Geochronology and Geochemistry of Alkaline Rocks

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Geochemistry and Geochronology".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 2283

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
Interests: alkaline rocks; geochemistry; petrogenesis; geochronology

E-Mail Website
Guest Editor
College of Earth Science, Chengdu University of Technology, Chengdu 610225, China
Interests: magmatite; geochemistry; CO2 mineralization

E-Mail Website
Guest Editor
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Interests: petrogeochemistry of the mafic-ultramafic magmatic rocks and mantle peridotites

Special Issue Information

Dear Colleagues,

Alkaline rocks are the products of lithospheric extensional environments. They have become a valuable indicator of deep geodynamics processes, such as collisional orogeny, oceanic subduction, delamination, lithospheric thinning, basaltic magma subduction, upper-crust deep faults, mantle plume, and crust–mantle interactions. Although alkaline rocks have been studied over the years, many scientific problems require further study. There is, for example, still a lack of systematic discrimination and understanding on the origin and evolution of alkaline magmas, or the genesis and diagenetic dynamic setting of alkaline rocks. A further topic of considerable current global interest is the metallogeny of alkaline rocks, given they may host deposits of rare earth elements, niobium, vanadium, uranium–thorium, copper, and gold, as well as valuable non-metals (for example, apatite, ceramic materials, and diamond). In view of the scientific significance of alkaline rocks and the existing problems listed above, our Special Issue will be devoted to studies dealing with the geochronology and geochemistry of alkaline rocks in different geological environments. We hope that the papers in this Special Issue provide new scientific evidence that can help resolve outstanding problems such as the origin and evolution of alkaline magmas, the genesis and diagenetic dynamic setting of alkaline rocks, and metallic and non-metallic mineralization associated with alkaline rocks. We invite authors from across the globe to submit papers and look forward to your participation and support.

Dr. Shen Liu
Dr. Tao Wang
Dr. Guangying Feng
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • alkaline rocks
  • petrogenesis
  • geochronology
  • geochemistry
  • geodynamics
  • mineralization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 11461 KiB  
Article
Identification and Geological Significance of Late Cambrian OIB-Type Volcanic Rocks in the Nailenggeledaban Area, Northern Yili Block
by Da Xu, Ming Cao, Meng Wang, Youxin Chen, Shaowei Zhao, Shengqiang Zhu, Tai Wen and Zhi’an Bao
Minerals 2025, 15(1), 7; https://doi.org/10.3390/min15010007 - 25 Dec 2024
Viewed by 693
Abstract
Paleozoic igneous rocks exposed in the northern Yili Block are thought to have resulted from the subduction of the North Tianshan oceanic crust. However, the exact timing of the transition of the northern margin of the Yili Block from a passive to an [...] Read more.
Paleozoic igneous rocks exposed in the northern Yili Block are thought to have resulted from the subduction of the North Tianshan oceanic crust. However, the exact timing of the transition of the northern margin of the Yili Block from a passive to an active continental margin remains unknown. In this paper, the petrological and geochemical features, zircon U-Pb chronology, Lu-Hf isotopes, and Sr-Nd isotopes of volcanic rocks in the Nailenggeledaban area on the northern margin of the Yili Block were studied. Zircon U-Pb dating results show that the crystallization ages of the volcanic rocks in the Nailenggeledaban area on the northern margin of the Yili Block are 491 ± 2 Ma and 500 ± 2 Ma, suggesting they were formed during the Late Cambrian. Geochemical features show that the volcanic rocks are alkaline basalts with rare earth and trace element distribution patterns similar to OIB, although they exhibit some degree of Zr and Hf depletion. The εHf(t) values of alkaline basalts in the Nailenggeledaban area at the northern Yili Block range from −3.48 to −1.00, with a TDM1 age of 1152 to 1263 Ma. The εNd(t) values range from −3.53 to −0.96, with a TDM1 age of 1471 to 2162 Ma. Combined with geochemical data, the alkaline basalt magma in the Nailenggeledaban area on the northern margin of the Yili Block may be derived from the Mesoproterozoic enriched lithospheric mantle. The composition of the mantle source area is potentially garnet lherzolite, and the magma appears to have been either unaffected or only minimally contaminated by crustal materials during the ascending process. On the basis of the research results of the Early Paleozoic tectonic evolution in the northern margin of the Yili Block, this paper proposes that the volcanic rocks in the Nailenggeledaban area, located on the northern margin of the Yili Block, were formed in a back-arc extensional environment resulting from the subduction of the North Tianshan Ocean (or Junggar Ocean) beneath the northern margin of the Yili Block during the Late Cambrian. Full article
(This article belongs to the Special Issue Geochronology and Geochemistry of Alkaline Rocks)
Show Figures

Figure 1

35 pages, 9267 KiB  
Article
Petrogenesis of Late Stenian Syn-Orogenic A-Type Granites in the Chhotanagpur Gneissic Complex and Eastern Indian Shield
by Bapi Goswami, Ankita Basak, Yoann Gréau and Chittaranjan Bhattacharyya
Minerals 2024, 14(11), 1153; https://doi.org/10.3390/min14111153 - 14 Nov 2024
Cited by 1 | Viewed by 1087
Abstract
We report the petrogenesis of arfvedsonite granites from the Dimra Pahar pluton in the Chhotanagpur Gneissic Complex based on petrology, whole-rock chemistry, mineral chemistry, and La-ICP-MS zircon U-Pb ages and Hf-Lu isotopic analyses. These granites are dominantly peralkaline, occasionally peraluminous, and demonstrate features [...] Read more.
We report the petrogenesis of arfvedsonite granites from the Dimra Pahar pluton in the Chhotanagpur Gneissic Complex based on petrology, whole-rock chemistry, mineral chemistry, and La-ICP-MS zircon U-Pb ages and Hf-Lu isotopic analyses. These granites are dominantly peralkaline, occasionally peraluminous, and demonstrate features of A1-type granites. The magma was emplaced at a shallow depth and had a high liquidus temperature, fO2 (>NNO), and water saturation. The zircons exhibit three distinct U-Pb isotopic ages. The oldest (1324 ± 6 Ma), large-sized inherited zircons (εHf(t) = +1.65 to +7.64), show complex zoning and signs of partial resorption. The euhedral, prismatic-bipyramidal zircons displaying oscillatory zoning (εHf(t) = −3.43 to +1.43) reveal a crystallization age of 1046 ± 7 Ma. Their thin periphery (εHf(t) = −3.23 to +0.27) grew during retrograde metamorphism (995 ± 6 Ma). The whole-rock geochemistry and the Hf-isotope values imply that the parental magma of these granites resulted from the anatexis of metasomatized lithospheric mantle sources. These granites intruded in a syn-orogenic (syn-collisional exhumation) stage of the orogeny. Full article
(This article belongs to the Special Issue Geochronology and Geochemistry of Alkaline Rocks)
Show Figures

Figure 1

Back to TopTop