Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = debris wear

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1789 KiB  
Article
Flow Field Simulation and Experimental Study of Electrode-Assisted Oscillating Electrical Discharge Machining in the Cf-ZrB2-SiC Micro-Blind Hole
by Chuanyang Ge, Sirui Gong, Junbo He, Kewen Wang, Jiahao Xiu and Zhenlong Wang
Materials 2025, 18(17), 3944; https://doi.org/10.3390/ma18173944 - 22 Aug 2025
Abstract
In the micro-EDM blind-hole machining of Cf-ZrB2-SiC ceramics, defects such as bottom surface protrusion and machining fillets are often encountered. The implementation of an electrode-assisted oscillating device has proven effective in improving machining outcomes. To unravel the fundamental reasons [...] Read more.
In the micro-EDM blind-hole machining of Cf-ZrB2-SiC ceramics, defects such as bottom surface protrusion and machining fillets are often encountered. The implementation of an electrode-assisted oscillating device has proven effective in improving machining outcomes. To unravel the fundamental reasons behind the optimization enabled by this auxiliary oscillating device, this paper presents fluid simulation research, providing a quantitative comparison of the differences in machining gap flow field characteristics and debris motion behaviors under conditions with and without the assistance of the oscillating device. Firstly, this paper briefly describes the characteristics of Cf-ZrB2-SiC discharge products and flow field deficiencies during conventional machining and introduces the working principle of electrode-assisted oscillation devices to establish the background and objectives of the simulation study. Subsequently, this research established simulation models for both conventional machining and oscillating machining based on actual processing conditions. CFD numerical simulations were conducted to compare flow field differences between conditions with and without auxiliary machining devices. The results demonstrate that, compared to conventional machining, electrode oscillation not only increases the maximum velocity of the working fluid by nearly 32% but also provides a larger debris accommodation space, effectively preventing secondary discharge. Regarding debris agglomeration, oscillating machining resolves the low-velocity zone issues present in conventional modes, increasing debris velocity from 0 mm/s to 7.5 mm/s and ensuring continuous debris motion. Furthermore, the DPM was used to analyze particle distribution and motion velocities, confirming that vortex effects form within the hole under oscillating conditions. These vortices effectively draw bottom debris outward, preventing local accumulation. Finally, from the perspective of debris distribution, the formation mechanisms of micro-hole morphology and the tool electrode wear patterns were explained. Full article
23 pages, 1242 KiB  
Review
Aseptic Loosening in Total Hip Arthroplasty: Pathophysiology, Biomarkers, and Preventive Treatment Strategies
by Gabriele Ricciardi, Lorenza Siracusano, Edoardo Micale, Vito Addorisio, Mariagiovanna Ballato, Domenico Donadio, Pietro Tralongo, Giuseppe Giuffrè, Danilo Leonetti, Maurizio Martini and Biagio Zampogna
Appl. Sci. 2025, 15(16), 9156; https://doi.org/10.3390/app15169156 - 20 Aug 2025
Viewed by 216
Abstract
Aseptic loosening (AL) represents the leading cause of long-term failure in total joint arthroplasty, often necessitating revision surgery. This review explores the complex mechanisms underlying AL, which involve a multifaceted interaction between the implanted biomaterials and the host immune response. We outline the [...] Read more.
Aseptic loosening (AL) represents the leading cause of long-term failure in total joint arthroplasty, often necessitating revision surgery. This review explores the complex mechanisms underlying AL, which involve a multifaceted interaction between the implanted biomaterials and the host immune response. We outline the key inflammatory mechanisms triggered by wear debris from polyethylene, polymethylmethacrylate, metal, and ceramic materials. We also examine emerging biomarkers for early detection and differentiation between stable and loosened implants, including proinflammatory cytokines, bone metabolism markers, extracellular matrix degradation products, microRNAs, and genetic polymorphisms. Lastly, we discuss current and future strategies for prevention and treatment, ranging from surgical optimization and biomaterial selection to pharmacological interventions. A comprehensive understanding of these mechanisms may help reduce the incidence of AL and improve long-term outcomes in arthroplasty patients. Full article
Show Figures

Figure 1

17 pages, 4466 KiB  
Article
An Oil Debris Analysis Method of Gearbox Condition Monitoring Based on an Improved Multi-Variable Grey Prediction Model
by Bo Wang and Yizhong Wu
Machines 2025, 13(8), 664; https://doi.org/10.3390/machines13080664 - 29 Jul 2025
Viewed by 267
Abstract
Accurate oil debris analysis and wear monitoring of a gearbox are essential to ensure its stable and reliable operation. Element types of wear debris and their changes in the lubrication oil of the gearbox can be monitored by spectral analysis. However, it is [...] Read more.
Accurate oil debris analysis and wear monitoring of a gearbox are essential to ensure its stable and reliable operation. Element types of wear debris and their changes in the lubrication oil of the gearbox can be monitored by spectral analysis. However, it is still difficult to identify wear parts of the gearbox due to the complex composition of elements of wear debris. An improved multi-variable grey prediction model by incorporating a multi-objective genetic algorithm (MOGA-GM(1, N)) is proposed to evaluate weight coefficients of element concentrations of wear debris in the lubrication oil of the gearbox. Moreover, a wear growth rate of each element in the lubrication oil is proposed as an index for oil debris analysis to analyze the multi-variable correlation between the common element of iron (Fe) and other related elements of wear parts of the gearbox. Oil debris analysis of the gearbox is conducted on optimal weight coefficients of related elements to the common element Fe using the MOGA-GM(1, N) model. Wear experiment results verify feasibility of the proposed oil debris analysis method. Full article
Show Figures

Figure 1

16 pages, 14261 KiB  
Article
Effect of Er Microalloying and Zn/Mg Ratio on Dry Sliding Wear Properties of Al-Zn-Mg Alloy
by Hanyu Chen, Xiaolan Wu, Xuxu Ding, Shengping Wen, Liang Hong, Kunyuan Gao, Wu Wei, Li Rong, Hui Huang and Zuoren Nie
Materials 2025, 18(15), 3541; https://doi.org/10.3390/ma18153541 - 29 Jul 2025
Viewed by 334
Abstract
In this study, dry sliding wear tests were carried out on Er, Zr-microalloyed Al-Zn-Mg alloys with different Zn/Mg ratios under 30–70 N loads. The effects of the Zn/Mg content ratio and Er microalloying on the friction coefficient, wear volume loss, worn surface, and [...] Read more.
In this study, dry sliding wear tests were carried out on Er, Zr-microalloyed Al-Zn-Mg alloys with different Zn/Mg ratios under 30–70 N loads. The effects of the Zn/Mg content ratio and Er microalloying on the friction coefficient, wear volume loss, worn surface, and wear debris during the friction process of Al-Zn-Mg alloys were analyzed. At the load of 30 N, abrasive wear, fatigue wear, and adhesive wear were synergistically involved. At a load of 50 N, the abrasive wear dominated, accompanied by fatigue wear and adhesive wear. At a load of 70 N, the primary wear mechanisms transitioned to abrasive wear and fatigue wear, with additional adhesive wear and oxidative wear observed. Reducing the Zn/Mg ratio mitigated wear volume across all tested loads. For the Al4.5Zn1.5Mg alloy, Er microalloying significantly reduced wear volume under moderate-to-low loads (30 N, 50 N). Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

22 pages, 3655 KiB  
Article
Analytical Description of Three-Dimensional Fractal Surface Wear Process Based on Multi-Stage Contact Theory
by Wang Zhang, Ling Li, Yang Liu, Jingjing Wang, Yao Li and Guozhang Chen
Fractal Fract. 2025, 9(7), 463; https://doi.org/10.3390/fractalfract9070463 - 16 Jul 2025
Viewed by 350
Abstract
Accurately revealing the sliding wear mechanisms of mechanical surfaces is crucial for enhancing the performance of mechanical surfaces. This study reveals the mechanism of stage transitions in three-dimensional surface wear processes from a microscopic contact perspective. Firstly, according to the fractal theory, a [...] Read more.
Accurately revealing the sliding wear mechanisms of mechanical surfaces is crucial for enhancing the performance of mechanical surfaces. This study reveals the mechanism of stage transitions in three-dimensional surface wear processes from a microscopic contact perspective. Firstly, according to the fractal theory, a mathematical model for the critical area scale controlling debris particle formation is established. Secondly, incorporating the contact area scale, a mathematical expression for the wear coefficient of surfaces, is proposed based on the multi-stage contact theory. Finally, the influences of fractal parameters on critical contact load, wear rate, and wear coefficient are systematically examined. The experimental findings substantiate that the proposed wear model exhibits an explicit deterministic formulation and demonstrates high predictive accuracy for the wear rate. Full article
Show Figures

Figure 1

9 pages, 2576 KiB  
Article
Novel Debris Material Identification Method Based on Impedance Microsensor
by Haotian Shi, Yucai Xie and Hongpeng Zhang
Micromachines 2025, 16(7), 812; https://doi.org/10.3390/mi16070812 - 14 Jul 2025
Viewed by 322
Abstract
Oil condition monitoring can ensure the safe operation of mechanical equipment. Metal debris is full of friction information, and the identification of debris material helps to locate wear of parts. A method based on impedance analysis is proposed to identify debris material in [...] Read more.
Oil condition monitoring can ensure the safe operation of mechanical equipment. Metal debris is full of friction information, and the identification of debris material helps to locate wear of parts. A method based on impedance analysis is proposed to identify debris material in this article. The differences in permeability and conductivity result in the nonlinear variation trend of inductance–resistance amplitude with debris volume. By establishing a database of amplitude–size curves, debris information (material and size) can be obtained through impedance analysis. Based on experimental and simulation results, iron, stainless steel, aluminum, copper, and brass particles are effectively distinguished. This method is not affected by oil’s light transmittance, other impurities, and debris surface dirt and can be used to distinguish metals with similar colors. This work provides a novel solution for debris material identification, which is expected to promote the development of fault diagnosis. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

20 pages, 5652 KiB  
Article
Capacitive Sensing of Solid Debris in Used Lubricant of Transmission System: Multivariate Statistics Classification Approach
by Surapol Raadnui and Sontinan Intasonti
Lubricants 2025, 13(7), 304; https://doi.org/10.3390/lubricants13070304 - 14 Jul 2025
Viewed by 441
Abstract
The quantification of solid debris in used lubricating oil is essential for assessing transmission system wear and optimizing maintenance strategies. This study introduces a low-cost capacitive proximity sensor for monitoring total solid particle contamination in lubricants, with a focus on ferrous (Fe), non-ferrous [...] Read more.
The quantification of solid debris in used lubricating oil is essential for assessing transmission system wear and optimizing maintenance strategies. This study introduces a low-cost capacitive proximity sensor for monitoring total solid particle contamination in lubricants, with a focus on ferrous (Fe), non-ferrous (Al), and non-metallic (SiO2) debris. Controlled tests were performed using five mixing ratios of large-to-small particles (100:0, 75:25, 50:50, 25:75, and 0:100) at a fixed debris mass of 0.5 g per 25 mL of SAE 85W-140 automotive gear oil. Cubic regression analysis yielded high predictive accuracy, with average R2 values of 0.994 for Fe, 0.943 for Al, and 0.992 for SiO2. Further dimensionality reduction using Principal Component Analysis (PCA), along with Linear Discriminant Analysis (LDA) of multivariate statistical analysis, effectively classifies debris types and enhances interpretability. These results demonstrate the potential of capacitive sensing as an offline, non-invasive alternative to traditional techniques for wear debris monitoring in transmission systems. These results confirm the potential of capacitive sensing, supported by statistical modeling, as a non-invasive, cost-effective technique for offline classification and monitoring of wear debris in transmission systems. Full article
(This article belongs to the Special Issue Tribological Research on Transmission Systems)
Show Figures

Figure 1

22 pages, 8872 KiB  
Article
Comprehensive Sliding Wear Analysis of 3D-Printed ABS, PLA, and HIPS: ANOVA, SEM Examination, and Wear Volume Measurements with Varying Layer Thickness
by Sinan Fidan, Satılmış Ürgün, Alp Eren Şahin, Mustafa Özgür Bora, Taner Yılmaz and Mehmet İskender Özsoy
Polymers 2025, 17(14), 1899; https://doi.org/10.3390/polym17141899 - 9 Jul 2025
Viewed by 510
Abstract
This study discusses the frictional wear performance of three 3D-printed materials, acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), and high-impact polystyrene (HIPS), while evaluating different layer thickness levels. The materials were subjected to wear volume and rate tests by ball-on-disc wear tests at [...] Read more.
This study discusses the frictional wear performance of three 3D-printed materials, acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), and high-impact polystyrene (HIPS), while evaluating different layer thickness levels. The materials were subjected to wear volume and rate tests by ball-on-disc wear tests at various thickness levels (0.1, 0.2, and 0.3 mm) and sliding distances. Lastly, SEM analysis was carried out to study the wear tracks and debris developed during the testing. Quantitatively, ABS maintained a mean wear volume below 0.15 mm3 across all test conditions (e.g., 0.05 ± 0.01 mm3 at 0.1 mm layer thickness and 150 m sliding distance), whereas PLA and HIPS recorded much higher averages of 1.5 mm3 and 3.0 mm3, respectively. With the increase in layer thickness, which caused an upward trend in the obtained results, the wear volume of the investigated materials also increased. ABS exhibited the smallest material loss of all three polymers; for example, at 0.1 mm layer thickness and a 150 m sliding distance, the mean wear volume was only 0.05 mm3, and even under the harshest condition tested (0.3 mm layer thickness, 300 m), the value remained below 0.15 mm3. PLA and HIPS showed higher wear volumes, while HIPS had the lowest resistance among the three materials. The multifunctional wear behavior difference contributed by material type was 59.76%, as shown through ANOVA, and that by layer thickness was 21.32%. Among the parameters investigated, material type had the largest control in wear behavior due to inherent variation in the structural characteristics of the material such as interlayer adhesion, toughness, and brittleness. For instance, the amorphous nature of ABS and its good layer adhesion provided significantly superior wear resistance compared to the brittle PLA and the poorly adhered HIPS. It is highlighted in this research that selecting appropriate material and layer thickness combinations can improve the durability of 3D-printed components. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

16 pages, 3918 KiB  
Article
Improvements in Wettability and Tribological Behavior of Zirconia Artificial Teeth Using Surface Micro-Textures
by Yayun Liu, Guangjie Wang, Fanshuo Jia, Xue Jiang, Ning Jiang, Chuanyang Wang and Zhouzhou Lin
Materials 2025, 18(13), 3117; https://doi.org/10.3390/ma18133117 - 1 Jul 2025
Viewed by 355
Abstract
Zirconia ceramics are promising materials for restoration and are widely used in the field of artificial teeth. However, wear resistance affects the longevity of artificial teeth. In this study, peacock tail feather micro-textures and groove micro-textures are prepared on the surfaces of zirconia [...] Read more.
Zirconia ceramics are promising materials for restoration and are widely used in the field of artificial teeth. However, wear resistance affects the longevity of artificial teeth. In this study, peacock tail feather micro-textures and groove micro-textures are prepared on the surfaces of zirconia ceramics via the laser ablation technique to improve their tribological properties. The effects of micro-textures on the surface wettability and tribological properties of zirconia ceramics are studied. The micro-textures improve the surface wettability and tribological properties of zirconia ceramics. The average coefficient of friction of peacock tail feather micro-textured samples decreases by 53% compared to that of the samples without micro-textures. Different operating conditions affect the friction properties of zirconia ceramics. The samples have the best friction performance when the rotational speed, load, and acid/alkaline environment are 200 r/min, 15 N, and weakly alkaline, respectively. Furthermore, the mechanism by which surface micro-textures reduce frictional wear is as follows: the textured grooves store debris, and the bottom edge of the textured groove acts as a cutting tool to cut debris, preventing debris from scratching the surface. The micro-textures store lubricant and form a liquid film on the ceramic surface to reduce wear. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

8 pages, 607 KiB  
Proceeding Paper
Advancements in Nanotechnology for Orthopedic Applications: A Comprehensive Overview of Nanomaterials in Bone Tissue Engineering and Implant Innovation
by Newton Neogi, Kristi Priya Choudhury, Sabbir Hossain and Ibrahim Hossain
Med. Sci. Forum 2025, 32(1), 4; https://doi.org/10.3390/msf2025032004 - 26 Jun 2025
Viewed by 591
Abstract
Orthopedic implant technology has historically seen difficulties in attaining long-term stability and biological integration, leading to complications such as implant loosening, wear debris production, and heightened infection risk. Nanotechnology provides a revolutionary method for addressing these constraints through the introduction of materials characterized [...] Read more.
Orthopedic implant technology has historically seen difficulties in attaining long-term stability and biological integration, leading to complications such as implant loosening, wear debris production, and heightened infection risk. Nanotechnology provides a revolutionary method for addressing these constraints through the introduction of materials characterized by exceptional biocompatibility, durability, and integration potential. Nanomaterials (NMs), characterized by distinctive surface topographies and elevated surface area-to-volume ratios, facilitate improved osseointegration and provide regulated medication release, thereby creating a localized therapeutic milieu surrounding the implant site. To overcome the long-standing constraints of conventional implants, such as poor osseointegration, low mechanical fixation, immunological rejection, and implant-related infections, nanotechnology is causing a revolution in the field of orthopedic research. NMs are ideally suited for orthopedic applications due to their exceptional features, including increased tribology, wear resistance, prolonged drug administration, and excellent tissue regeneration. Because of their nanoscale size, they can imitate the hierarchical structure of real bone, which in turn encourages the proliferation of cells, lowers the risk of infection, and helps with the mending of bone fractures. This article will investigate the wide-ranging possibilities of nanostructured ceramics, polymers, metals, and carbon materials in bone tissue engineering, diagnostics, and the treatment of implant-related infections, bone malignancies, and bone healing. In addition, this paper will provide a basic overview of the most recent discoveries in nanotechnology driving the future of translational orthopedic research. It will also highlight safety evaluations and regulatory requirements for orthopedic devices. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Clinical Reports)
Show Figures

Figure 1

17 pages, 4356 KiB  
Article
Impact of High-Concentration Biofuels on Cylinder Lubricating Oil Performance in Low-Speed Two-Stroke Marine Diesel Engines
by Enrui Zhao, Guichen Zhang, Qiuyu Li and Saihao Zhu
J. Mar. Sci. Eng. 2025, 13(6), 1189; https://doi.org/10.3390/jmse13061189 - 18 Jun 2025
Viewed by 1194
Abstract
With the implementation of the ISO 8217-2024 marine fuel standard, the use of high-concentration biofuels in ships has become viable. However, relatively few studies have been conducted on the effects of biofuels on cylinder lubrication performance in low-speed, two-stroke marine diesel engines. In [...] Read more.
With the implementation of the ISO 8217-2024 marine fuel standard, the use of high-concentration biofuels in ships has become viable. However, relatively few studies have been conducted on the effects of biofuels on cylinder lubrication performance in low-speed, two-stroke marine diesel engines. In this study, catering waste oil was blended with 180 cSt low-sulfur fuel oil (LSFO) to prepare biofuels with volume fractions of 24% (B24) and 50% (B50). These biofuels were evaluated in a MAN marine diesel engine under load conditions of 25%, 50%, 75%, and 90%. The experimental results showed that, at the same engine load, the use of B50 biofuel led to lower kinematic viscosity and oxidation degree of the cylinder residual oil, but higher total base number (TBN), nitration level, PQ index, and concentrations of wear elements (Fe, Cu, Cr, Mo). These results indicate that the wear of the cylinder liner–piston ring interface was more severe when using B50 biofuel than when using B24 biofuel. For the same type of fuel, as the engine load increased, the kinematic viscosity and TBN of the residual oil decreased, while the PQ index and the concentrations of Fe, Cu, Cr, and Mo increased, reflecting the aggravated wear severity. Ferrographic analysis further revealed that ferromagnetic wear particles in the oil mainly consisted of normal wear debris. When using B50 biodiesel, a small amount of fatigue wear particles were detected. These findings offer crucial insights for optimizing biofuel utilization and improving cylinder lubrication systems in marine engines. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 13959 KiB  
Article
Microstructural Evolution and Wear Resistance of Silicon-Containing FeNiCrAl0.7Cu0.3Six High-Entropy Alloys
by Junhong Li, Xuebing Han, Jiaxin Liu, Xu Wang and Yanzhou Li
Coatings 2025, 15(6), 676; https://doi.org/10.3390/coatings15060676 - 3 Jun 2025
Viewed by 534
Abstract
This study investigates the influence of Si content (x = 0, 0.1, 0.3, 0.5) on the microstructure, mechanical properties, and wear behavior of FeNiCrAl0.7Cu0.3Six high-entropy alloys. With increasing silicon content, the microstructure evolves from a dendritic morphology in [...] Read more.
This study investigates the influence of Si content (x = 0, 0.1, 0.3, 0.5) on the microstructure, mechanical properties, and wear behavior of FeNiCrAl0.7Cu0.3Six high-entropy alloys. With increasing silicon content, the microstructure evolves from a dendritic morphology in the silicon-free FeNiCrAl0.7Cu0.3 alloy to a transitional structure in the FeNiCrAl0.7Cu0.3Si0.1 alloy that retains dendritic features; then to a chrysanthemum-like morphology in the FeNiCrAl0.7Cu0.3Si0.3 alloy, and finally to island-like grains in the FeNiCrAl0.7Cu0.3Si0.5 alloy. This evolution is accompanied by a phase transition from an Fe and Cr-rich body-centered cubic phase to an Al and Ni-rich body-centered cubic phase, with silicon showing a tendency to segregate alongside aluminum and nickel. The microhardness increases from 498.2 ± 15.0 HV for the FeNiCrAl0.7Cu0.3 alloy, to 502.7 ± 32.7 HV for FeNiCrAl0.7Cu0.3Si0.1, 577.3 ± 24.5 HV for FeNiCrAl0.7Cu0.3Si0.3, and 863.2 ± 23.5 HV for FeNiCrAl0.7Cu0.3Si0.5. The average friction coefficients are 0.571, 0.551, 0.524, and 0.468, respectively. The wear mass decreases from 1.31 mg in the FeNiCrAl0.7Cu0.3 alloy to 1.28 mg, 1.11 mg, and 0.78 mg in the FeNiCrAl0.7Cu0.3Si0.1, FeNiCrAl0.7Cu0.3Si0.3, and FeNiCrAl0.7Cu0.3Si0.5 samples, respectively. These trends are consistent with the increase in microhardness, supporting the inverse relationship between hardness and wear. As the silicon content increases, the dominant wear mechanism changes from abrasive wear to adhesive wear, with the high-silicon alloy exhibiting lamellar debris on the worn surface. These findings confirm that silicon addition enhances microstructural refinement, mechanical strength, and wear resistance of the alloy system. Full article
Show Figures

Figure 1

13 pages, 4643 KiB  
Article
Optimizing Substrate Bias to Enhance the Microstructure and Wear Resistance of AlCrMoN Coatings via AIP
by Haoqiang Zhang, Jia Liu, Xiran Wang, Chengxu Wang, Haobin Sun, Hua Zhang, Tao Jiang, Hua Yu, Liujie Xu and Shizhong Wei
Coatings 2025, 15(6), 673; https://doi.org/10.3390/coatings15060673 - 1 Jun 2025
Viewed by 514
Abstract
In this work, arc ion plating (AIP) was employed to deposit AlCrMoN coatings on cemented carbide substrates, and the effects of substrate bias voltages (−80 V, −100 V, −120 V, and −140 V) on the microstructures, mechanical properties, and tribological behaviors of the [...] Read more.
In this work, arc ion plating (AIP) was employed to deposit AlCrMoN coatings on cemented carbide substrates, and the effects of substrate bias voltages (−80 V, −100 V, −120 V, and −140 V) on the microstructures, mechanical properties, and tribological behaviors of the coatings were investigated. The results showed that all AlCrMoN coatings exhibited a single-phase face-centered cubic (FCC) structure with columnar crystal growth and excellent adhesion to the substrate. As the negative bias voltage increased, the grain size of the coatings first decreased and then increased, while the hardness and elastic modulus showed a trend of first increasing and then decreasing, with the maximum hardness reaching 36.2 ± 1.33 GPa. Room-temperature ball-on-disk wear tests revealed that all four coatings demonstrated favorable wear resistance. The coating deposited at −100 V exhibited the lowest average friction coefficient of 0.47 ± 0.02 and wear rate ((3.27 ± 0.10) × 10−8 mm3/(N∙m)), featuring a smooth wear track with minimal oxide debris. During the steady-state wear stage, the dominant wear mechanisms of the AlCrMoN coatings were identified as oxidative wear combined with abrasive wear. Full article
Show Figures

Figure 1

13 pages, 2356 KiB  
Article
Tribological Performance of High-Density Polyethylene (HDPE) and Recycled Polyvinyl Butyral (PVB) Blends During Pin-on-Disk Tests
by Scarlette Alejo-Martínez, Ulises Figueroa-López and Andrea Guevara-Morales
Polymers 2025, 17(11), 1512; https://doi.org/10.3390/polym17111512 - 29 May 2025
Viewed by 502
Abstract
High-density polyethylene (HDPE) is a widely used thermoplastic known for its chemical resistance and ease of processing, but it has limited wear performance and moderate mechanical properties. In this study, recycled polyvinyl butyral (rPVB) was incorporated into HDPE at 5, 10, 15, and [...] Read more.
High-density polyethylene (HDPE) is a widely used thermoplastic known for its chemical resistance and ease of processing, but it has limited wear performance and moderate mechanical properties. In this study, recycled polyvinyl butyral (rPVB) was incorporated into HDPE at 5, 10, 15, and 20 wt.% to evaluate its effect on tribological performance. Pin-on-disk wear tests were conducted at 12, 15, and 18 N to assess the coefficient of friction (CoF) and wear resistance. Mean CoF values decreased by up to 40% with rPVB addition, with the best performance observed at 15 wt.% rPVB, although some variation was observed across replicates. SEM analysis revealed that rPVB promotes finer debris and transfer film formation, explaining the CoF reduction. However, wear resistance exhibited a complex trend: while rPVB improved adhesion and reduced material loss at lower loads, volume loss increased at higher loads, likely due to rPVB’s lower hardness. Mechanical testing showed an increase in elastic modulus at low rPVB contents due to higher crystallinity, confirmed by DSC; however, tensile strength and impact resistance decreased with rPVB. The results suggest that incorporating 10–15 wt.% of rPVB into HDPE can enhance frictional performance without severely compromising mechanical integrity, offering a sustainable way to valorize rPVB. Full article
Show Figures

Figure 1

14 pages, 4846 KiB  
Article
Study of Corrosion, Power Consumption, and Wear Characteristics of Herringbone-Grooved Fan Bearings in High-Temperature and High-Humidity Environments
by Jim-Chwen Yeh, Yu-Chang Lee, Chun-Hsiang Huang, Ming-Yuan Li and Chin-Chung Wei
Lubricants 2025, 13(6), 245; https://doi.org/10.3390/lubricants13060245 - 28 May 2025
Viewed by 591
Abstract
Fans are essential electronic components for heat dissipation in electronic systems, with fan bearings being critical parts that determine fan performance and lifespan. This paper investigates the corrosion, wear, power consumption, temperature, and vibration characteristics of a newly designed and manufactured powder metallurgy [...] Read more.
Fans are essential electronic components for heat dissipation in electronic systems, with fan bearings being critical parts that determine fan performance and lifespan. This paper investigates the corrosion, wear, power consumption, temperature, and vibration characteristics of a newly designed and manufactured powder metallurgy bearing with herringbone oil grooves for fans under high-humidity and high-temperature conditions. Corrosion experiments on iron–copper powder metallurgy bearings show that a higher environmental temperature and humidity result in greater corrosion current and reduced corrosion resistance. Bearings operated under high humidity (85% RH) and a high temperature (80 °C) for 0, 3, and 8 days, respectively, revealed that wear and corrosion occur simultaneously. The longer the operating time, the more significant the wear and corrosion. After 3 and 8 days, the lubricating oil flow in the oil grooves decreased by 9.8% and 51.5%, respectively. When bearings subjected to varying degrees of corrosion were tested under the same standard operating conditions, it was found that the bearings corroded for 3 and 8 days, resulting in a significant increase in the number of wear debris particles, higher RMS vibration values, and a power consumption increase of 6.9% and 7.8%, respectively. The percentage of iron elements on the surface gradually decreased, with the copper elements being the primary wear particles during the wear process. However, due to the increased clearance between the rotating shaft and the bearing caused by wear, the fan temperature slightly decreased with increased surface wear. Full article
(This article belongs to the Special Issue Recent Advances in Tribological Properties of Machine Tools)
Show Figures

Figure 1

Back to TopTop