Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,331)

Search Parameters:
Keywords = cytochrome p450 (CYP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10421 KB  
Article
CYPOR Variability as a Biomarker of Environmental Conditions in Bream (Abramis brama), Roach (Rutilus rutilus), Perch (Perca flavescens), and Pike-Perch (Sander lucioperca) from Lake Ladoga
by Vladimir Ponamarev, Olga Popova, Elena Semenova, Evgeny Mikhailov and Alexey Romanov
Vet. Sci. 2026, 13(1), 94; https://doi.org/10.3390/vetsci13010094 - 18 Jan 2026
Viewed by 58
Abstract
The fish liver, as the main detoxification organ, is highly susceptible to xenobiotic exposure, often resulting in various hepatopathies. The cytochrome P450 system plays a central role in xenobiotic metabolism, with cytochrome P450 reductase (CYPOR) supplying the electrons required for CYP enzyme activity. [...] Read more.
The fish liver, as the main detoxification organ, is highly susceptible to xenobiotic exposure, often resulting in various hepatopathies. The cytochrome P450 system plays a central role in xenobiotic metabolism, with cytochrome P450 reductase (CYPOR) supplying the electrons required for CYP enzyme activity. This study aimed to evaluate the relationship between the ecological state of a reservoir and fish health, including CYPOR levels, through hematological, bacteriological, and histological analyses. Samples of water and fish were collected from 12 littoral sites of Lake Ladoga. A total of 1360 specimens of fish from carp (Cyprinidae) and perch (Percidae) families were examined. For histological examination and CYPOR level determination, we selected 40 specimens using a blind randomization method. This sample size was sufficient for statistical analyses. Hematological smears were stained with azure eosin; bacteriological cultures were grown on multiple media; liver samples were stained with hematoxylin and eosin and Sudan III. CYPOR levels in liver homogenates were measured by ELISA-test. Physical and hydrochemical analyses indicated a high pollution level in the littoral zones. Isolated bacterial species were non-pathogenic but exhibited broad antibiotic resistance. Hematological evaluation revealed erythrocyte vacuolization and anisocytosis. Histological analysis showed marked fatty degeneration in hepatocytes, indicating toxic damage. CYPOR concentrations ranged from 0.3–0.4 ng/mL in healthy fish to 5–6 ng/mL in exposed specimens, showing strong correlation between environmental influence and enzyme activity. These findings demonstrate the potential of CYPOR as a sensitive biomarker for biomonitoring programs. The integrated methodological approach provides a model for assessing aquatic ecosystem health and identifying zones requiring priority remediation. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
Show Figures

Figure 1

15 pages, 108518 KB  
Review
From Sunlight to Signaling: Evolutionary Integration of Vitamin D and Sterol Metabolism
by Marianna Raczyk and Carsten Carlberg
Metabolites 2026, 16(1), 74; https://doi.org/10.3390/metabo16010074 - 14 Jan 2026
Viewed by 214
Abstract
Background/Objectives: This review integrates evolutionary, metabolic, genetic, and nutritional perspectives to explain how sterol-derived vitamin D pathways shape human physiology and inter-individual variability in vitamin D status. Methods: The literature on sterol and vitamin D metabolism across animals, plants, fungi, and algae was [...] Read more.
Background/Objectives: This review integrates evolutionary, metabolic, genetic, and nutritional perspectives to explain how sterol-derived vitamin D pathways shape human physiology and inter-individual variability in vitamin D status. Methods: The literature on sterol and vitamin D metabolism across animals, plants, fungi, and algae was synthesized with data from metabolomics databases, genome-wide association studies, RNA-seq resources (including GTEx), structural biology, and functional genomics. Results: Vitamin D2 and vitamin D3 likely emerged early in evolution as non-enzymatic photochemical sterol derivatives and were later co-opted into a tightly regulated endocrine system in vertebrates. In humans, cytochrome P450 enzymes coordinate vitamin D activation and degradation and intersect with oxysterol production, thereby linking vitamin D signaling to cholesterol and bile acid metabolism. Tissue-specific gene expression and regulatory genetic variants, particularly in the genes DHCR7, CYP2R1, CYP27B1, and CYP27A1, contribute to population-level differences in vitamin D status and metabolic outcomes. Structural analyses reveal selective, high-affinity binding of 1,25-dihydroxyvitamin D3 to VDR, contrasted with broader, lower-affinity ligand recognition by LXRs. Dietary patterns modulate nuclear receptor signaling through distinct yet convergent ligand sources, including cholesterol-derived oxysterols, oxidized phytosterols, and vitamin D2 versus vitamin D3. Conclusions: Sterol and vitamin D metabolism constitute an evolutionarily conserved, adaptable network shaped by UV exposure, enzymatic control, genetic variation, and diet. This framework explains inter-individual variability in vitamin D biology and illustrates how evolutionary and dietary modulation of sterol-derived ligands confers functional flexibility to nuclear receptor signaling in human health. Full article
(This article belongs to the Special Issue Vitamin D Metabolism and Human Health)
Show Figures

Figure 1

23 pages, 2220 KB  
Article
Amaryllidaceae Alkaloids and Phenolic Acids Identification in Leucojum aestivum L. Plant Cultures Exposed to Different Temperature Conditions
by Agata Ptak, Marzena Warchoł, Emilia Morańska, Dominique Laurain-Mattar, Rosella Spina, François Dupire, Piotr Waligórski and Magdalena Simlat
Molecules 2026, 31(2), 258; https://doi.org/10.3390/molecules31020258 - 12 Jan 2026
Viewed by 222
Abstract
Amaryllidaceae alkaloids are of notable pharmacological relevance. For instance, galanthamine is used in the treatment of Alzheimer’s disease, while other alkaloids (lycorine, crinine, etc.) derived from Amaryllidaceae plants are also of great interest because they exhibit antitumour, antiviral, antibacterial, antifungal, antimalarial, analgesic and [...] Read more.
Amaryllidaceae alkaloids are of notable pharmacological relevance. For instance, galanthamine is used in the treatment of Alzheimer’s disease, while other alkaloids (lycorine, crinine, etc.) derived from Amaryllidaceae plants are also of great interest because they exhibit antitumour, antiviral, antibacterial, antifungal, antimalarial, analgesic and cytotoxic properties. Phenolic acids comprise a group of natural bioactive substances that have commercial value in the cosmetic, food and medicinal industries due to their antioxidant, anticancer, anti-inflammatory and cardioprotective potential. In the present study, the effect of temperature (15, 20, 25 and 30 °C) on Amaryllidaceae alkaloid and phenolic acid biosynthesis in Leucojum aestivum in vitro plant cultures was investigated. The highest diversity of alkaloids (i.e., galanthamine, crinan-3-ol, demethylmaritidine, crinine, 11-hydroxyvitattine, lycorine, epiisohaemanthamine, chlidanthine) was noted in plants cultured at 30 °C. By contrast, ismine and tazettine were only present in plants cultured at 15 °C. Temperatures of 20 °C and 30 °C were found to stimulate galanthamine accumulation. The highest lycorine content was noted in plants grown at temperatures of 15 and 30 °C, and it was negatively correlated with the expression of the gene that encodes the cytochrome P450 96T (CYP96T) enzyme which catalyses a key step in the biosynthesis of different types of Amaryllidaceae alkaloids. This observation may reflect temperature-induced shifts in metabolic flux among different branches of Amaryllidaceae alkaloid biosynthesis. The observed stimulating effect of a 15 °C temperature on the chlorogenic, caffeic, p-coumaric, sinapic, ferulic and isoferulic acid content was in line with the highest expression of a gene that encodes the tyrosine decarboxylase (TYDC) enzyme, which is involved in plant stress response mechanisms. At 30 °C, however, the highest content of the caffeic, vanillic, p-coumaric and isoferulic acids was noted. Full article
Show Figures

Figure 1

25 pages, 18578 KB  
Article
CDK5RAP3 Regulates Testosterone Production in Mouse Leydig Cells
by Jian Ruan, Qianyi Dong, Yufan Jin, Yuhong Yang, Jun Li and Yafei Cai
Int. J. Mol. Sci. 2026, 27(2), 586; https://doi.org/10.3390/ijms27020586 - 6 Jan 2026
Viewed by 172
Abstract
Testosterone (T) produced by Leydig cells (LCs) is essential for male reproduction; yet, the regulatory mechanisms underlying steroidogenesis remain incompletely understood. Here, we investigated the role of cyclin-dependent kinase 5 regulatory subunit-associated protein 3 (CDK5RAP3) in Leydig cell development and steroidogenesis, based on [...] Read more.
Testosterone (T) produced by Leydig cells (LCs) is essential for male reproduction; yet, the regulatory mechanisms underlying steroidogenesis remain incompletely understood. Here, we investigated the role of cyclin-dependent kinase 5 regulatory subunit-associated protein 3 (CDK5RAP3) in Leydig cell development and steroidogenesis, based on its identification by immunoprecipitation-mass spectrometry (IP-MS) as a protein associated with steroidogenesis and cholesterol metabolism in mouse testicular tissue. Using human samples, we found that CDK5RAP3 expression was significantly reduced in Leydig cells from patients with spermatogenic failure (T < 10.4 nmol/L). Notably, CDK5RAP3 expression increased during mouse postnatal Leydig cell maturation and regeneration in an ethane dimethanesulfonate (EDS)-induced rat model. Functional analyses in primary LCs and MLTC-1 cells showed that hCG stimulation triggered CDK5RAP3 nuclear translocation without altering its overall expression, while CDK5RAP3 knockdown markedly impaired hCG-induced testosterone production and reduced the expression of the steroidogenic regulator steroidogenic acute regulatory (STAR) protein, as well as key steroidgenic enzymes, including cytochrome P450 family 11 subfamily A member 1 (CYP11A1), 17a-hydroxylase (CYP17A1), and 3β-hydroxysteroid dehydrogenase (HSD3B). Conversely, CDK5RAP3 overexpression enhanced testosterone production in the absence of hCG. In vivo, AAV2/9-mediated CDK5RAP3 silencing in adult mouse testes resulted in a significant reduction in serum testosterone levels compared with controls (3.60 ± 0.38 ng/mL vs. 1.83 ± 0.37 ng/mL). Mechanistically, CDK5RAP3 interacted with SMAD4 and CEBPB, and BMP pathway inhibition by Noggin rescued the testosterone deficit caused by CDK5RAP3 loss. Together, these findings identify CDK5RAP3 as an essential regulator of Leydig cell steroidogenesis and provide insight into its potential relevance to male infertility associated with low testosterone. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

16 pages, 293 KB  
Review
The Role of Clinical Pharmacogenetics and Opioid Interactions in Pain Management: Current Evidence and Future Perspectives
by Clelia Di Salvo, Giulia Valdiserra, Stefano Balestrieri, Giuditta Beucci, Giulia Paciulli, Giovanna Irene Luculli, Alessandro De Vita, Matteo Fornai, Antonello Di Paolo and Luca Antonioli
Pharmaceutics 2026, 18(1), 59; https://doi.org/10.3390/pharmaceutics18010059 - 1 Jan 2026
Viewed by 500
Abstract
Introduction: Opioids are the most commonly used analgesic drugs for acute and chronic severe pain and are metabolized in the liver via cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGTs). Methods: A narrative review of the literature was conducted by searching the [...] Read more.
Introduction: Opioids are the most commonly used analgesic drugs for acute and chronic severe pain and are metabolized in the liver via cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGTs). Methods: A narrative review of the literature was conducted by searching the PubMed database up to December 2025, with English as the only language restriction. Relevant studies were identified using the keywords “opioids,” “pharmacogenetic,” “cytochrome mutations,” and “interactions.” Results: Polymorphisms in CYP2D6 and CYP3A4 genes can affect the pharmacokinetics, clinical effect, and safety of opioids. Furthermore, enzyme induction and inhibition by concomitant drugs or compounds (herbal products or food) are sources of variability factors in drug response that may be predictable. Conclusions: This review article summarizes current evidence on the role of pharmacogenetics and opioid-related interactions, offering a framework to better understand interindividual variability in opioid response and to inform future multimodal approaches. Full article
14 pages, 2698 KB  
Article
Alleviation of Aflatoxin B1-Induced Hepatic Damage by Propolis: Effects on Inflammation, Apoptosis, and Cytochrome P450 Enzyme Expression
by Sevtap Kabalı, Neslihan Öner, Ayca Kara, Mehtap Ünlü Söğüt and Zehra Elgün
Curr. Issues Mol. Biol. 2026, 48(1), 56; https://doi.org/10.3390/cimb48010056 - 1 Jan 2026
Viewed by 255
Abstract
AflatoxinB1 (AFB1) is a hepatotoxic mycotoxin whose bioactivation by cytochrome P450 (CYP450) enzymes generates reactive metabolites that drive oxidative stress, inflammation, and apoptosis. Propolis is a bee-derived product with antioxidant and immunomodulatory properties. To investigate whether propolis supplementation attenuates AFB1-induced hepatic injury [...] Read more.
AflatoxinB1 (AFB1) is a hepatotoxic mycotoxin whose bioactivation by cytochrome P450 (CYP450) enzymes generates reactive metabolites that drive oxidative stress, inflammation, and apoptosis. Propolis is a bee-derived product with antioxidant and immunomodulatory properties. To investigate whether propolis supplementation attenuates AFB1-induced hepatic injury by modulating inflammatory mediators, Nrf2–HO-1 signaling, mitochondrial apoptosis, and CYP450 expression in rats, twenty-four male Sprague-Dawley rats were randomly allocated to four groups (n = 6): control, AFB1 (25 µg/kg/day), propolis (250 mg/kg/day), and AFB1 + propolis. Treatments were given by oral gavage for 28 days. Hepatic IL-1β, IL-6, TNF-α, Nrf2 and HO-1 levels were measured by ELISA. Histopathology was assessed on H&E-stained sections. Bax, Bcl-2, caspase-3, CYP1A2, CYP3A4, CYP2C19 and cytochrome P450 reductase expressions were evaluated immunohistochemically and quantified by ImageJ. Data were analyzed using one-way ANOVA with Tukey’s post hoc test. AFB1 significantly increased hepatic IL-1β and IL-6 and reduced Nrf2 levels, while propolis supplementation restored Nrf2, elevated HO-1 and significantly lowered IL-6 compared with AFB1 alone (p < 0.05). AFB1 induced marked hydropic degeneration, sinusoidal congestion, and mononuclear infiltration, alongside increased Bax and caspase-3 and decreased Bcl-2 expression; these changes were largely reversed in propolis-treated groups. AFB1 upregulated CYP1A2, CYP3A4 and cytochrome P450 reductase, whereas propolis co-treatment significantly suppressed their expression without affecting CYP2C19. Propolis supplementation attenuated AFB1-induced liver injury through coordinated anti-inflammatory, antioxidant, anti-apoptotic and metabolic regulatory effects, notably via restoration of Nrf2–HO-1 signaling and down-regulation of key CYP450 isoenzymes. Propolis may represent a promising natural dietary strategy against AFB1-associated hepatotoxicity, warranting further translational research. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

23 pages, 4093 KB  
Article
Genome-Wide Characterization and Expression Analysis of CYP450 Genes in Chlamydomonas reinhardtii P.A. Dang.
by Runlong Zhou, Xinyu Zou, Fengjie Sun, Yujie Kong, Xiaodong Wang, Yuyong Wu, Chengsong Zhang and Zhengquan Gao
Biology 2026, 15(1), 77; https://doi.org/10.3390/biology15010077 - 31 Dec 2025
Viewed by 448
Abstract
Cytochrome P450 (CYP450) monooxygenases are a class of enzymes containing conserved heme-binding functional domain. They contribute to a wide range of biosynthetic processes, serving a pivotal function in plant resistance to abiotic stress. To date, little is known about the CYP450s of Chlamydomonas [...] Read more.
Cytochrome P450 (CYP450) monooxygenases are a class of enzymes containing conserved heme-binding functional domain. They contribute to a wide range of biosynthetic processes, serving a pivotal function in plant resistance to abiotic stress. To date, little is known about the CYP450s of Chlamydomonas reinhardtii. In our study, a total of 37 crP450 genes were identified from C. reinhardtii based on domain and sequence alignment, unevenly distributed on 12 chromosomes with 4 pairs of tandem replications shared among family members. Most of these genes contained 10 or more introns and encoded CYP450 proteins with an average of 593 amino acids and 3–9 conserved motifs. CYP450 enzymes were mainly distributed in the chloroplasts, cytoplasms, mitochondria, and cytoplasmic membranes. There were numerous light, jasmonic acid, abscisic acid, and salicylic acid response elements located in the upstream of gene coding sequences, suggesting that these genes could be modulated by plant hormones. Transcriptome analysis uncovered distinct expression patterns of crP450 genes under various stress conditions, with the 37 crP450 genes grouped into 9 clusters. In summary, this study presented a genome-wide characterization of CYP450 genes in C. reinhardtii, providing a strong foundation for further exploration into their biological functions. Full article
(This article belongs to the Section Marine and Freshwater Biology)
Show Figures

Figure 1

18 pages, 5771 KB  
Article
Association of VGSC Mutations and P450 Overexpression with Beta-Cypermethrin Resistance in Aphis gossypii Glover from a Chinese Wolfberry (Lycium barbarum L.) Field
by Yunfei Zhang, Xinyi Hu, Junjie Yin, Jiabin Chen, Shujing Zhang and Fang Wang
Agriculture 2026, 16(1), 83; https://doi.org/10.3390/agriculture16010083 - 30 Dec 2025
Viewed by 262
Abstract
Chinese wolfberry (Lycium barbarum L.), a specialty crop with ecological, medical, and economic value in Ningxia province of China, is subject to severe damage from Aphis gossypii Glover. Currently, A. gossypii populations show extremely high-level resistance to beta-cypermethrin in the major wolfberry [...] Read more.
Chinese wolfberry (Lycium barbarum L.), a specialty crop with ecological, medical, and economic value in Ningxia province of China, is subject to severe damage from Aphis gossypii Glover. Currently, A. gossypii populations show extremely high-level resistance to beta-cypermethrin in the major wolfberry planting areas in Ningxia. The specific resistance mechanisms, however, are still not known. In this work, we collected a field A. gossypii strain (HSP) from a wolfberry orchard in Ningxia in 2021 using a single-time sampling method, and its resistance to beta-cypermethrin was determined to be extremely high (994.74-fold) as compared with that of a susceptible strain (SS). Then we explored the potential resistance mechanisms from two aspects, namely, metabolic detoxification and target-site alterations. Bioassays of beta-cypermethrin with or without a synergist showed that piperonyl butoxide (PBO) significantly increased the toxicity of beta-cypermethrin (4.72-fold) to the HSP strain, while triphenyl phosphate (TPP) and diethyl maleate (DEM) exhibited no significant synergistic effects. Correspondingly, the O-demethylase activity of cytochrome P450s in the HSP strain was 1.68-fold higher than that in the susceptive strain (SS), whereas changes in carboxylesterases and glutathione S-transferases activities were unremarkable. Also, fifteen upregulated P450 genes were identified by both RNA-Seq and qRT-PCR technologies, containing eleven CYP6 genes, three CYP4 genes, and one CYP380 gene. Especially, five CYP6 genes with high relative expression levels (>3.00-fold) were intensively expressed by beta-cypermethrin induction in the HSP aphids. These metabolism-related results indicate the key role of P450-mediated metabolic detoxification in HSP resistance to beta-cypermethrin. Sequencing of voltage-gated sodium channel (VGSC) genes identified a prevalent M918L mutation and a new G1012D mutation in HSP A. gossypii. Moreover, heterozygous 918 M/L and 918 M/L + G1012D mutations were the dominant genotypes with frequencies of 60.00% and 36.67% in the HSP population, respectively. Overall, VGSC mutations along with P450-mediated metabolic resistance contributed to the extremely high resistance of the HSP wolfberry aphids to beta-cypermethrin, providing support for A. gossypii control and resistance management in the wolfberry planting areas of Ningxia using insecticides with different modes of action. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

19 pages, 762 KB  
Article
Therapeutic Potential and Predictive Pharmaceutical Modeling of Indole Kratom Alkaloids
by Md Harunur Rashid, Matthew J. Williams, Andres Garcia Guerra, Arunporn Itharat, Raimar Loebenberg and Neal M. Davies
J. Phytomed. 2026, 1(1), 1; https://doi.org/10.3390/jphytomed1010001 - 29 Dec 2025
Viewed by 371
Abstract
Kratom alkaloids are classified as aromatic pentacyclic indole and substituted carbonyl oxindole alkaloids. This study investigates the metabolism and interactions of indole alkaloids using in silico tools, including ADMET Predictor 13.0™, to assess pharmacokinetic and metabolic profiles. The analysis examined absorption, distribution, metabolism, [...] Read more.
Kratom alkaloids are classified as aromatic pentacyclic indole and substituted carbonyl oxindole alkaloids. This study investigates the metabolism and interactions of indole alkaloids using in silico tools, including ADMET Predictor 13.0™, to assess pharmacokinetic and metabolic profiles. The analysis examined absorption, distribution, metabolism, and excretion (ADME), focusing on cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzyme interactions, drug transporters, and clearance. Most indole alkaloids showed strong substrate interaction and inhibition of CYP3A4 (79–99% confidence) and induction of CYP1A2 (up to 94% confidence). Among UGT enzymes, UGT1A1 demonstrated the highest substrate affinity (97%), while none interacted with UGT2B15. All alkaloids showed strong P-glycoprotein (Pgp) interaction but minimal inhibition of BCRP. Mitralactonine exhibited the highest skin permeability, and Mitralactonal showed maximal jejunal permeability. Most indole alkaloids demonstrated significant blood–brain barrier penetration (up to 99% confidence) and compliance with Lipinski’s rule of five. Predictive modeling indicated notable effects on hepatic microsomal clearance parameters. This investigation offers the first comprehensive in silico ADMET profiling of kratom indole alkaloids, uncovering their CYP3A4 inhibition potential and metabolic liabilities to prioritize candidates for safer therapeutic development, though limited by model biases, applicability domain restrictions, and inability to fully capture biological complexity, stereochemistry, or interindividual variability necessitating experimental in vitro and in vivo validation. Full article
Show Figures

Graphical abstract

19 pages, 4172 KB  
Article
AHR Deficiency Exacerbates Hepatic Cholesterol Accumulation via Inhibiting Bile Acid Synthesis in MAFLD Rats
by Junjiu Xu, Pengwei Liu, Yuling Wu, Hongxiu He, Dandan Hu, Jianhua Sun, Jing Chen, Ying Tian and Likun Gong
Int. J. Mol. Sci. 2026, 27(1), 349; https://doi.org/10.3390/ijms27010349 - 29 Dec 2025
Viewed by 331
Abstract
Metabolic-dysfunction-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by abnormal lipid metabolism. The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor involved in regulating multiple physiological processes. Recent studies have demonstrated that AHR exerts a multifaceted regulatory role in [...] Read more.
Metabolic-dysfunction-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by abnormal lipid metabolism. The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor involved in regulating multiple physiological processes. Recent studies have demonstrated that AHR exerts a multifaceted regulatory role in liver diseases by integrating metabolic and immune signaling pathways; however, the specific role of AHR in MAFLD is not clear. In our work, a rat model of MAFLD was established by feeding wild-type (WT) and AHR knockout (AHR−/−) rats with a high-fat, high-fructose, and high-cholesterol diet (HFHFrHCD) for 10 weeks, and then the liver injury markers, lipid-related biochemical indices and liver histopathology were examined to elucidate the effect of AHR on MAFLD progression. We discovered that AHR deficiency can elevate plasma transaminase levels, increase hepatic triglyceride (TG) and total cholesterol (TC), and exacerbate insulin resistance (IR) under an overnutrition environment. Subsequently, liver transcriptome and RT-qPCR were performed to investigate the underlying mechanism, which revealed that the hepatic bile acid synthesis was inhibited because of lower Cytochrome P450 Family 7 Subfamily A Member 1 (CYP7A1) expression in the liver when AHR was knockout. Additionally, intestinal flora dysbiosis occurred in AHR−/− rats fed with HFHFrHCD, which might also contribute to the hepatic cholesterol accumulation. Taken together, our results suggested that AHR might play an important role in regulating cholesterol metabolism by inhibiting bile acid synthesis and breaking the steady state of the gut microbiota during the MAFLD progression. Full article
Show Figures

Graphical abstract

25 pages, 7503 KB  
Article
Naringin Mitigates PEDV-Induced Intestinal Damage in Suckling Piglets by Modulating Inflammatory, Antiviral, and Metabolic and Transport Pathways
by Yanyan Zhang, Muzi Li, Zongyun Li, Zhonghua Li, Lei Wang, Di Zhao, Tao Wu, Dan Yi and Yongqing Hou
Biomolecules 2026, 16(1), 48; https://doi.org/10.3390/biom16010048 - 28 Dec 2025
Viewed by 328
Abstract
This study evaluated the protective effects of naringin (NG) against intestinal injury in 7-day-old piglets infected with porcine epidemic diarrhea virus (PEDV). Eighteen piglets (Duroc × Landrace × Large, body weight = 2.58 ± 0.05 kg) were divided into three treatment groups based [...] Read more.
This study evaluated the protective effects of naringin (NG) against intestinal injury in 7-day-old piglets infected with porcine epidemic diarrhea virus (PEDV). Eighteen piglets (Duroc × Landrace × Large, body weight = 2.58 ± 0.05 kg) were divided into three treatment groups based on similar body weights and equal numbers of males and females: the blank control group (CON group), the PEDV infection group (PEDV group), and the NG intervention + PEDV infection group (NG + PEDV group) (n = 6 per group). The experiment lasted for 11 days, comprising a pre-feeding period from days 0 to 3 and a formal experimental period from days 4 to 10. On days 4–10 of the experiment, piglets in the NG + PEDV group were orally administered NG (10 mg/kg). On Day 8 of the experiment, piglets in the PEDV and NG + PEDV groups were inoculated with PEDV (3 mL, 106 50% tissue culture infective dose (TCID50) per milliliter). On day 11 of the experiment, piglets were euthanized for sample collection. PEDV infection caused significant intestinal damage, including a decreased (p < 0.05) villus height in the duodenum and ileum and an increased (p < 0.05) crypt depth in all intestinal segments. This intestinal damage was accompanied by an impaired absorptive function, as indicated by reduced (p < 0.05) serum D-xylose. Further results showed that PEDV compromised the intestinal antioxidant capacity by decreasing (p < 0.05) glutathione peroxidase and catalase activities, and it stimulated the intestinal inflammatory response by upregulating (p < 0.05) the expression of key inflammatory genes, including regenerating family member 3 gamma (REG3G; duodenum, jejunum, colon), S100 calcium binding protein A9 (S100A9; ileum, colon), interleukin 1 beta (IL-1β; ileum, colon), and S100 calcium binding protein A8 (S100A8; colon). PEDV also suppressed the intestinal lipid metabolism pathway by downregulating (p < 0.05) the ileal expression of Solute Carrier Family 27 Member 4 (SLC27A4), Microsomal Triglyceride Transfer Protein (MTTP), Apolipoprotein A4 (APOA4), Apolipoprotein C3 (APOC3), Diacylglycerol O-Acyltransferase 1 (DGAT1), and Cytochrome P450 Family 2 Subfamily J Member 34 (CYP2J34). Moreover, PEDV suppressed the intestinal antiviral ability by downregulating (p < 0.05) interferon (IFN) signaling pathway genes, including MX dynamin like GTPase 1 (MX1) and ISG15 ubiquitin like modifier (ISG15) in the duodenum; weakened intestinal water and ion transport by downregulating (p < 0.05) aquaporin 10 (AQP10) and potassium inwardly rectifying channel subfamily J member 13 (KCNJ13) in the duodenum, aquaporin 7 (AQP7) and transient receptor potential cation channel subfamily V member 6 (TRPV6) in the ileum, and TRPV6 and transient receptor potential cation channel subfamily M member 6 (TRPM6) in the colon; and inhibited intestinal digestive and absorptive function by downregulating (p < 0.05) phosphoenolpyruvate carboxykinase 1 (PCK1) in the duodenum and sucrase-isomaltase (SI) in the ileum. Notably, NG effectively counteracted these detrimental effects. Moreover, NG activated the IFN signaling pathway in the jejunum and suppressed PEDV replication in the colon. In conclusion, NG alleviates PEDV-induced intestinal injury by enhancing the antioxidant capacity, suppressing inflammation, normalizing the expression of metabolic and transport genes, and improving the antiviral ability. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

16 pages, 3236 KB  
Article
Identification and Expression Analysis of the Cytochrome P450 Genes in Phyllotreta striolata and CYP6TH1/CYP6TH2 in the Involvement of Pyridaben Tolerance
by Yongqin Zhu, Zhongting Liu, Wenyong Mai, Xinhua Pu, Haoyue Mo, Benshui Shu and Zhongzhen Wu
Insects 2026, 17(1), 29; https://doi.org/10.3390/insects17010029 - 24 Dec 2025
Viewed by 406
Abstract
The striped flea beetle, Phyllotreta striolata, is a worldwide pest that causes severe damage to cruciferous crops. Pyridaben, an inhibitor of mitochondrial complex I, has been widely used for the control of P. striolata. Identifying key genes involved in pyridaben tolerance [...] Read more.
The striped flea beetle, Phyllotreta striolata, is a worldwide pest that causes severe damage to cruciferous crops. Pyridaben, an inhibitor of mitochondrial complex I, has been widely used for the control of P. striolata. Identifying key genes involved in pyridaben tolerance is vital for establishing effective resistance management strategies. A total of 94 full-length cytochrome P450 (CYP) genes were identified in P. striolata. The identified genes were classified into four clans (mitochondrial, CYP2, CYP3, and CYP4), 23 families, and 57 subfamilies. Transcriptomic analysis across developmental stages and tissues revealed distinct expression patterns were seen in these P450 genes. Pyridaben exposure significantly upregulated the expression of CYP6TH1 and CYP6TH2. Tissue-specific expression profiling indicated that CYP6TH1 and CYP6TH2 were highly expressed in the head and fat body. RNA interference-mediated knockdown of these genes significantly increased the susceptibility of P. striolata to pyridaben. Molecular docking confirmed stable binding between pyridaben and both CYP proteins, with binding free energies of −7.73 and −7.57 kcal/mol for CYP6TH1 and CYP6TH2, respectively. This study demonstrates that CYP6TH1 and CYP6TH2 play critical roles in pyridaben tolerance in P. striolata, which highlights promising genetic targets for future resistance management strategies. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

14 pages, 10657 KB  
Article
Environmental Stress in Wild Armored Catfish Pterygoplichthys spp. Through CYP1A Gene Expression
by Guadalupe Gómez-Carrasco, Julia María Lesher-Gordillo, León David Olivera-Gómez, Erick de la Cruz-Hernández, Benjamín Morales-Vela, Gilberto Pozo-Montuy, Salima Machkour-M’Rabet and Hilda María Díaz-López
Ecologies 2026, 7(1), 1; https://doi.org/10.3390/ecologies7010001 - 19 Dec 2025
Viewed by 707
Abstract
Aquatic ecosystems are currently facing anthropogenic pollution, mainly derived from agricultural, industrial, and urban runoff, including heavy metals, polycyclic aromatic hydrocarbons (PHAs), pesticides, fertilizers, and untreated wastewater discharges. To understand the impact of environmental contamination on fish, this research compared cytochrome P450 1A [...] Read more.
Aquatic ecosystems are currently facing anthropogenic pollution, mainly derived from agricultural, industrial, and urban runoff, including heavy metals, polycyclic aromatic hydrocarbons (PHAs), pesticides, fertilizers, and untreated wastewater discharges. To understand the impact of environmental contamination on fish, this research compared cytochrome P450 1A (CYP1A) gene expression in armored catfish across three locations in the lower Grijalva–Usumacinta River basin known for varying levels of pollution. Samples from the Ribera Alta, the Bitzales River, and the Chaschoc lagoon were collected during the dry and rainy seasons. We isolated RNA from liver samples, which were subsequently converted to cDNA. We used quantitative PCR to analyze CYP1A gene expression. Results showed that, of the three locations, Ribera Alta demonstrated the highest expression during the rainy season. Only in Chaschoc Lagoon did we observe significant differences between seasons (p = 0.03). This indicates that seasonal factors and the presence of pollutants in the water bodies and sediments likely play a role in regulating CYP1A gene expression in this fish species. Full article
Show Figures

Graphical abstract

18 pages, 1511 KB  
Article
Human CYP2C9 Metabolism of Organophosphorus Pesticides and Nerve Agent Surrogates
by Pratik Shriwas, Abigail M. Noonchester, Andre Revnew, Thomas R. Lane, Christopher M. Hadad, Sean Ekins and Craig A. McElroy
J. Xenobiot. 2026, 16(1), 1; https://doi.org/10.3390/jox16010001 - 19 Dec 2025
Viewed by 446
Abstract
Of the Cytochrome P450 enzymes, the CYP2C9 variant is very important in the metabolism of several human drugs, acting as a natural bioscavenger. Previously, CYP2C9 was shown to convert the thion (P=S) to the oxon (P=O) form for some organophosphorus (OP) pesticides, such [...] Read more.
Of the Cytochrome P450 enzymes, the CYP2C9 variant is very important in the metabolism of several human drugs, acting as a natural bioscavenger. Previously, CYP2C9 was shown to convert the thion (P=S) to the oxon (P=O) form for some organophosphorus (OP) pesticides, such as dimethoate, diazinon, and parathion. In this study, we tested the ability of CYP2C9 to degrade other OP compounds. We investigated the metabolism of OP compounds by CYP2C9 using LC-MS/MS as well as time-dependent inhibition using the previously developed pFluor50 fluorogenic assay. We found that CYP2C9 metabolizes thions preferentially over oxons, and that many OP compounds inhibit CYP2C9 activity in a time-dependent manner. Additionally, we performed molecular docking based on the crystal structure (1OG5) of the CYP2C9 receptor. We observed a positive, though moderate, correlation between the calculated binding energy and the CYP2C9 metabolism of various OP compounds (R = 0.59). These in vitro data, combined with further analysis and additional OP derivatives, could potentially be used to develop artificial intelligence (AI)/machine learning (ML) models to predict the metabolism of specific OP compounds by CYP2C9. This type of approach could be particularly relevant for the prediction of the metabolism of current and emerging chemical warfare agents. Full article
(This article belongs to the Special Issue Impact of Nutrition and the Environment on Human Metabolism)
Show Figures

Graphical abstract

19 pages, 5983 KB  
Article
The Disruption of Cyp7b1 Controls IGFBP2 and Prediabetes Exerted Through Different Hydroxycholesterol Metabolites
by Roberto Martínez-Beamonte, Natalia Guillén, Javier Sánchez-Marco, Luis V. Herrera-Marcos, Joaquín C. Surra, María A. Navarro, Cristina Barranquero, Carmen Arnal, Juan J. Puente, Ma Jesús Rodríguez-Yoldi, Isabel Mendiara, Celia Domeño, Cristina Nerín, Aron M. Geurts, Jesús Osada and Martín Laclaustra
Int. J. Mol. Sci. 2025, 26(24), 11994; https://doi.org/10.3390/ijms262411994 - 12 Dec 2025
Viewed by 324
Abstract
Cytochrome P450, family 7, subfamily b, polypeptide 1 (CYP7B1) is a widely expressed enzyme involved in the hydroxylation of sterols. Generated by transposon technology in zygotes, male rats lacking Cyp7b1 expression in homozygosis showed an absence of Cyp7b1 mRNA expression in the liver, [...] Read more.
Cytochrome P450, family 7, subfamily b, polypeptide 1 (CYP7B1) is a widely expressed enzyme involved in the hydroxylation of sterols. Generated by transposon technology in zygotes, male rats lacking Cyp7b1 expression in homozygosis showed an absence of Cyp7b1 mRNA expression in the liver, small intestine, adipose tissue, and muscle. Elevated levels of 25-hydroxycholesterol were found in the liver of mutant rats. After overnight fasting, plasma triglyceride (TG) levels were increased in the homozygous rats. In agreement with this, increased hepatic secretion of very-low-density lipoprotein-TG (VLDL) in fasting rats treated with tyloxapol and decreased low-density receptor protein (LDLr) on the hepatocyte plasma membranes were observed. The decrease in LDLr was not due to decreased mRNA expression but to increased expressions of its proteases (Psck9 and Mylip). RNA sequencing identified Fasn, Igfbp2, and Pcsk9 as targets of the Cyp7b1 absence. However, the hepatic protein contents of IGFBP2 were increased in Cyp7b1-deficient rats, accompanied by a normal glucose tolerance test. HepG2 cells lacking CYP7B1 showed increased expressions of FASN and IGFBP2. These results suggest a role of CYP7B1 in the control of hepatic IGFBP2 and VLDL-TG secretion as a prediabetes sign exerted through 25-hydroxycholesterol and transcriptional or translational mechanisms depending on the species. Full article
(This article belongs to the Topic Animal Models of Human Disease 3.0)
Show Figures

Figure 1

Back to TopTop