Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = deep Earth gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
67 pages, 12423 KB  
Review
Nonlinear Earth System Dynamics Determine Biospheric Structure and Function: I—A Primer on How the Climate System Functions as a Heat Engine and Structures the Biosphere
by Timothy G. F. Kittel and Kelly Ferron
Climate 2026, 14(2), 38; https://doi.org/10.3390/cli14020038 - 1 Feb 2026
Viewed by 82
Abstract
The Earth’s climate system exhibits nonlinear behavior driven by interactions among the atmosphere, oceans, cryosphere, land, and biosphere. These dynamics have given rise to relatively stable environments that shape the structure and function of the modern biosphere. This review is a primer for [...] Read more.
The Earth’s climate system exhibits nonlinear behavior driven by interactions among the atmosphere, oceans, cryosphere, land, and biosphere. These dynamics have given rise to relatively stable environments that shape the structure and function of the modern biosphere. This review is a primer for conservation practitioners and natural resource managers to develop a deep understanding of how the Earth System works. The key is to recognize that shifts in Earth System dynamics due to global climate change can destabilize the biosphere in unforeseen ways. The potential emergence of novel ecoregions must be a critical factor in adaptation planning for conservation and resource management. We review how thermodynamic constraints and global circulation dynamics determine the distribution of terrestrial and marine biomes. These dynamics stem from the Earth System functioning as a heat engine, transporting excess heat from low to high latitudes. We illustrate how biome climates are organized into climate regimes, with spatial and temporal characteristics linked to complex features of atmospheric and oceanic circulation. At centennial to millennial scales, these dynamics have created a stable envelope of natural variability in climate that has established a long-standing operating space for biota. However, this stability is becoming increasingly uncertain due to the growing positive energy imbalance in the Earth System primarily driven by anthropogenic greenhouse gas emissions. This forcing is leading to disruptive climatic change, putting the biosphere on a trajectory toward new transient states. Such global to regional climatic instability and biospheric restructuring introduce a high level of uncertainty in ecological futures, with major implications for natural resource management, biodiversity conservation strategies, and societal adaptation. We conclude by discussing frameworks for impact assessments and decision making under climate uncertainty. Full article
(This article belongs to the Special Issue Climate System Uncertainty and Biodiversity Conservation)
Show Figures

Figure 1

33 pages, 2557 KB  
Article
Petrogenesis of the Monzonite in the Jiashan Area, Northern Jiangsu, China: Constraints from Whole-Rock Geochemistry and Zircon U–Pb Ages and Lu–Hf Isotopes
by Tao Kang, Duolikun Hainaer, Peng Zhu, Wei-Guo Zhang, Bostan Damla, Zhe-Ming Cao and Xiao-Qiang Liu
Minerals 2026, 16(2), 137; https://doi.org/10.3390/min16020137 - 27 Jan 2026
Viewed by 129
Abstract
Recent discoveries of fluorite–barite deposits in the Donghai–Linshu area in northern Jiangsu Province, China, underscore the region’s mineral potential, yet detailed geological investigations remain limited. In this study, we examined monzonite and quartz monzonite from drill cores in the Jiashan mining area using [...] Read more.
Recent discoveries of fluorite–barite deposits in the Donghai–Linshu area in northern Jiangsu Province, China, underscore the region’s mineral potential, yet detailed geological investigations remain limited. In this study, we examined monzonite and quartz monzonite from drill cores in the Jiashan mining area using petrography, U–Pb zircon dating, zircon trace element geochemistry, whole-rock geochemistry, and zircon Lu–Hf isotopes. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) zircon U–Pb analyses were conducted to constrain the crystallization ages of the monzonite (127.06 ± 0.54 Ma and 126.83 ± 0.75 Ma) and quartz monzonite (127.2 ± 0.5 Ma and 128.59 ± 0.62 Ma) to the Early Cretaceous, marking a significant magmatic event. Many of the zircons contain inherited Neoproterozoic cores (718–760 Ma and 800–860 Ma), indicating the assimilation of deep crustal materials of this age. The monzonite is metaluminous, with moderate SiO2 (61.61–62.41 wt.%), high alkalis (Na2O + K2O = 7.48–7.92 wt.%), and A/CNK = 0.72–0.91. The quartz monzonite has higher SiO2 (66.26–68.18 wt.%) and alkalis (8.32–9.33 wt.%). Both rock types exhibit similar trace and rare earth element patterns: enrichment in large-ion lithophile and light rare earth elements, depletions in Nb, Ta, and Ti, no significant Zr-Hf depletion, and weak negative Eu anomalies (δEu ≈ 0.84–1.00). Their low Zr + Nb + Ce + Y contents, Ga/Al ratios, and TFeO/MgO ratios indicate that they have an I-type granite affinity. The Early Cretaceous zircons have highly negative εHf(t) values (−33.7 to −23.5) and ancient two-stage model ages (2622–3247 Ma), which are consistent with derivation from Archean crust. The inherited Neoproterozoic zircons have younger Paleo–Mesoproterozoic TDM2 ages. The evidence suggests that both intrusions were mainly generated by partial melting of ancient Archean basement, with minor mantle input. The magma generation was likely triggered by crustal anatexis induced by the underplating of mantle-derived magmas in an extensional tectonic regime, coeval with Early Cretaceous magmatism in the Sulu orogen. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

25 pages, 3078 KB  
Review
Sensing While Drilling and Intelligent Monitoring Technology: Research Progress and Application Prospects
by Xiaoyu Li, Zongwei Yao, Tao Zhang and Zhiyong Chang
Sensors 2025, 25(20), 6368; https://doi.org/10.3390/s25206368 - 15 Oct 2025
Cited by 2 | Viewed by 1376
Abstract
Obtaining accurate information on stratigraphic conditions and drilling status is necessary to ensure the safety of the drilling process and to guarantee the production of oil and gas. Sensing while drilling and intelligent monitoring technology, which employ multiple sensors and involve the use [...] Read more.
Obtaining accurate information on stratigraphic conditions and drilling status is necessary to ensure the safety of the drilling process and to guarantee the production of oil and gas. Sensing while drilling and intelligent monitoring technology, which employ multiple sensors and involve the use of intelligent algorithms, can be used to collect downhole information in situ to ensure safe, reliable, and efficient drilling and mining operations. These approaches are characterized by effective sensing and comprehensive utilization of drilling information through the integration of multi-sensor signals and intelligent algorithms, a core component of machine learning. The article summarizes the current research status of domestic and international sensing while drilling and intelligent monitoring technology using systematically collected relevant information. Specifically, first, the drilling-sensing methods used for in situ acquisition of downhole information, including fiber-optic sensing, electronic-nose sensing, drilling engineering-parameter sensing, drilling mud-parameter sensing, drilling acoustic logging, drilling electromagnetic wave logging, and drilling seismic logging, are described. Next, the basic composition and development direction of each sensing technology are analyzed. Subsequently, the application of intelligent monitoring technology based on machine learning in various aspects of drilling- and mining-status identification, including bit wear monitoring, stuck drill real-time monitoring, well surge real-time monitoring, and real-time monitoring of oil and gas output, is introduced. Finally, the potential applications of sensing while drilling and intelligent monitoring technology in deep-earth, deep-sea, and deep-space contexts are discussed, and the challenges, constraints, and development trends are summarized. Full article
(This article belongs to the Topic Advances in Oil and Gas Wellbore Integrity, 2nd Edition)
Show Figures

Figure 1

19 pages, 2048 KB  
Article
Prediction of Annual Carbon Emissions Based on Carbon Footprints in Various Omani Industries to Draw Reduction Paths with LSTM-GRU Hybrid Model
by Chen Wang, Xiaomin Zhang, Zekai Nie and Sarita Gajbhiye Meshram
Sustainability 2025, 17(11), 4940; https://doi.org/10.3390/su17114940 - 28 May 2025
Cited by 3 | Viewed by 1494
Abstract
Despite global efforts to address climate change, carbon dioxide (CO2) emissions are still on the rise. While carbon dioxide is essential for life on Earth, its increasing concentration due to human activities poses severe environmental and health risks. Therefore, accurately and [...] Read more.
Despite global efforts to address climate change, carbon dioxide (CO2) emissions are still on the rise. While carbon dioxide is essential for life on Earth, its increasing concentration due to human activities poses severe environmental and health risks. Therefore, accurately and efficiently predicting CO2 emissions is essential. Hence, this research delves deeply into the prediction of CO2 emissions by examining various deep learning models utilizing time series data to identify carbon dioxide levels in Oman. First, four important production materials of Oman (oil, gas, cement, and flaring), which have a great impact on CO2 emissions, were selected. Then, the time series related to the release of CO2 was collected from 1964 to 2022. After data collection, preprocessing was performed, in which outliers were removed and corrected, and data that had not been measured were completed using interpolation. Then, by dividing the data into two sections, education (1946–2004) and test (2022–2005) and creating scenarios, predictions were made. By creating four scenarios and modeling with two independent GRU and LSTM models and a hybrid LSTM-GRU model, annual carbon was predicted for Oman. The results were evaluated with three criteria: root mean square error (RMSE), mean absolute percentage error (MAPE), and correlation coefficient (r). The evaluations showed that the hybrid LSTM-GRU model with an error of 2.104 tons has the best performance compared to the rest of the models. By identifying key contributors to carbon footprints, these models can guide targeted interventions to reduce emissions. They can highlight the impact of industrial activities on per capita emissions, enabling policymakers to design more effective strategies. Therefore, in order to reduce pollution and increase the productivity of factories, using an advanced hybrid model, it is possible to identify the carbon footprint and make accurate predictions for different countries. Full article
Show Figures

Figure 1

31 pages, 4555 KB  
Article
The Roles of Transcrustal Magma- and Fluid-Conducting Faults in the Formation of Mineral Deposits
by Farida Issatayeva, Auez Abetov, Gulzada Umirova, Aigerim Abdullina, Zhanibek Mustafin and Oleksii Karpenko
Geosciences 2025, 15(6), 190; https://doi.org/10.3390/geosciences15060190 - 22 May 2025
Cited by 1 | Viewed by 1839
Abstract
In this article, we consider the roles of transcrustal magma- and fluid-conducting faults (TCMFCFs) in the formation of mineral deposits, showing the importance of deep sources of heat and hydrothermal solutions in the genesis and history of deposit formation. As a result of [...] Read more.
In this article, we consider the roles of transcrustal magma- and fluid-conducting faults (TCMFCFs) in the formation of mineral deposits, showing the importance of deep sources of heat and hydrothermal solutions in the genesis and history of deposit formation. As a result of the impact on the lithosphere of mantle plumes rising along TCMFCFs, intense block deformations and tectonic movements are generated; rift systems, and volcanic–plutonic belts spatially combined with them, are formed; and intrusive bodies are introduced. These processes cause epithermal ore formation as a consequence of the impact of mantle plumes rising along TCMFCF to the lithosphere. At hydrocarbon fields, they play extremely important roles in conductive and convective heat, as well as in mass transfer to the area of hydrocarbon generation, determining the relationship between the processes of lithogenesis and tectogenesis, and activating the generation of hydrocarbons from oil and gas source rock. Detection of TCMFCFs was carried out using MMSS (the method of microseismic sounding) and MTSM (the magnetotelluric sounding method), in combination with other geological and geophysical data. Practical examples are provided for mineral deposits where subvertical transcrustal columns of increased permeability, traced to considerable depths, have been found; the nature of these unique structures is related to faults of pre-Paleozoic emplacement, which determined the fragmentation of the sub-crystalline structure of the Earth and later, while developing, inherited the conditions of volumetric fluid dynamics, where the residual forms of functioning of fluid-conducting thermohydrocolumns are granitoid batholiths and other magmatic bodies. Experimental modeling of deep processes allowed us to identify the quantum character of crystal structure interactions of minerals with “inert” gases under elevated thermobaric conditions. The roles of helium, nitrogen, and hydrogen in changing the physical properties of rocks, in accordance with their intrastructural diffusion, has been clarified; as a result of low-energy impact, stress fields are formed in the solid rock skeleton, the structures and textures of rocks are rearranged, and general porosity develops. As the pressure increases, energetic interactions intensify, leading to deformations, phase transitions, and the formation of chemical bonds under the conditions of an unstable geological environment, instability which grows with increasing gas saturation, pressure, and temperature. The processes of heat and mass transfer through TCMFCFs to the Earth’s surface occur in stages, accompanied by a release of energy that can manifest as explosions on the surface, in coal and ore mines, and during earthquakes and volcanic eruptions. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

17 pages, 7715 KB  
Article
Petrogenesis and Tectonic Implications of the Early–Middle Ordovician Granodiorites in the Yaogou Area of the North Qilian Orogenic Belt
by Dechao Li, Yang Yang, Yao Xiao, Pengde Liu, Xijun Liu, Gang Chen, Xiao Liu, Rongguo Hu, Hao Tian and Yande Liu
Minerals 2025, 15(6), 551; https://doi.org/10.3390/min15060551 - 22 May 2025
Viewed by 746
Abstract
A diverse range of granitoids in the North Qilian Orogenic Belt (NQOB) offers valuable insights into the region’s tectonomagmatic evolution. In this study, we undertook a geochronological, mineralogical, geochemical, and zircon Hf isotopic analysis of granodiorites from the Yaogou area of the NQOB. [...] Read more.
A diverse range of granitoids in the North Qilian Orogenic Belt (NQOB) offers valuable insights into the region’s tectonomagmatic evolution. In this study, we undertook a geochronological, mineralogical, geochemical, and zircon Hf isotopic analysis of granodiorites from the Yaogou area of the NQOB. Zircon U-Pb dating reveals that the Yaogou granodiorites formed during the Early–Middle Ordovician (473–460 Ma). The Yaogou granodiorites have high SiO2 (63.3–71.1 wt.%), high Al2O3 (13.9–15.8 wt.%) contents, and low Zr (96–244 ppm), Nb (2.9–18 ppm), as well as low Ga/Al ratios (10,000 × Ga/Al ratios of 1.7–2.9) and FeOT/MgO ratios (1.9–3.2), and are characterized by elevated concentrations of light rare earth elements and large-ion lithophile elements such as Rb, Th, and U, coupled with significant depletion in heavy rare earth elements and high-field-strength elements including Nb, Ta, and Ti. Additionally, the presence of negative europium anomalies further reflects geochemical signatures typical of I-type granitic rocks. The zircon grains from these rocks display negative εHf(t) values (−14.6 to −10.7), with two-stage Hf model ages (TDM2) from 2129 to 1907 Ma. These characteristics suggest that the magmatic source of the Yaogou granodiorites likely originated from the partial melting of Paleoproterozoic basement-derived crustal materials within a tectonic environment associated with subduction in the North Qilian Ocean. Integrating regional geological data, we suggest that during the Early Paleozoic, the North Qilian Oceanic slab underwent double subduction: initially southward, followed by a northward shift. Due to the deep northward subduction of the Qaidam continental crust and oceanic crust along the southern margin of the Qilian Orogenic Belt, the southward subduction of the North Qilian ocean was obstructed, triggering a reversal in subduction polarity. This reversal likely decelerated the southward subduction and initiated northward subduction, ultimately leading to the formation of the Yaogou granodiorites. These findings enhance our understanding of the complex tectonic processes that shaped the North Qilian Orogenic Belt during the Early Paleozoic, emphasizing the role of subduction dynamics and continental interactions in the region’s geological evolution. Full article
(This article belongs to the Special Issue Geochronology and Geochemistry of Alkaline Rocks)
Show Figures

Figure 1

17 pages, 6212 KB  
Article
Geochemical Evidence of Organic Matter Enrichment and Depositional Dynamics in the Lower Cambrian Yurtus Formation, NW Tarim Basin: Insights into Hydrothermal Influence and Paleoproductivity Mechanisms
by Wangming Cheng, Ruyue Wang, Taohua He, Chonghao Sun, Haonan Tian, Jiaqi Zhao, Ya Zhao, Jiayi He, Qianghao Zeng, Jiajun Liu and Yan Yi
Minerals 2025, 15(3), 288; https://doi.org/10.3390/min15030288 - 12 Mar 2025
Cited by 2 | Viewed by 1204
Abstract
The lower Cambrian Yurtus Formation (Є1y) in the Tarim Basin, characterized by its high organic matter content, serves as a critical source rock for oil and gas exploration in the platform basin. This study presents a high-resolution geochemical analysis of a [...] Read more.
The lower Cambrian Yurtus Formation (Є1y) in the Tarim Basin, characterized by its high organic matter content, serves as a critical source rock for oil and gas exploration in the platform basin. This study presents a high-resolution geochemical analysis of a geological section located near the Aksu Cement Plant in the northwest margin of the Tarim Basin. The focus is on elucidating the sedimentary environment, mechanisms of organic matter enrichment, and the depositional history of the Є1y source rock. The Є1y exhibits distinctive geochemical signatures, including elevated concentrations of Mo, Ba, and U, with an average rare earth element (REE) content of 155.75 μg/g. The formation shows significant light REE enrichment (LREE/HREE = 1.74–5.57), a moderate Ce negative anomaly (δCe = 0.4–0.71), and a notable Eu positive anomaly (δEu = 0.94–2.14), indicative of a unique depositional environment influenced by hydrothermal processes. Geochemical evidence suggests that the Є1y siliceous shales were deposited in a highly reducing, anoxic, and sulfide-rich environment, promoting organic matter preservation and enhancing sedimentary productivity. The presence of hydrothermal trace elements, likely introduced by hydrothermal fluids from volcanic activity along fractures and faults, played a critical role in enriching the sedimentary system, preserving organic matter, and boosting paleoproductivity. The model of organic matter enrichment proposed in this study underscores the dynamic interplay between hydrothermal influences and high primary productivity. These findings provide important insights into the formation of high-quality source rocks and have significant implications for the exploration of deep and ultra-deep oil and gas reserves in the Tarim Basin. Full article
Show Figures

Figure 1

27 pages, 8263 KB  
Article
Geochemical Characteristics and Paleoenvironmental Significance of No. 5 Coal in Shanxi Formation, Central–Eastern Ordos Basin (China)
by Bo Pan, Kangle Wang, Guodong Dong, Xingze Zhou, Yuhang Chen, Yipeng Zhuang, Xing Gao and Xiaowei Du
Minerals 2025, 15(2), 177; https://doi.org/10.3390/min15020177 - 14 Feb 2025
Cited by 2 | Viewed by 1741
Abstract
Coal is a carrier of geological information, preserving paleoenvironmental and paleoclimatic data from geological history. The Ordos Basin hosts abundant coal resources with significant potential for exploration and development. The geochemical properties of coal and their associated geological information offer key insights into [...] Read more.
Coal is a carrier of geological information, preserving paleoenvironmental and paleoclimatic data from geological history. The Ordos Basin hosts abundant coal resources with significant potential for exploration and development. The geochemical properties of coal and their associated geological information offer key insights into coal formation, coal–rock gas generation, and the identification of favorable development areas. This study focuses on the No. 5 coal of the Shanxi Formation in the central and eastern Ordos Basin. Building on previous research and advancements, this study reveals the geochemical attributes and sedimentary background of coal through core observations, drilling data, macerals, and element analyses. The results indicate that the No. 5 coal primarily consists of bright and semi-bright coal, characterized by medium ash yield and high fixed carbon. The macerals of the coal are predominantly vitrinite (64.08% on average), followed by inertinite (24.92% on average) and liptinite (2.8% on average). The source material for the No. 5 coal in the Shanxi Formation is primarily derived from felsic igneous rocks. The varying distribution patterns of rare earth elements suggest differences in the sources of coal materials. From the Late Carboniferous to the Early Permian, the North China Craton was located in tropical paleolatitudes in the Northern Hemisphere. The warm and humid paleoclimate facilitated the deposition of coal. Fluctuations in local lake levels and sedimentary system evolution resulted in an oxidized and oxygen-deficient water. The No. 5 coal is characterized by a relatively small TPI value and a relatively large GI value, indicating a coal-forming environment with deep water coverage, poor water circulation, or relative stagnation. This resulted in slow peat accumulation, allowing plant remains to fully gelatinize. The findings enhance the understanding of the geochemical characteristics of the No. 5 coal and the factors controlling its development within the Shanxi Formation of the central and eastern Ordos Basin. These results provide a theoretical basis for coal exploration and development. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

14 pages, 6053 KB  
Article
The Source and Significance of Silicon in the Late Permian Dalong Formation, Northeastern Sichuan Basin
by Xiaotong Ge, Xun Ge, Daizhao Chen, Yali Liu, Ruyue Wang and Min Li
Minerals 2025, 15(1), 69; https://doi.org/10.3390/min15010069 - 13 Jan 2025
Cited by 2 | Viewed by 1167
Abstract
The Late Permian was a critical interval in geological history, during which dramatic changes occurred in the Earth’s surface system, and a set of black rock series rich in organic matter and silicon, the Dalong Formation, was deposited in the northeastern Sichuan Basin. [...] Read more.
The Late Permian was a critical interval in geological history, during which dramatic changes occurred in the Earth’s surface system, and a set of black rock series rich in organic matter and silicon, the Dalong Formation, was deposited in the northeastern Sichuan Basin. We conducted a detailed sedimentological and petrological investigation integrated with (major and trace) element contents in the deep-water sequence of the Xibeixiang and Jianfeng sections. It demonstrates the source of silicon, tectonic background, and sedimentary environment of the Dalong Formation, and explores the influence of hydrothermal activities on organic matter enrichment. The results show that the upper part of the Dalong Formation contained more radiolarians in the Xibeixiang section compared to the Jianfeng section. Hydrothermal proxies such as Eu/Eu*, Al-Fe-Mn diagram, Al/(Al + Fe + Mn), and LuN/LaN suggest a biotic origin for the chert in the Dalong Formation in the Xibeixiang and Jianfeng sections, while the Xibeixiang section was slightly affected by hydrothermal activities. The La-Th-Sc diagram and the La/Sc and Ti/Zr crossplots point to a continental island arc and active continental margin origins for the Xibeixiang and Jianfeng sections. Combined with previous research, the silicon of the Dalong Formation in the northeastern Sichuan Basin is mainly derived from biological sources. The Xibeixiang section was affected by a small amount of hydrothermal fluid due to its proximity to the Paleo-Tethys Ocean and continental island arcs. Furthermore, the enrichment of organic matter was predominantly driven by high productivity, with minimal impact from hydrothermal activities. These insights hold significant research value and practical implications for shale gas exploration in the Sichuan Basin. Full article
Show Figures

Figure 1

26 pages, 26313 KB  
Article
Characteristics and Paleoenvironment of Stromatolites in the Southern North China Craton and Their Implications for Mesoproterozoic Gas Exploration
by Ruize Yuan, Qiang Yu, Tao Tian, Qike Yang, Zhanli Ren, Rongxi Li, Baojiang Wang, Wei Chang, Lijuan He and Tianzi Wang
Processes 2025, 13(1), 129; https://doi.org/10.3390/pr13010129 - 6 Jan 2025
Cited by 1 | Viewed by 2239
Abstract
Stromatolites, distinctive fossil records within Precambrian strata, are essential for investigating the depositional environments of early Earth and the geological settings conducive to hydrocarbon formation. The Luonan area is located in Shaanxi Province, China, where a large number of stromatolites have been discovered [...] Read more.
Stromatolites, distinctive fossil records within Precambrian strata, are essential for investigating the depositional environments of early Earth and the geological settings conducive to hydrocarbon formation. The Luonan area is located in Shaanxi Province, China, where a large number of stromatolites have been discovered within the Mesoproterozoic Erathem, providing new perspectives on paleoenvironment and reservoir spaces. This study analyzes the morphology of stromatolites, associated microorganisms, mineralogy, and cathodoluminescence from the carbonate rocks of the Jixian System. Carbon and oxygen isotope analyses help reconstruct paleosalinity and climate, enhancing understanding of their petroleum geological significance. Combining carbon and oxygen isotope analysis with the fine observation and description of stromatolite can better reconstruct the paleoenvironmental features of the Mesoproterozoic Era. The results indicated a narrow range of carbon isotope values (δ13C: −5.81‰ to −2.43‰; mean: −4.03‰) and oxygen isotope values (δ18O: −9.06‰ to −5.64‰). The Longjiayuan Formation is characterized by high CaO and MgO content, with low SiO2 and minimal terrigenous input, in contrast with the Fengjiawan Formation, which exhibits elevated SiO2 and greater terrigenous material. The Luonan stromatolites display prominent rhythmic laminations, primarily composed of dolomite, indicating a potential for hydrocarbon source rocks. Stromatolite morphologies, including layered, columnar, and wavy forms, reflect varied depositional microfacies. The alternating bright and dark laminae, rich in CaO and CO2 but differing in Ca2+ and Mg2+ concentrations, signify seasonal growth cycles. These Mesoproterozoic stromatolites developed in a warm, humid, and stable climatic regime, within a marine anoxic-to-suboxic setting, typically in intertidal or supratidal zones with low hydrodynamic energy. In the southern margin of the North China Craton, stromatolites from the Mesoproterozoic Era are extensively developed and exhibit distinct characteristics. Due to the biogenic alteration of stromatolites, the porosity of the rock increased. These stromatolites have altered the physical properties of the host rocks to some extent, suggesting the possibility of becoming effective hydrocarbon reservoirs. This has significant implications for deep oil and gas exploration, providing valuable guidance for future prospecting efforts. Full article
Show Figures

Figure 1

15 pages, 3623 KB  
Article
Preliminary Exploration on Short-Term Prediction of Local Geomagnetically Induced Currents Using Hybrid Neural Networks
by Yihao Fang, Jin Liu, Haiyang Jiang and Wenhao Chen
Processes 2025, 13(1), 76; https://doi.org/10.3390/pr13010076 - 1 Jan 2025
Viewed by 1512
Abstract
During extreme space weather events, transient geomagnetic disturbances initiated by solar eruptive activities can induce geomagnetically induced currents (GICs), which have severe impacts on power grid systems and oil/gas pipelines. Observations indicate that GICs in power grids are characterized by large fluctuation amplitudes, [...] Read more.
During extreme space weather events, transient geomagnetic disturbances initiated by solar eruptive activities can induce geomagnetically induced currents (GICs), which have severe impacts on power grid systems and oil/gas pipelines. Observations indicate that GICs in power grids are characterized by large fluctuation amplitudes, broad frequency ranges, and significant randomness. Their behavior is influenced by several factors, including the sources of space weather disturbance, Earth’s electrical conductivity distribution, the structural integrity and performance of power grid equipment, and so on. This paper presents a hybrid prediction using actual GIC data from power grids and deep learning techniques. We employ various technical methods, including complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and attention mechanisms, to investigate short-term prediction methods for local grid GICs. The study uses GIC monitoring samples from 8 November 2004 for model training and testing. The results are evaluated using the coefficient of determination R2, root mean square error (RMSE), and mean absolute error (MAE). Preliminary research suggests that the combined CEEMDAN–CNN–LSTM–attention model significantly improves prediction accuracy and reduces the time delay in GIC prediction during geomagnetic storms compared to using LSTM neural networks alone. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 8323 KB  
Article
Pore Types and Dolomite Reservoir Genesis of the Fifth Member of the Ordovician Majiagou Formation in the Central and Eastern Ordos Basin
by Shilei Chen, Rong Dai and Shunshe Luo
Appl. Sci. 2024, 14(23), 10976; https://doi.org/10.3390/app142310976 - 26 Nov 2024
Viewed by 1416
Abstract
The Ordovician dolomite in the Ordos Basin is an important natural gas reservoir. Exploring dolomite genesis and the factors influencing reservoir characteristics is essential for deep carbonate rock exploration. This study offers a comprehensive analysis of dolomite evolution using methods such as thin-section [...] Read more.
The Ordovician dolomite in the Ordos Basin is an important natural gas reservoir. Exploring dolomite genesis and the factors influencing reservoir characteristics is essential for deep carbonate rock exploration. This study offers a comprehensive analysis of dolomite evolution using methods such as thin-section petrography, isotope analysis, and trace and rare earth elements. The analysis shows that: Based on petrographic observations of the Majiagou Formation in the study area, the dolomite in the study area can be divided into residual oolitic dolomite of synsedimentary or metasomatic origin, micritic dolomite of secondary metasomatism or recrystallization origin, powder crystal dolomite, and fine crystal dolomite. Reservoir pores mainly develop intergranular pores, mold pores, dissolved pores, and fractures. Combined with the characteristics of major elements, trace elements, carbon and oxygen isotopes, rare earth elements, and inclusions in the study area, it can be concluded that the fifth member dolomite of the Majiagou Formation is of shallow–medium burial origin. The diagenetic evolution sequence from the penecontemporaneous period to the middle–deep burial period in the study area is penecontemporaneous dolomite, anhydrite dissolution → seepage silt filling, freshwater dolomite, calcite, and gypsum filling, pressure solution compaction, calcite partial dissolution → gypsum filling, karst cave, buried hydrothermal dolomite, dolomite partial dissolution → calcite complete dissolution, pore dissolution expansion, and quartz pyrite filling. In the early stage of compaction and pressure solution, the primary pores are rapidly reduced, and in the later stage, sutures are generated to provide channels for reservoir fluid migration. The recrystallization reduces the porosity during the middle–deep burial period. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

12 pages, 7913 KB  
Article
SO2 Diffusion Features of the 2022 Hunga Tonga–Hunga Ha’apai Volcanic Eruptions from DSCOVR/EPIC Observations
by Yi Huang and Wentao Duan
Atmosphere 2024, 15(10), 1164; https://doi.org/10.3390/atmos15101164 - 29 Sep 2024
Viewed by 1645
Abstract
Understanding the volcanic SO2 diffusive characteristics can enhance our knowledge of the impact of volcanic eruptions on climate change. In this study, the SO2 diffusion features of the Hunga Tonga–Hunga Ha’apai underwater volcano (HTHH) 2022 eruptions are investigated based on the [...] Read more.
Understanding the volcanic SO2 diffusive characteristics can enhance our knowledge of the impact of volcanic eruptions on climate change. In this study, the SO2 diffusion features of the Hunga Tonga–Hunga Ha’apai underwater volcano (HTHH) 2022 eruptions are investigated based on the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) dataset, which could provide longer term, more consistent, and higher temporal sampling rate observations to complement current low-orbit satellite-based research. SO2 plume major-direction profile analysis indicates that the SO2 diffusion extent of subaerial eruption initiating at 15:20/13 January 2022 was approximately 1500 km in the Southeast–Northwest major diffusive direction by 20:15/14 January 2022 (about 29 h after the HTHH subaerial eruption). All-direction SO2 plume analysis shows that the HTHH subaerial eruption-emitted SO2 plume could diffuse as far as 6242 km by 02:20/15 January 2022. Furthermore, these two analyses in terms of the HTHH major eruption initiating at 04:00/15 January 2022 imply that HTHH major eruption-emitted SO2 plume could diffuse as far as 8600 km in the Southeast–Northwest major diffusive direction by 02:24/18 January 2022 (about 70 h after the HTHH major eruption). It is also implied that HTHH major eruption-emitted SO2 plume could extend to approximately 14,729 km away from the crater by 13:12/18 January 2022. We believe that these findings could provide certain guidance for volcanic gas estimations, thus helping to deepen our understanding of volcanic impacts on climate change. Full article
(This article belongs to the Special Issue Satellite Remote Sensing Applied in Atmosphere (2nd Edition))
Show Figures

Figure 1

19 pages, 9341 KB  
Article
Effects of the Sedimentary Environment on Organic-Rich Shale in the Intracratonic Sag of the Sichuan Basin, China
by Xuewen Shi, Jia Liu, Yiqing Zhu, Liang Xu, Yuran Yang, Chao Luo, Yanyou Li, Kesu Zhong, Xue Yang, Qiuzi Wu, Liang He, Demin Shi and Xingzhi Wang
Appl. Sci. 2024, 14(19), 8594; https://doi.org/10.3390/app14198594 - 24 Sep 2024
Cited by 4 | Viewed by 1578
Abstract
The enrichment of organic matter in high-quality marine shale is generally controlled by factors such as the redox conditions of sedimentary environments, productivity levels, terrigenous input, and ancient productivity. However, the controlling effect of the sedimentary environment on organic matter enrichment in intracratonic [...] Read more.
The enrichment of organic matter in high-quality marine shale is generally controlled by factors such as the redox conditions of sedimentary environments, productivity levels, terrigenous input, and ancient productivity. However, the controlling effect of the sedimentary environment on organic matter enrichment in intracratonic sag is still unclear. This study takes samples from the Qiongzhusi formation shale in southern Sichuan Basin as the research object, focusing on trace elements as well as rare earth elements in different stratigraphic intervals. The provenance of the Qiongzhusi formation shale is mainly terrigenous, with sediment sources mainly consisting of sedimentary rocks and granites. The primary sedimentary environment transitions from a continental margin setting, influenced by rift-related tectonic activity and sediment influx from adjacent landmasses, to an open oceanic environment characterized by mid-ocean ridge processes and oceanic plate subduction zones. During sedimentation, saline water was present, with predominant sedimentary environments ranging from shallow water to deep water continental shelves. The shale in the study area is characterized by a higher content of silicates and a lower content of carbonate minerals. Its siliceous sources are mainly influenced by biogenic and terrigenous debris, indicating higher ancient primary productivity and representing a favorable target for shale gas exploration. Full article
Show Figures

Figure 1

28 pages, 8540 KB  
Review
Earthquake Lights Observed in Japan—Possible Underlying Mechanisms
by Yuji Enomoto
Atmosphere 2024, 15(8), 916; https://doi.org/10.3390/atmos15080916 - 31 Jul 2024
Cited by 3 | Viewed by 12550
Abstract
In Japan, a country prone to earthquakes, numerous damaging earthquakes have been recorded throughout history, often accompanied by descriptions of mysterious earthquake lights (EQL), which may involve various mechanisms. In this article, the possible mechanisms for different types of EQL in 11 cases [...] Read more.
In Japan, a country prone to earthquakes, numerous damaging earthquakes have been recorded throughout history, often accompanied by descriptions of mysterious earthquake lights (EQL), which may involve various mechanisms. In this article, the possible mechanisms for different types of EQL in 11 cases are reviewed among 21 selected earthquakes. These involve preseismic physicochemical variations in the geological structure of the fault in the lithosphere, which contains deep Earth gases such as radon, methane, and others, as a primary factor for EQL generation. Additionally, various seismic, atmospheric, hydrospheric, and ionospheric variations interact with each other, resulting in the visualization of characteristic anomalous phenomena, such as glowing or shining ground, mountains, offshore areas, and skies of various colors. These phenomena appear momentarily but can sometimes last for extended periods. Because EQL often appear just before an earthquake, their study might be significant for earthquake prediction. Additionally, EQL involving methane flames in the ground is an important research topic as it relates to public safety. Was what they witnessed paranormal? Full article
(This article belongs to the Special Issue Recent Advances in Lightning Research)
Show Figures

Figure 1

Back to TopTop