Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = daf-2(e1370)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3832 KiB  
Article
Novel Probiotic Strain Lactiplantibacillus plantarum CNTA 628 Modulates Lipid Metabolism and Improves Healthspan in C. elegans
by Ignacio Goyache, Lorena Valdés-Varela, Raquel Virto, Miguel López-Yoldi, Noelia López-Giral, Ana Sánchez-Vicente, Fermín I. Milagro and Paula Aranaz
Appl. Sci. 2025, 15(14), 8007; https://doi.org/10.3390/app15148007 - 18 Jul 2025
Viewed by 145
Abstract
The call for new approaches to prevent and treat metabolic syndrome-related diseases has led to research on the use of lacto-fermentative probiotics with beneficial metabolic properties like Lactobacilli. Here, we characterize the probiotic properties of a novel strain, Lactiplantibacillus plantarum CNTA 628, [...] Read more.
The call for new approaches to prevent and treat metabolic syndrome-related diseases has led to research on the use of lacto-fermentative probiotics with beneficial metabolic properties like Lactobacilli. Here, we characterize the probiotic properties of a novel strain, Lactiplantibacillus plantarum CNTA 628, and investigate its potential anti-obesity and health-promoting activities in the Caenorhabditis elegans model, additionally elucidating the molecular mechanisms involved. Lactiplantibacillus plantarum CNTA 628 exhibited sensitivity to the entire spectrum of antibiotics analyzed, gastric and intestinal resistance in vitro, β-galactosidase and bile-salt hydrolysate activities, and the capacity to form biofilms and produce SCFAs. In addition, it reduced the binding of the pathogenic E. coli O157:H7 to intestinal epithelial cells (Caco-2) and exerted immune-modulating effects in cellular models. Supplementation with this probiotic significantly reduced C. elegans fat accumulation by more than 18% under control and high-glucose conditions, lowered senescence, improved oxidative stress, and significantly enhanced lifespan without affecting the development of the worms. Gene expression analyses evidenced that L. plantarum CNTA 628 plays a role in regulating daf-22 and maoc-1 gene expression, both linked to beta-oxidation pathways. Our results demonstrate the health-benefiting properties of this novel strain and suggest its potential as probiotic candidate for the prevention and treatment of metabolic syndrome-related conditions. Full article
(This article belongs to the Special Issue Probiotics, Prebiotics, Postbiotics: From Mechanisms to Applications)
Show Figures

Figure 1

19 pages, 1851 KiB  
Article
Industrial-Scale Wastewater Nano-Aeration and -Oxygenation and Dissolved Air Flotation: Electric Field Nanobubble and Machine Learning Approaches to Enhanced Nano-Aeration and Flotation
by Niall J. English
Environments 2025, 12(7), 228; https://doi.org/10.3390/environments12070228 - 5 Jul 2025
Viewed by 573
Abstract
Substantial boosts in the low-energy nano-oxygenation of incoming process water were achieved at a municipal wastewater treatment plant (WWTP) upstream of activated sludge (AS) aeration lanes on a single-pass basis by means of an electric field nanobubble (NB) generation method (with unit residence [...] Read more.
Substantial boosts in the low-energy nano-oxygenation of incoming process water were achieved at a municipal wastewater treatment plant (WWTP) upstream of activated sludge (AS) aeration lanes on a single-pass basis by means of an electric field nanobubble (NB) generation method (with unit residence times of the order of just 10–15 s). Both ambient air and O2 cylinders were used as gas sources. In both cases, it was found that the levels of dissolved oxygen (DO) were maintained far higher for much longer than those of conventionally aerated water in the AS lane—and at DO levels in the optimal operational WWTP oxygenation zone of about 2.5–3.5 mg/L. In the AS lanes themselves, there were also excellent conversions to nitrate from nitrite, owing to reactive oxygen species (ROS) and some improvements in BOD and E. coli profiles. Nanobubble-enhanced Dissolved Air Flotation (DAF) was found to be enhanced at shorter times for batch processes: settlement dynamics were slowed slightly initially upon contact with virgin NBs, although the overall time was not particularly affected, owing to faster settlement once the recruitment of micro-particulates took place around the NBs—actually making density-filtering ultimately more facile. The development of machine learning (ML) models predictive of NB populations was carried out in laboratory work with deionised water, in addition to WWTP influent water for a second class of field-oriented ML models based on a more narrow set of more easily and quickly measured data variables in the field, and correlations were found for a more facile prediction of important parameters, such as the NB generation rate and the particular dependent variable that is required to be correlated with the efficient and effective functioning of the nanobubble generator (NBG) for the task at hand—e.g., boosting dissolved oxygen (DO) or shifting Oxidative Reductive Potential (ORP). Full article
Show Figures

Figure 1

14 pages, 3920 KiB  
Article
Expression Analysis of Citrate Metabolism-Related Genes Reveals New Insights into High Citrate Accumulation in a Bingtang Orange Bud Mutant (Citrus sinensis cv. Jinyan)
by Lingxia Guo, Syed Bilal Hussain, Lei Tang, Jian Han, Wei Liao, Tie Zhou, Fei Liu, Congtian Wang, Yuanyuan Xu and Peng Chen
Horticulturae 2025, 11(6), 616; https://doi.org/10.3390/horticulturae11060616 - 31 May 2025
Viewed by 448
Abstract
Understanding the molecular regulation of citric acid accumulation in citrus fruits is crucial, as acidity directly influences fruit flavor, consumer preference, and commercial value. Citric acid is the predominant organic acid in citrus, and its levels are shaped by several factors, including genetic [...] Read more.
Understanding the molecular regulation of citric acid accumulation in citrus fruits is crucial, as acidity directly influences fruit flavor, consumer preference, and commercial value. Citric acid is the predominant organic acid in citrus, and its levels are shaped by several factors, including genetic and developmental factors. ‘Jinyan’ Bingtang orange (Citrus sinensis cv. Jinyan) is a novel mutant derived from ‘Jinhong’ Bingtang orange (C. sinensis cv. Jinhong) that has a noticeably sour taste. However, the molecular basis of the increased citrate content in ‘Jinyan’ fruits remains unclear. This study compared the organic acid profiles and expression of citric acid metabolism-related genes between ‘Jinyan’ and ‘Jinhong’ fruit juice sacs throughout fruit development. The trend of citric acid content in both cultivars was similar; however, ‘Jinyan’ consistently presented significantly higher levels than ‘Jinhong’ did from 95 to 215 days after flowering (DAF). After 155 DAF, the transcript levels of citrate biosynthesis-related genes (PEPC1, PEPC2, PEPC3, CS1, and CS2) and citrate transport-related genes (V1-E1, V1-E2, V0-a2, V0-d, VHP1, VHP2, and CsPH8) were significantly greater in ‘Jinyan’ than in ‘Jinhong’. In contrast, citrate degradation-related genes (NAD-IDH2 and NAD-IDH3) were expressed at lower levels than in ‘Jinhong’. Notably, the expression patterns of V1-E2 and CsPH8 closely matched the changes in citrate content in both cultivars. These results indicate that, compared with ‘Jinhong’, high citric acid accumulation in the juice sacs of ‘Jinyan’ fruit is likely due to increased citrate synthesis (via upregulated PEPCs and CSs) and increased vacuolar citrate sequestration (via upregulated proton pumps and transporters), coupled with reduced citrate degradation (lower NAD-IDH2/3). Full article
(This article belongs to the Special Issue Citrus Plant Growth and Fruit Quality)
Show Figures

Figure 1

14 pages, 1429 KiB  
Article
Long-Term Exposure to 6-PPD Quinone Inhibits Glutamate Synthesis and Glutamate Receptor Function Associated with Its Toxicity Induction in Caenorhabditis elegans
by Wei Wang, Yunhui Li and Dayong Wang
Toxics 2025, 13(6), 434; https://doi.org/10.3390/toxics13060434 - 26 May 2025
Cited by 1 | Viewed by 590
Abstract
6-PPD quinone (6-PPDQ) is widely distributed in environments. In Caenorhabditis elegans, we first examined the effects of 6-PPDQ on glutamate synthesis and receptor function by analyzing glutamate content, related gene expression, and phenotypes after RNAi of these genes. Moreover, we performed glutamate [...] Read more.
6-PPD quinone (6-PPDQ) is widely distributed in environments. In Caenorhabditis elegans, we first examined the effects of 6-PPDQ on glutamate synthesis and receptor function by analyzing glutamate content, related gene expression, and phenotypes after RNAi of these genes. Moreover, we performed glutamate treatment after 6-PPDQ exposure to determine the potential pharmacological effects of glutamate against 6-PPDQ toxicity. After exposure, the glutamate content was reduced by 0.1–10 μg/L 6-PPDQ, which was due to decreased expression of W07E1.1, glna-1/2/3, and alh-6 governing glutamate synthesis from α-ketoglutarate, glutamine, and proline. RNAi of W07E1.1, glna-1/2/3, and alh-6 decreased glutamate content in 6-PPDQ-exposed nematodes, and caused susceptibility to 6-PPDQ toxicity. Among glutamate transporter genes, glt-1 expression was decreased by 0.1–10 μg/L 6-PPDQ. Moreover, 0.1–10 μg/L 6-PPDQ decreased glutamate receptor genes (glr-1, glr-2, and glr-4), and their expression was decreased by RNAi of W07E1.1, glna-1/2/3, alh-6, and glt-1. RNAi of these receptor genes resulted in susceptibility to 6-PPDQ toxicity, and daf-7, jnk-1, and dbl-1 were identified as targets of neuronal glr-1, glr-2, and glr-4. Furthermore, 5 mM glutamate suppressed 6-PPDQ toxicity and increased expression of glr-1, glr-2, and glr-4. Our results demonstrated the risk of 6-PPDQ exposure in disrupting glutamate synthesis and affecting function of glutamate receptors, which was related to 6-PPDQ toxicity induction. Full article
Show Figures

Figure 1

19 pages, 9503 KiB  
Article
Performance Evaluation of Current Design Models in Predicting Shear Resistance of UHPC Girders
by Ahmad Tarawneh, Hadeel Amirah, Abdullah Alghossoon, Ghassan Almasabha, Ra’ed Al-Mazaidh and Eman Saleh
J. Compos. Sci. 2025, 9(5), 211; https://doi.org/10.3390/jcs9050211 - 27 Apr 2025
Viewed by 345
Abstract
This manuscript delivers a comprehensive evaluation of five different ultra-high-performance concrete (UHPC) shear resistance models: FHWA-HRT-23-077 (2023), ePCI report (2021), French Standard NF-P-18-710 (2016), Canadian Standards A23.3-04 (2004), and Modified Eurocode2/German DAfStb (2023). The models differ in accounting for the steel fiber and [...] Read more.
This manuscript delivers a comprehensive evaluation of five different ultra-high-performance concrete (UHPC) shear resistance models: FHWA-HRT-23-077 (2023), ePCI report (2021), French Standard NF-P-18-710 (2016), Canadian Standards A23.3-04 (2004), and Modified Eurocode2/German DAfStb (2023). The models differ in accounting for the steel fiber and shear reinforcement contribution and determining the angle of inclination of the diagonal compression strut. The evaluation was carried out using an experimental database of 198 UHPC specimens and focused on accuracy, conservatism, and ease of use for each considered model. The database included beams with prestressed and steel reinforcement, different shear reinforcement ratios, and a wide range of geometrical and material properties. In order to apply the FHWA method, a utilization tensile stress (ft,loc) prediction equation was developed. Generally, the FHWA method showed superior performance to the other models in terms of statistical measures and consistent prediction conservatism across variable ranges. Although the ePCI methods yielded the highest conservatism, it can be said that the ePCI, AFGC, and CSA methods showed similar behavior with different degrees of conservatism. The DAfStb method showed the lowest prediction accuracy and the greatest scatter of data. Except for the FHWA method, all methods showed a reduction in conservatism at a high transverse reinforcement ratio. Full article
Show Figures

Figure 1

22 pages, 12224 KiB  
Article
Unlocking the Potential of Curcumae Rhizoma Aqueous Extract in Stress Resistance and Extending Lifespan in Caenorhabditis elegans
by Linyao Jing, Yanlin Zhao, Lijun Jiang, Fei Song, Lu An, Edmund Qi, Xueqi Fu, Jing Chen and Junfeng Ma
Molecules 2025, 30(8), 1668; https://doi.org/10.3390/molecules30081668 - 8 Apr 2025
Viewed by 596
Abstract
The enhancement of stress resistance is crucial for delaying aging and extending a healthy lifespan. Traditional Chinese medicine (TCM), a cherished treasure of Chinese heritage, has shown potential in mitigating stress and promoting longevity. This study integrates network pharmacology and in vivo analysis [...] Read more.
The enhancement of stress resistance is crucial for delaying aging and extending a healthy lifespan. Traditional Chinese medicine (TCM), a cherished treasure of Chinese heritage, has shown potential in mitigating stress and promoting longevity. This study integrates network pharmacology and in vivo analysis to investigate the mechanisms and effects of Curcumae Rhizoma (C. Rhizoma), known as “E Zhu” in Chinese. Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry (UPLC-MS/MS) identified 10 active compounds in its aqueous extract, interacting with 128 stress-related targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed pathways such as stress response, FoxO signaling, and insulin resistance. In Caenorhabditis elegans, 10 mg/mL of C. Rhizoma aqueous extract improved resistance to UV, thermal, oxidative, and pathogen-induced stress, extending lifespan in a dose-dependent manner. Mechanistically, it reduced reactive oxygen species (ROS), increased superoxide dismutase (SOD) activity, and enhanced UV resistance via the insulin/IGF-1 pathway and DAF-16 translocation. Molecular docking highlighted hexahydrocurcumin (HHC) and related compounds as key bioactives. Furthermore, we also observed that C. Rhizoma aqueous extract significantly extended both the lifespan and healthspan of nematodes. These findings highlight the potential of C. Rhizoma in stress mitigation and longevity promotion, offering valuable insights into the therapeutic applications of TCM. Full article
(This article belongs to the Special Issue Bioactivity of Natural Compounds: From Plants to Humans)
Show Figures

Figure 1

23 pages, 2740 KiB  
Article
Anti-Obesity Properties of a Novel Probiotic Strain of Latilactobacillus sakei CNTA 173 in Caenorhabditis elegans
by Ignacio Goyache, Lorena Valdés-Varela, Raquel Virto, Miguel López-Yoldi, Noelia López-Giral, Ana Sánchez-Vicente, Fermín I. Milagro and Paula Aranaz
Int. J. Mol. Sci. 2025, 26(7), 3286; https://doi.org/10.3390/ijms26073286 - 1 Apr 2025
Cited by 1 | Viewed by 899
Abstract
Probiotic strains with health-promoting activities have emerged as a promising strategy to prevent or treat different metabolic syndrome-related disturbances, including obesity or type 2 diabetes. In this work, we characterize the probiotic properties of a novel strain of Latilactobacillus sakei (L. sakei [...] Read more.
Probiotic strains with health-promoting activities have emerged as a promising strategy to prevent or treat different metabolic syndrome-related disturbances, including obesity or type 2 diabetes. In this work, we characterize the probiotic properties of a novel strain of Latilactobacillus sakei (L. sakei) CNTA 173, and we demonstrate its anti-obesity properties using the in vivo model Caenorhabditis elegans (C. elegans). This new strain exhibited sensitivity to the entire spectrum of antibiotics analysed, gastric and intestinal in vitro resistance, β-galactosidase activity, and the ability to form biofilm and to produce acetic acid in vitro. Cell culture analyses demonstrated that L. sakei CNTA 173 was able to reduce the adhesion to Caco-2 cells of the pathogenic E. coli O157:H7 and to exert immunomodulatory capacity in RAW 264.7 and HT-29 in vitro models. Furthermore, supplementation with L. sakei CNTA 173 counteracted the deleterious effects of glucose in C. elegans by significantly reducing fat accumulation, enhancing the oxidative stress response, and extending lifespan by directly regulating the carbohydrate and lipid metabolism-related genes acox-1, maoc-1, and daf-16. Our results unveil new strain-specific mechanisms of action by which L. sakei CNTA 173 exerts beneficial effects in vitro and in C. elegans, and suggest potential application of this novel probiotic strain in the prevention and treatment of metabolic syndrome-related disturbances. Full article
(This article belongs to the Special Issue C. elegans as a Disease Model: Molecular Perspectives: 2nd Edition)
Show Figures

Figure 1

18 pages, 3245 KiB  
Article
Weizmannia coagulans BC99 Attenuates Oxidative Stress Induced by Acute Alcoholic Liver Injury via Nrf2/SKN-1 Pathway and Liver Metabolism Regulation
by Ying Wu, Cheng Li, Yinyin Gao, Jie Zhang, Yao Dong, Lina Zhao, Yuwan Li and Shaobin Gu
Antioxidants 2025, 14(1), 117; https://doi.org/10.3390/antiox14010117 - 20 Jan 2025
Cited by 1 | Viewed by 1418
Abstract
Acute alcoholic liver injury (AALI) remains a significant global health concern, primarily driven by oxidative stress. This study investigated the protective mechanisms of Weizmannia coagulans BC99 against alcohol-induced oxidative stress using a dual model in rats and Caenorhabditis elegans. In rats, excessive alcohol [...] Read more.
Acute alcoholic liver injury (AALI) remains a significant global health concern, primarily driven by oxidative stress. This study investigated the protective mechanisms of Weizmannia coagulans BC99 against alcohol-induced oxidative stress using a dual model in rats and Caenorhabditis elegans. In rats, excessive alcohol was predominantly metabolized via the CYP2E1 pathway, leading to severe oxidative stress. However, intervention with BC99 suppressed CYP2E1 expression and enhanced antioxidant enzyme activities through the Nrf2/SKN-1 pathway, thereby alleviating oxidative stress. Additionally, BC99 treatment elevated glutamate and aspartate levels while reducing glycerate and glucose, which collectively increased glutathione levels and mitigated oxidative stress triggered by glucose metabolism disorders. In C. elegans, BC99 reduced excessive ROS by upregulating Nrf2/skn-1, daf-16, and their downstream antioxidant genes, consequently alleviating the biotoxicity associated with alcohol-induced oxidative damage. The protective effects of BC99 were markedly diminished in the skn-1 mutant (GR2245) and daf-16 mutant (CF1038), further confirming the pivotal roles of SKN-1 and DAF-16 pathways in BC99-mediated antioxidant protection. Taken together, these findings reveal that BC99 mitigates alcohol-induced oxidative stress by activating the Nrf2/SKN-1 pathway and regulating liver metabolites to eliminate excess ROS, thereby providing a theoretical basis for the application of probiotics in preventing acute alcoholic liver injury. Full article
(This article belongs to the Special Issue Alcohol-Induced Oxidative Stress in Health and Disease, 2nd Edition)
Show Figures

Figure 1

13 pages, 2256 KiB  
Article
Risk and Pollutant Protective Concentration Levels of Drilling Waste Used to Pave Oil and Gas Field Well Sites
by Jinzhong Yang, Yufei Yang, Lu Tian, Jinliang Zhou and Yiou Wang
Water 2025, 17(1), 30; https://doi.org/10.3390/w17010030 - 26 Dec 2024
Cited by 1 | Viewed by 646
Abstract
Paving oil and gas field well sites of drilling waste allow us to reuse solid waste. However, to keep the risk within acceptable limits, some questions need to be answered: what is the dilution effect that soil and groundwater have on the transport [...] Read more.
Paving oil and gas field well sites of drilling waste allow us to reuse solid waste. However, to keep the risk within acceptable limits, some questions need to be answered: what is the dilution effect that soil and groundwater have on the transport of pollutants? What is the minimum concentration of pollutants leached from drill wastes? In this study, we focus on the paving of well sites using drilling wastes, and we analyze the pollutant migration pattern in the soil vadose zone and groundwater mixing zone after rainwater leaching. The drilling waste pollutant protective concentration level (PCL) and the corresponding dilution attenuation factor (DAF) were then proposed. In addition, the PCL’s accessibility, uncertainty, and environmental significance were further analyzed. It was found that the pollutant dilution factor (DF) of the groundwater mixed zone was strongly influenced by the thickness of the mixed zone, the groundwater Darcy rate, the length of the contaminant source, and the permeability, and each contributed approximately 25%. The soil vadose zone attenuation factor (AF) was primarily influenced by the soil vadose zone (i.e., groundwater depth) thickness that contributed approximately 53%. The contaminant DAF values of the well site drilling waste paving (e.g., the soil vadose zone thickness ranged from 5 to 30 m) ranged from 12 to 84. Additionally, the PCL values of the contaminants ranged from 12 to 84 times of the acceptable concentration (e.g., the Class III permissible limits of the Groundwater Quality Standards GB/T 14848-2017) at the groundwater compliance point. The expression for the exponential relationship between the DAF or PLC and the depth of the soil vadose zone was also provided in this study. The study results provide a reference for the actual process of the use of drilling wastes to pave well sites and for solid waste treatment or soil remediation decision-making and the associated risk assessment procedures. Full article
(This article belongs to the Special Issue Management of Solid Waste and Landfill Leachate)
Show Figures

Figure 1

13 pages, 1915 KiB  
Article
Erucin, a Natural Isothiocyanate, Prevents Polyglutamine-Induced Toxicity in Caenorhabditis elegans via aak-2/AMPK and daf-16/FOXO Signaling
by Martina Balducci, Julia Tortajada Pérez, Cristina Trujillo del Río, Mar Collado Pérez, Andrea del Valle Carranza, Ana Pilar Gomez Escribano, Rafael P. Vázquez-Manrique and Andrea Tarozzi
Int. J. Mol. Sci. 2024, 25(22), 12220; https://doi.org/10.3390/ijms252212220 - 14 Nov 2024
Cited by 3 | Viewed by 1477
Abstract
Several neurodegenerative diseases (NDDs), such as Huntington’s disease, six of the spinocerebellar ataxias, dentatorubral-pallidoluysian atrophy, and spinobulbar muscular atrophy, are caused by abnormally long polyglutamine (polyQ) tracts. Natural compounds capable of alleviating polyQ-induced toxicity are currently of great interest. In this work, we [...] Read more.
Several neurodegenerative diseases (NDDs), such as Huntington’s disease, six of the spinocerebellar ataxias, dentatorubral-pallidoluysian atrophy, and spinobulbar muscular atrophy, are caused by abnormally long polyglutamine (polyQ) tracts. Natural compounds capable of alleviating polyQ-induced toxicity are currently of great interest. In this work, we investigated the modulatory effect against polyQ neurotoxic aggregates exerted by erucin (ERN), an isothiocyanate naturally present in its precursor glucoerucin in rocket salad leaves and in its oxidized form, sulforaphane (SFN), in broccoli. Using C. elegans models expressing polyQ in different tissues, we demonstrated that ERN protects against polyQ-induced toxicity and that its action depends on the catalytic subunit of AMP-activated protein kinase (aak-2/AMPKα2) and, downstream in this pathway, on the daf-16/FOXO transcription factor, since nematodes deficient in aak-2/AMPKα2 and daf-16 did not respond to the treatment, respectively. Although triggered by a different source of neurotoxicity than polyQ diseases, i.e., by α-synuclein (α-syn) aggregates, Parkinson’s disease (PD) was also considered in our study. Our results showed that ERN reduces α-syn aggregates and slightly improves the motility of worms. Therefore, further preclinical studies in mouse models of protein aggregation are justified and could provide insights into testing whether ERN could be a potential neuroprotective compound in humans. Full article
Show Figures

Graphical abstract

13 pages, 5343 KiB  
Article
Activation of G Protein-Coupled Estrogen Receptor (GPER) Negatively Modulates Cardiac Excitation–Contraction Coupling (ECC) through the PI3K/NOS/NO Pathway
by Leandro A. Diaz-Zegarra, María S. Espejo, Alejandro M. Ibañez, Mónica E. Rando, Lucia E. Pagola, Verónica C. De Giusti and Ernesto A. Aiello
Int. J. Mol. Sci. 2024, 25(16), 8993; https://doi.org/10.3390/ijms25168993 - 19 Aug 2024
Cited by 1 | Viewed by 2055
Abstract
The G-protein-coupled estrogen receptor (GPER) has been described to exert several cardioprotective effects. However, the exact mechanism involved in cardiac protection remains unclear. The aim of this study is to investigate the role of GPER activation on excitation–contraction coupling (ECC) and the possibility [...] Read more.
The G-protein-coupled estrogen receptor (GPER) has been described to exert several cardioprotective effects. However, the exact mechanism involved in cardiac protection remains unclear. The aim of this study is to investigate the role of GPER activation on excitation–contraction coupling (ECC) and the possibility that such effect participates in cardioprotection. The cardiac myocytes of male Wistar rats were isolated with a digestive buffer and loaded with Fura-2-AM for the measurement of intracellular calcium transient (CaT). Sarcomere shortening (SS) and L-type calcium current (ICaL) were also registered. The confocal technique was used to measure nitric oxide (NO) production in cells loaded with DAF-FM-diacetate. Cardiac myocytes exposed to 17-β-estradiol (E2, 10 nM) or G-1 (1 μM) for fifteen minutes decreased CaT, SS, and ICaL. These effects were prevented using G-36 (antagonist of GPER, 1 μM), L-Name (NO synthase -NOS- inhibitor, 100 nM), or wortmannin (phosphoinositide-3-kinase -PI3K- inhibitor, 100 nM). Moreover, G1 increased NO production, and this effect was abolished in the presence of wortmannin. We concluded that the selective activation of GPER with E2 or G1 in the isolated cardiac myocytes of male rats induced a negative inotropic effect due to the reduction in ICaL and the decrease in CaT. Finally, the pathway that we proposed to be implicated in these effects is PI3K-NOS-NO. Full article
Show Figures

Figure 1

18 pages, 11065 KiB  
Article
Anoectochilus roxburghii Extract Extends the Lifespan of Caenorhabditis elegans through Activating the daf-16/FoxO Pathway
by Peng Xu, Jianfeng Wang, Junyi Wang, Xiaoxiao Hu, Wei Wang, Shengmin Lu and Yingkun Sheng
Antioxidants 2024, 13(8), 945; https://doi.org/10.3390/antiox13080945 - 2 Aug 2024
Cited by 1 | Viewed by 2003
Abstract
As a significant global issue, aging is prompting people’s interest in the potential anti-aging properties of Anoectochilus roxburghii (A. roxburghii), a plant traditionally utilized in various Asian countries for its purported benefits in treating diabetes and combating aging. However, the specific [...] Read more.
As a significant global issue, aging is prompting people’s interest in the potential anti-aging properties of Anoectochilus roxburghii (A. roxburghii), a plant traditionally utilized in various Asian countries for its purported benefits in treating diabetes and combating aging. However, the specific anti-aging components and mechanisms of A. roxburghii remain unclear. This study aims to investigate the anti-aging effects and mechanisms of A. roxburghii extract E (ARE). Caenorhabditis elegans (C. elegans) were exposed to media containing different concentrations of ARE whose superior in vitro radical scavenging capacity was thus identified. Lifespan assays, stress resistance tests, and RT-qPCR analyses were conducted to evaluate anti-aging efficacy, reactive oxygen species (ROS) levels, antioxidant enzyme activity, and daf-16, sod-3, and gst-4 levels. Additionally, transcriptomic and metabolomic analyses were performed to elucidate the potential anti-aging mechanisms of ARE. Fluorescence protein assays and gene knockout experiments were employed to validate the impacts of ARE on anti-aging mechanisms. Our results revealed that ARE not only prolonged the lifespan of C. elegans but also mitigated ROS and lipofuscin accumulation, and boosted resistance to UV and heat stress. Furthermore, ARE modulated the expression of pivotal anti-aging genes including daf-16, sod-3, and gst-4, facilitating the nuclear translocation of DAF-16. Significantly, ARE failed to extend the lifespan of daf-16-deficient C. elegans (CF1038), indicating its dependency on the daf-16/FoxO signaling pathway. These results underscored the effectiveness of ARE as a natural agent for enhancing longevity and stress resilience to C. elegans, potentially to human. Full article
Show Figures

Graphical abstract

19 pages, 3220 KiB  
Article
Exploring the Impact of French Raw-Milk Cheeses on Oxidative Process Using Caenorhabditis elegans and Human Leukocyte Models
by Anna Diet, Christophe Poix, Muriel Bonnet, Christian Coelho, Isabelle Ripoche, Caroline Decombat, Julien Priam, Etienne Saunier, Pierre Chalard, Stéphanie Bornes, Florence Caldefie-Chezet and Laurent Rios
Nutrients 2024, 16(12), 1862; https://doi.org/10.3390/nu16121862 - 13 Jun 2024
Cited by 2 | Viewed by 1290
Abstract
Fermented foods, including cheeses, have garnered increased interest in recent years for their potential health benefits. This study explores the biological properties of eight French raw-milk cheeses—goat cheese, Saint-Nectaire, Cantal, Bleu d’Auvergne, Roquefort, Comté, Brie de Meaux, and Epoisses—on oxidative processes using both [...] Read more.
Fermented foods, including cheeses, have garnered increased interest in recent years for their potential health benefits. This study explores the biological properties of eight French raw-milk cheeses—goat cheese, Saint-Nectaire, Cantal, Bleu d’Auvergne, Roquefort, Comté, Brie de Meaux, and Epoisses—on oxidative processes using both in vivo (Caenorhabditis elegans) and in vitro (human leukocytes) models. A cheese fractionation protocol was adapted to study four fractions for each cheese: a freeze-dried fraction (FDC) corresponding to whole cheese, an apolar (ApE), and two polar extracts (W40 and W70). We showed that all cheese fractions significantly improved Caenorhabditis elegans (C. elegans) survival rates when exposed to oxidative conditions by up to five times compared to the control, regardless of the fractionation protocol and the cheese type. They were also all able to reduce the in vivo accumulation of reactive oxygen species (ROS) by up to 70% under oxidative conditions, thereby safeguarding C. elegans from oxidative damage. These beneficial effects were explained by a reduction in ROS production up to 50% in vitro in human leukocytes and overexpression of antioxidant factor-encoding genes (daf-16, skn-1, ctl-2, and sod-3) in C. elegans. Full article
(This article belongs to the Special Issue Association between Diet and Oxidative Stress)
Show Figures

Figure 1

15 pages, 1500 KiB  
Article
A Cross-Sectional Study of Glomerular Hyperfiltration in Polycystic Ovary Syndrome
by Alexandra E. Butler, Walaa Lubbad, Shahzad Akbar, Eric S. Kilpatrick, Thozhukat Sathyapalan and Stephen L. Atkin
Int. J. Mol. Sci. 2024, 25(9), 4899; https://doi.org/10.3390/ijms25094899 - 30 Apr 2024
Cited by 2 | Viewed by 2185
Abstract
Glomerular hyperfiltration (GH) has been reported to be higher in women with polycystic ovary syndrome (PCOS) and is an independent risk factor for renal function deterioration, metabolic, and cardiovascular disease. The aim of this study was to determine GH in type A PCOS [...] Read more.
Glomerular hyperfiltration (GH) has been reported to be higher in women with polycystic ovary syndrome (PCOS) and is an independent risk factor for renal function deterioration, metabolic, and cardiovascular disease. The aim of this study was to determine GH in type A PCOS subjects and to identify whether inflammatory markers, markers of CKD, renal tubule injury markers, and complement system proteins were associated. In addition, a secondary cohort study was performed to determine if the eGFR had altered over time. In this comparative cross-sectional analysis, demographic, metabolic, and proteomic data from Caucasian women aged 18–40 years from a PCOS Biobank (137 with PCOS, 97 controls) was analyzed. Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement was undertaken for inflammatory proteins, serum markers of chronic kidney disease (CKD), tubular renal injury markers, and complement system proteins. A total of 44.5% of the PCOS cohort had GH (eGFR ≥ 126 mL/min/1.73 m2 (n = 55)), and 12% (n = 17) eGFR ≥ 142 mL/min/1.73 m2 (super-GH(SGH)). PCOS-GH women were younger and had lower creatinine and urea versus PCOS-nonGH. C-reactive protein (CRP), white cell count (WCC), and systolic blood pressure (SBP) were higher in PCOS versus controls, but CRP correlated only with PCOS-SGH alone. Complement protein changes were seen between controls and PCOS-nonGH, and decay-accelerator factor (DAF) was decreased between PCOS-nonGH and PCOS-GSGH (p < 0.05). CRP correlated with eGFR in the PCOS-SGH group, but not with other inflammatory or complement parameters. Cystatin-c (a marker of CKD) was reduced between PCOS-nonGH and PCOS-GSGH (p < 0.05). No differences in tubular renal injury markers were found. A secondary cohort notes review of the biobank subjects 8.2–9.6 years later showed a reduction in eGFR: controls −6.4 ± 12.6 mL/min/1.73 m2 (−5.3 ± 11.5%; decrease 0.65%/year); PCOS-nonGH −11.3 ± 13.7 mL/min/1.73 m2 (−9.7 ± 12.2%; p < 0.05, decrease 1%/year); PCOS-GH (eGFR 126–140 mL/min/17.3 m2) −27.1 ± 12.8 mL/min/1.73 m2 (−19.1 ± 8.7%; p < 0.0001, decrease 2%/year); PCOS-SGH (eGFR ≥ 142 mL/min/17.3 m2) −33.7 ± 8.9 mL/min/17.3 m2 (−22.8 ± 6.0%; p < 0.0001, decrease 3.5%/year); PCOS-nonGH eGFR versus PCOS-GH and PCOS-SGH, p < 0.001; no difference PCOS-GH versus PCOS-SGH. GH was associated with PCOS and did not appear mediated through tubular renal injury; however, cystatin-c and DAF were decreased, and CRP correlated positively with PCOS-SGH, suggesting inflammation may be involved at higher GH. There were progressive eGFR decrements for PCOS-nonGH, PCOS-GH, and PCOS-SGH in the follow-up period which, in the presence of additional factors affecting renal function, may be clinically important in the development of CKD in PCOS. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

12 pages, 3331 KiB  
Article
Full-Length Transcriptome of Camellia japonica (Naidong) Reveals Molecular Characteristics in Drought Stress
by Rui Zhou, Luyao Wang, Hongmei Tian, Xiao Guo, Xinqiang Jiang, Menglong Fan and Yingkun Sun
Horticulturae 2024, 10(2), 114; https://doi.org/10.3390/horticulturae10020114 - 24 Jan 2024
Cited by 4 | Viewed by 1739
Abstract
Camellia japonica (Naidong), a rare temperate arbor in the genus Camellia, is an ornamental plant with high economic value. To understand transcriptional changes of the drought response in C. japonica, a comparative transcriptome analysis of C. japonica (Naidong) was conducted at [...] Read more.
Camellia japonica (Naidong), a rare temperate arbor in the genus Camellia, is an ornamental plant with high economic value. To understand transcriptional changes of the drought response in C. japonica, a comparative transcriptome analysis of C. japonica (Naidong) was conducted at two drought stages (0 and 20 DAF) based on the PacBio platform. The results showed significant differences in 265 genes and 3383 lncRNAs. Of these, 150 were upregulated and 115 were downregulated. Functional analysis revealed the involvement of distinct genes in 43 pathways. The biosynthesis of amino acids and the circadian rhythm of the plant were significantly enriched, with a significant change in CjGST potentially playing an important role under drought stress. In addition, three differential protein interaction network modules composed of 45 differentially expressed genes were predicted, which involved E3 ubiquitin ligases and threonine synthetic proteins. Moreover, a transient expression experiment demonstrated that overexpression of CjGST1 in camellia leaves significantly increased leaf area compared to wild variants under drought stress, resulting in higher drought resistance. These findings provide a valuable resource for studying the genus Camellia while shedding new light on the molecular mechanisms of drought stress. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

Back to TopTop