recommend the need for future research into their integration for implementation and interpretation. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

20 pages, 2653 KiB  
Article
Puccinia triticina and Salicylic Acid Stimulate Resistance Responses in Triticum aestivum Against Diuraphis noxia Infestation
by Huzaifa Bilal, Willem Hendrik Petrus Boshoff and Lintle Mohase
Plants 2025, 14(3), 420; https://doi.org/10.3390/plants14030420 - 31 Jan 2025
Viewed by 976
Abstract
Wheat plants encounter both biotic and abiotic pressure in their surroundings. Among the biotic stress factors, the Russian wheat aphid (RWA: Diuraphis noxia Kurdjumov) decreases grain yield and quality. The current RWA control strategies, including resistance breeding and the application of aphicides, are [...] Read more.
Wheat plants encounter both biotic and abiotic pressure in their surroundings. Among the biotic stress factors, the Russian wheat aphid (RWA: Diuraphis noxia Kurdjumov) decreases grain yield and quality. The current RWA control strategies, including resistance breeding and the application of aphicides, are outpaced and potentially environmentally harmful. Alternatively, priming can stimulate defence responses to RWA infestation. This study investigated the priming potential of two priming agents, avirulent Puccinia triticina (Pt) isolates and salicylic acid (SA), against RWA infestation. The priming effect of Pt isolates and SA in reducing RWA-induced leaf damage and increased antioxidant activities is an indication of defence responses. Selected South African wheat cultivars and Lesotho landraces, grown under greenhouse conditions, were inoculated with Pt isolates (UVPt13: avirulent, UVPt26: virulent) and treated with SA at the seedling or booting stages. The leaf damage rating score was used for phenotyping. The antioxidant-mediated defence responses were evaluated in three selected cultivars for further priming investigation. Our results revealed that the priming agents significantly reduced the leaf damage in most cultivars at both growth stages, and UVPt13 and SA priming significantly (p ≤ 0.05) increased superoxide dismutase, peroxidase, and ascorbate peroxidase activities. However, catalase activity exhibited a more pronounced decline in plants treated with the UVPt13 isolate. The Pt isolate priming was more efficient than the SA application. However, it is crucial to investigate the potential of effectors from the avirulent Pt isolate to prime wheat plants for resistance against RWA infestation. This could contribute to developing strategies to enhance crop protection and relieve pest pressure in wheat production. Full article
(This article belongs to the Special Issue Plant-Pest Interactions)
Show Figures

Figure 1

17 pages, 1053 KiB  
Review
From Recognition to Response: Resistance–Effector Gene Interactions in the Brassica napus and Leptosphaeria maculans Patho-System
by Zuhra Qayyum, William J. W. Thomas, Junrey C. Amas, Maria Pazos-Navarro and Jacqueline Batley
Plants 2025, 14(3), 390; https://doi.org/10.3390/plants14030390 - 27 Jan 2025
Viewed by 1370
Abstract
Blackleg disease, caused by the hemibiotrophic fungal pathogen Leptosphaeria maculans, poses a serious threat to Brassica crops and requires a broad understanding of the plant defence mechanisms. The Brassica. napus-L. maculans pathosystem provides a useful model to understand plant resistance [...] Read more.
Blackleg disease, caused by the hemibiotrophic fungal pathogen Leptosphaeria maculans, poses a serious threat to Brassica crops and requires a broad understanding of the plant defence mechanisms. The Brassica. napus-L. maculans pathosystem provides a useful model to understand plant resistance response to hemibiotrophs. This review aims to explain the mechanisms underlying R-Avr interaction, signalling cascades, and the hypersensitive response (HR) produced by B. napus towards L. maculans, causing local cell death that restricts the pathogen to the site of infection. The role of transcription factors is pivotal to the process of HR, coordinating the regulation of genes involved in pathogen recognition and the activation of SA responsive genes and production of secondary metabolites. The R-Avr interaction signalling cascade involves production of reactive oxygen species (ROS), calcium ion influx, Salicylic acid (SA) hormonal signalling and mitogen activated protein kinases (MAPKs), which are critical in the HR in B. napus. The in-depth understanding of molecular signalling pathway of the R-Avr interaction between B. napus-L. maculans pathosystem provides valuable information for future research endeavours regarding enhancing disease resistance in Brassica crops. Full article
Show Figures

Figure 1

Back to TopTop