The Role of Clinical Pharmacogenetics and Opioid Interactions in Pain Management: Current Evidence and Future Perspectives
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Opioid Pharmacology at a Glance
3.1.1. Opioid Receptors
3.1.2. Metabolism
3.1.3. Efflux Transporters
4. Adverse Drug Reactions
5. Pharmacogenetics
5.1. CYP2D6
5.2. CYP3A4/5
5.3. CYP2B6
5.4. UGT2B7
5.5. P-gp
5.6. Opioid Receptors (OPRs)
5.7. COMT
5.8. OCT1
5.9. ARRB2 and DCC
6. Opioids Interactions
6.1. Drug–Drug Interactions
6.2. Herb-Food Interactions
7. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zöllner, C.; Stein, C. Opioids. Handb. Exp. Pharmacol. 2007, 177, 31–63. [Google Scholar] [CrossRef]
- Coates, S.; Lazarus, P. Hydrocodone, Oxycodone, and Morphine Metabolism and Drug–Drug Interactions. J. Pharmacol. Exp. Ther. 2023, 387, 150–169. [Google Scholar] [CrossRef] [PubMed]
- Opioid Dispensing Rate Maps|Overdose Prevention|CDC. Available online: https://www.cdc.gov/overdose-prevention/data-research/facts-stats/opioid-dispensing-rate-maps.html (accessed on 22 December 2025).
- Dowell, D.; Ragan, K.R.; Jones, C.M.; Baldwin, G.T.; Chou, R. CDC Clinical Practice Guideline for Prescribing Opioids for Pain—United States, 2022. MMWR Recomm. Rep. 2022, 71, 1–95. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trescot, A.M.; Datta, S.; Lee, M.; Hans, H. Opioid Pharmacology. Pain Physician 2008, 11, S133–S153. [Google Scholar] [CrossRef] [PubMed]
- Vearrier, D.; Grundmann, O. Clinical Pharmacology, Toxicity, and Abuse Potential of Opioids. J. Clin. Pharmacol. 2021, 61, S70–S88. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.K.; Somogyi, A.A.; Rubio, J.; Philip, J. The Role of Pharmacogenomics in Opioid Prescribing. Curr. Treat. Options Oncol. 2022, 23, 1353–1369. [Google Scholar] [CrossRef]
- Yang, J.; Bauer, B.A.; Wahner-Roedler, D.L.; Chon, T.Y.; Xiao, L. The Modified WHO Analgesic Ladder: Is It Appropriate for Chronic Non-Cancer Pain? J. Pain Res. 2020, 13, 411–417. [Google Scholar] [CrossRef]
- Pasternak, G.W. Opiate Pharmacology and Relief of Pain. J. Clin. Oncol. 2014, 32, 1655–1661. [Google Scholar] [CrossRef]
- Zaveri, N.T. Nociceptin Opioid Receptor (NOP) as a Therapeutic Target: Progress in Translation from Preclinical Research to Clinical Utility. J. Med. Chem. 2016, 59, 7011–7028. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.; Sribhashyam, S.; Majumdar, S. Opioid Signaling and Design of Analgesics. Prog. Mol. Biol. Transl. Sci. 2023, 195, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Holden, J.E.; Jeong, Y.; Forrest, J.M. The Endogenous Opioid System and Clinical Pain Management. AACN Clin. Issues 2005, 16, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Kopecky, E.A. Opioid Pharmacology: Developmental Effects on Opioid Metabolism. Clin. J. Pain 2019, 35, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Kalso, E. Oxycodone. J. Pain Symptom Manag. 2005, 29, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Umukoro, N.N.; Aruldhas, B.W.; Rossos, R.; Pawale, D.; Renschler, J.S.; Sadhasivam, S. Pharmacogenomics of Oxycodone: A Narrative Literature Review. Pharmacogenomics 2021, 22, 275–290. [Google Scholar] [CrossRef] [PubMed]
- Volpe, D.A.; Tobin, G.A.M.M.; Mellon, R.D.; Katki, A.G.; Parker, R.J.; Colatsky, T.; Kropp, T.J.; Verbois, S.L. Uniform Assessment and Ranking of Opioid μ Receptor Binding Constants for Selected Opioid Drugs. Regul. Toxicol. Pharmacol. 2011, 59, 385–390. [Google Scholar] [CrossRef]
- Aapro, M.; Fogli, S.; Morlion, B.; Danesi, R. Opioid Metabolism and Drug-Drug Interaction in Cancer. Oncologist 2024, 29, 931–942. [Google Scholar] [CrossRef] [PubMed]
- Barakat, A. Revisiting Tramadol: A Multi-Modal Agent for Pain Management. CNS Drugs 2019, 33, 481–501. [Google Scholar] [CrossRef]
- Miotto, K.; Cho, A.K.; Khalil, M.A.; Blanco, K.; Sasaki, J.D.; Rawson, R. Trends in Tramadol: Pharmacology, Metabolism, and Misuse. Anesth. Analg. 2017, 124, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Leppert, W. CYP2D6 in the Metabolism of Opioids for Mild to Moderate Pain. Pharmacology 2011, 87, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Lugo, R.A.; Kern, S.E. The Pharmacokinetics of Oxycodone. J. Pain. Palliat. Care Pharmacother. 2004, 18, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Elkader, A.; Sproule, B. Buprenorphine: Clinical Pharmacokinetics in the Treatment of Opioid Dependence. Clin. Pharmacokinet. 2005, 44, 661–680. [Google Scholar] [CrossRef]
- Valtier, S.; Bebarta, V.S. Excretion Profile of Hydrocodone, Hydromorphone and Norhydrocodone in Urine Following Single Dose Administration of Hydrocodone to Healthy Volunteers. J. Anal. Toxicol. 2012, 36, 507–514. [Google Scholar] [CrossRef]
- Liu, L.; Xu, M.; Wang, J.; Hu, Y.; Huang, Z. Research Progress of Hydromorphone in Clinical Application. Physiol. Res. 2025, 74, 41–48. [Google Scholar] [CrossRef]
- Kesimci, E.; Engin, A.B.; Kanbak, O.; Karahalil, B. Association between ABCB1 Gene Polymorphisms and Fentanyl’s Adverse Effects in Turkish Patients Undergoing Spinal Anesthesia. Gene 2012, 493, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Takashina, Y.; Naito, T.; Mino, Y.; Yagi, T.; Ohnishi, K.; Kawakami, J. Impact of CYP3A5 and ABCB1 Gene Polymorphisms on Fentanyl Pharmacokinetics and Clinical Responses in Cancer Patients Undergoing Conversion to a Transdermal System. Drug Metab. Pharmacokinet. 2012, 27, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Kharasch, E.D.; Hoffer, C.; Whittington, D.; Sheffels, P. Role of P-Glycoprotein in the Intestinal Absorption and Clinical Effects of Morphine. Clin. Pharmacol. Ther. 2003, 74, 543–554. [Google Scholar] [CrossRef]
- Rodriguez, M.; Ortega, I.; Soengas, I.; Suarez, E.; Lukas, J.C.; Calvo, R. Effect of P-Glycoprotein Inhibition on Methadone Analgesia and Brain Distribution in the Rat. J. Pharm. Pharmacol. 2004, 56, 367–374. [Google Scholar] [CrossRef]
- Levran, O.; O’Hara, K.; Peles, E.; Li, D.; Barral, S.; Ray, B.; Borg, L.; Ott, J.; Adelson, M.; Kreek, M.J. ABCB1 (MDR1) Genetic Variants Are Associated with Methadone Doses Required for Effective Treatment of Heroin Dependence. Hum. Mol. Genet. 2008, 17, 2219–2227. [Google Scholar] [CrossRef]
- Imam, M.Z.; Kuo, A.; Ghassabian, S.; Smith, M.T. Progress in Understanding Mechanisms of Opioid-Induced Gastrointestinal Adverse Effects and Respiratory Depression. Neuropharmacology 2018, 131, 238–255. [Google Scholar] [CrossRef] [PubMed]
- Raehal, K.M.; Schmid, C.L.; Groer, C.E.; Bohn, L.M. Functional Selectivity at the μ-Opioid Receptor: Implications for Understanding Opioid Analgesia and Tolerance. Pharmacol. Rev. 2011, 63, 1001–1019. [Google Scholar] [CrossRef]
- Nafziger, A.N.; Barkin, R.L. Opioid Therapy in Acute and Chronic Pain. J. Clin. Pharmacol. 2018, 58, 1111–1122. [Google Scholar] [CrossRef]
- Trescot, A.M. Genetics and Implications in Perioperative Analgesia. Best. Pract. Res. Clin. Anaesthesiol. 2014, 28, 153–166. [Google Scholar] [CrossRef]
- Gaedigk, A.; Twist, G.P.; Farrow, E.G.; Lowry, J.A.; Soden, S.E.; Miller, N.A. In Vivo Characterization of CYP2D6*12, *29 and *84 Using Dextromethorphan as a Probe Drug: A Case Report. Pharmacogenomics 2017, 18, 427–431. [Google Scholar] [CrossRef]
- Caudle, K.E.; Sangkuhl, K.; Whirl-Carrillo, M.; Swen, J.J.; Haidar, C.E.; Klein, T.E.; Gammal, R.S.; Relling, M.V.; Scott, S.A.; Hertz, D.L.; et al. Standardizing CYP2D6 Genotype to Phenotype Translation: Consensus Recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group. Clin. Transl. Sci. 2020, 13, 116–124. [Google Scholar] [CrossRef]
- Gaedigk, A.; Sangkuhl, K.; Whirl-Carrillo, M.; Klein, T.; Steven Leeder, J. Prediction of CYP2D6 Phenotype from Genotype across World Populations. Genet. Med. 2017, 19, 69–76. [Google Scholar] [CrossRef]
- Packiasabapathy, S.; Sadhasivam, S. Gender, Genetics, and Analgesia: Understanding the Differences in Response to Pain Relief. J. Pain. Res. 2018, 11, 2729–2739. [Google Scholar] [CrossRef] [PubMed]
- Crews, K.R.; Monte, A.A.; Huddart, R.; Caudle, K.E.; Kharasch, E.D.; Gaedigk, A.; Dunnenberger, H.M.; Leeder, J.S.; Callaghan, J.T.; Samer, C.F.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2D6, OPRM1, and COMT Genotypes and Select Opioid Therapy. Clin. Pharmacol. Ther. 2021, 110, 888–896. [Google Scholar] [CrossRef]
- Klein, K.; Zanger, U.M. Pharmacogenomics of Cytochrome P450 3A4: Recent Progress Toward the “Missing Heritability” Problem. Front. Genet. 2013, 4, 12. [Google Scholar] [CrossRef]
- Saiz-Rodríguez, M.; Ochoa, D.; Herrador, C.; Belmonte, C.; Román, M.; Alday, E.; Koller, D.; Zubiaur, P.; Mejía, G.; Hernández-Martínez, M.; et al. Polymorphisms Associated with Fentanyl Pharmacokinetics, Pharmacodynamics and Adverse Effects. Basic Clin. Pharmacol. Toxicol. 2019, 124, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Bains, R.K.; Kovacevic, M.; Plaster, C.A.; Tarekegn, A.; Bekele, E.; Bradman, N.N.; Thomas, M.G. Molecular Diversity and Population Structure at the Cytochrome P450 3A5 Gene in Africa. BMC Genet. 2013, 14, 34. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Usmani, K.A.; Chanas, B.; Ghanayem, B.; Xi, T.; Hodgson, E.; Mohrenweiser, H.W.; Goldstein, J.A. Genetic Findings and Functional Studies of Human CYP3A5 Single Nucleotide Polymorphisms in Different Ethnic Groups. Pharmacogenetics 2003, 13, 461–472. [Google Scholar] [CrossRef]
- Freiermuth, C.E.; Kisor, D.F.; Lambert, J.; Braun, R.; Frey, J.A.; Bachmann, D.J.; Bischof, J.J.; Lyons, M.S.; Pantalon, M.V.; Punches, B.E.; et al. Genetic Variants Associated With Opioid Use Disorder. Clin. Pharmacol. Ther. 2023, 113, 1089–1095. [Google Scholar] [CrossRef]
- Kreek, M.J.; Levran, O.; Reed, B.; Schlussman, S.D.; Zhou, Y.; Butelman, E.R. Opiate Addiction and Cocaine Addiction: Underlying Molecular Neurobiology and Genetics. J. Clin. Investig. 2012, 122, 3387–3391. [Google Scholar] [CrossRef]
- Sim, S.C.; Ingelman-Sundberg, M. The Human Cytochrome P450 (CYP) Allele Nomenclature Website: A Peer-Reviewed Database of CYP Variants and Their Associated Effects. Hum. Genom. 2010, 4, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Klein, K. Pharmacogenetics of Cytochrome P450 2B6 (CYP2B6): Advances on Polymorphisms, Mechanisms, and Clinical Relevance. Front. Genet. 2013, 4, 24. [Google Scholar] [CrossRef]
- Wang, S.C.; Ho, I.K.; Tsou, H.H.; Tian, J.N.; Hsiao, C.F.; Chen, C.H.; Tan, H.K.L.; Lin, L.; Wu, C.S.; Su, L.W.; et al. CYP2B6 Polymorphisms Influence the Plasma Concentration and Clearance of the Methadone S-Enantiomer. J. Clin. Psychopharmacol. 2011, 31, 463–469. [Google Scholar] [CrossRef]
- Ofoegbu, A.; Ettienne, E.B. Pharmacogenomics and Morphine. J. Clin. Pharmacol. 2021, 61, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Bayrak, A.; Bayır, A.; Karabulut, K.U.; Ragab, D.; Elghawaby, H.; Eldesouky, M.; Elsayed, T.; Samir, M.; Nagi, K.; Refaie, M. UDP Glucuronosyltransferase 2B7 Single Nucleotide Polymorphism (Rs7439366) Influences Heat Pain Response in Human Volunteers after i.v. Morphine Infusion. Crit. Care 2011, 15, P363. [Google Scholar] [CrossRef]
- Matic, M.; Norman, E.; Rane, A.; Beck, O.; Andersson, M.; Elens, L.; Tibboel, D.; Fellman, V.; Van Schaik, R.H.N. Effect of UGT2B7 -900G>A (-842G>A.;Rs7438135) on Morphine Glucuronidation in Preterm Newborns: Results from a Pilot Cohort. Pharmacogenomics 2014, 15, 1589–1597. [Google Scholar] [CrossRef]
- Bastami, S.; Gupta, A.; Zackrisson, A.L.; Ahlner, J.; Osman, A.; Uppugunduri, S. Influence of UGT2B7, OPRM1 and ABCB1 Gene Polymorphisms on Postoperative Morphine Consumption. Basic Clin. Pharmacol. Toxicol. 2014, 115, 423–431. [Google Scholar] [CrossRef]
- Fujita, K.I.; Ando, Y.; Yamamoto, W.; Miya, T.; Endo, H.; Sunakawa, Y.; Araki, K.; Kodama, K.; Nagashima, F.; Ichikawa, W.; et al. Association of UGT2B7 and ABCB1 Genotypes with Morphine-Induced Adverse Drug Reactions in Japanese Patients with Cancer. Cancer Chemother. Pharmacol. 2010, 65, 251–258. [Google Scholar] [CrossRef]
- Hoffmeyer, S.; Burk, O.; Von Richter, O.; Arnold, H.P.; Brockmöller, J.; Johne, A.; Cascorbi, I.; Gerloff, T.; Roots, I.; Eichelbaum, M.; et al. Functional Polymorphisms of the Human Multidrug-Resistance Gene: Multiple Sequence Variations and Correlation of One Allele with P-Glycoprotein Expression and Activity in Vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 3473–3478. [Google Scholar] [CrossRef]
- Meineke, I.; Freudenthaler, S.; Hofmann, U.; Schaeffeler, E.; Mikus, G.; Schwab, M.; Prange, H.W.; Gleiter, C.H.; Brockmöller, J. Pharmacokinetic Modelling of Morphine, Morphine-3-Glucuronide and Morphine-6-Glucuronide in Plasma and Cerebrospinal Fluid of Neurosurgical Patients after Short-Term Infusion of Morphine. Br. J. Clin. Pharmacol. 2002, 54, 592–603. [Google Scholar] [CrossRef]
- Rhodin, A.; Grönbladh, A.; Ginya, H.; Nilsson, K.W.; Rosenblad, A.; Zhou, Q.; Enlund, M.; Hallberg, M.; Gordh, T.; Nyberg, F. Combined Analysis of Circulating β-Endorphin with Gene Polymorphisms in OPRM1, CACNAD2 and ABCB1 Reveals Correlation with Pain, Opioid Sensitivity and Opioid-Related Side Effects. Mol. Brain 2013, 6, 8. [Google Scholar] [CrossRef]
- Candiotti, K.; Yang, Z.; Xue, L.; Zhang, Y.; Rodriguez, Y.; Wang, L.; Hao, S.; Gitlin, M. Single-Nucleotide Polymorphism C3435T in the ABCB1 Gene Is Associated with Opioid Consumption in Postoperative Pain. Pain Med. 2013, 14, 1977–1984. [Google Scholar] [CrossRef]
- Martin da Silva, I.; Plaza-Díaz, A.; Ruiz-Ramos, J.; Juanes-Borrego, A.; Riera, P. The Role of Pharmacogenetic Biomarkers in Pain. Biomedicines 2025, 13, 1935. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.M.; Olesen, A.E.; Branford, R.; Christrup, L.L.; Sato, H.; Drewes, A.M. Association Between Human Pain-Related Genotypes and Variability in Opioid Analgesia: An Updated Review. Pain. Pract. 2015, 15, 580–594. [Google Scholar] [CrossRef] [PubMed]
- Campa, D.; Gioia, A.; Tomei, A.; Poli, P.; Barale, R. Association of ABCB1/MDR1 and OPRM1 Gene Polymorphisms with Morphine Pain Relief. Clin. Pharmacol. Ther. 2008, 83, 559–566. [Google Scholar] [CrossRef]
- Sturgess, J.E.; George, T.P.; Kennedy, J.L.; Heinz, A.; Müller, D.J. Pharmacogenetics of Alcohol, Nicotine and Drug Addiction Treatments. Addict. Biol. 2011, 16, 357–376. [Google Scholar] [CrossRef] [PubMed]
- Deb, I.; Chakraborty, J.; Gangopadhyay, P.K.; Choudhury, S.R.; Das, S. Single-Nucleotide Polymorphism (A118G) in Exon 1 of OPRM1 Gene Causes Alteration in Downstream Signaling by Mu-Opioid Receptor and May Contribute to the Genetic Risk for Addiction. J. Neurochem. 2010, 112, 486–496. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, M.; Tang, H.; Zhong, H.; Lu, X. κ Opioid Receptor 1 Single Nucleotide Polymorphisms Were Associated with the Methadone Dosage. Genet. Test. Mol. Biomark. 2020, 24, 17–23. [Google Scholar] [CrossRef]
- Wang, S.C.; Tsou, H.H.; Chung, R.H.; Chang, Y.S.; Fang, C.P.; Chen, C.H.; Ho, I.K.; Kuo, H.W.; Liu, S.C.; Shih, Y.H.; et al. The Association of Genetic Polymorphisms in the κ-Opioid Receptor 1 Gene with Body Weight, Alcohol Use, and Withdrawal Symptoms in Patients with Methadone Maintenance. J. Clin. Psychopharmacol. 2014, 34, 205–211. [Google Scholar] [CrossRef]
- Mercadante, S.; Arcuri, E.; Santoni, A. Opioid-Induced Tolerance and Hyperalgesia. CNS Drugs 2019, 33, 943–955. [Google Scholar] [CrossRef]
- Phillips, J.K.; Ford, M.A.; Bonnie, R.J. (Eds.) Pain Management and the Opioid Epidemic: Balancing Societal and Individual Benefits and Risks of Prescription Opioid Use; National Academies Press: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Nascimento, T.D.; Yang, N.; Salman, D.; Jassar, H.; Kaciroti, N.; Bellile, E.; Danciu, T.; Koeppe, R.; Stohler, C.; Zubieta, J.K.; et al. Μ-Opioid Activity in Chronic TMD Pain Is Associated with COMT Polymorphism. J. Dent. Res. 2019, 98, 1324–1331. [Google Scholar] [CrossRef]
- Meloto, C.B.; Segall, S.K.; Smith, S.; Parisien, M.; Shabalina, S.A.; Rizzatti-Barbosa, C.M.; Gauthier, J.; Tsao, D.; Convertino, M.; Piltonen, M.H.; et al. COMT Gene Locus: New Functional Variants. Pain 2015, 156, 2072–2083. [Google Scholar] [CrossRef]
- Kowarik, M.C.; Einhäuser, J.; Jochim, B.; Büttner, A.; Tölle, T.R.; Riemenschneider, M.; Platzer, S.; Berthele, A. Impact of the COMT Val 108/158Met Polymorphism on the Mu-Opioid Receptor System in the Human Brain: Mu-Opioid Receptor, Met-Enkephalin and Beta-Endorphin Expression. Neurosci. Lett. 2012, 506, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, H.; Arao, T.; Makimura, C.; Takeda, M.; Kiyota, H.; Tsurutani, J.; Fujita, Y.; Matsumoto, K.; Kimura, H.; Otsuka, M.; et al. Expression Changes in Arrestin β 1 and Genetic Variation in Catechol-O-Methyltransferase Are Biomarkers for the Response to Morphine Treatment in Cancer Patients. Oncol. Rep. 2012, 27, 1393–1399. [Google Scholar] [CrossRef] [PubMed]
- Rakvåg, T.T.; Ross, J.R.; Sato, H.; Skorpen, F.; Kaasa, S.; Klepstad, P. Genetic Variation in the Catechol-O-Methyltransferase (COMT) Gene and Morphine Requirements in Cancer Patients with Pain. Mol. Pain 2008, 4. [Google Scholar] [CrossRef] [PubMed]
- De Gregori, M.; Garbin, G.; De Gregori, S.; Minella, C.E.; Bugada, D.; Lisa, A.; Govoni, S.; Regazzi, M.; Allegri, M.; Ranzani, G.N. Genetic Variability at COMT but Not at OPRM1 and UGT2B7 Loci Modulates Morphine Analgesic Response in Acute Postoperative Pain. Eur. J. Clin. Pharmacol. 2013, 69, 1651–1658. [Google Scholar] [CrossRef] [PubMed]
- Kolesnikov, Y.; Gabovits, B.; Levin, A.; Voiko, E.; Veske, A. Combined Catechol-O-Methyltransferase and Mu-Opioid Receptor Gene Polymorphisms Affect Morphine Postoperative Analgesia and Central Side Effects. Anesth. Analg. 2011, 112, 448–453. [Google Scholar] [CrossRef]
- Henker, R.A.; Lewis, A.; Dai, F.; Lariviere, W.R.; Meng, L.; Gruen, G.S.; Sereika, S.M.; Pape, H.; Tarkin, I.S.; Gowda, I.; et al. The Associations between OPRM 1 and COMT Genotypes and Postoperative Pain, Opioid Use, and Opioid-Induced Sedation. Biol. Res. Nurs. 2013, 15, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wu, N.; Liu, X.; Zhu, J.; Liu, Z. The Catechol-O-Methyltransferase (COMT) Val158Met Polymorphism Is Associated with Oxycodone Requirements, Adverse Effects, and Pain Sensitivity in Cancer Patients. J. Clin. Pharm. Ther. 2024, 2024, 9990112. [Google Scholar] [CrossRef]
- Matsuoka, H.; Makimura, C.; Koyama, A.; Fujita, Y.; Tsurutani, J.; Sakai, K.; Sakamoto, R.; Nishio, K.; Nakagawa, K. Prospective Replication Study Implicates the Catechol-O-Methyltransferase Val158Met Polymorphism as a Biomarker for the Response to Morphine in Patients with Cancer. Biomed. Rep. 2017, 7, 380–384. [Google Scholar] [CrossRef]
- Goswami, S.; Gong, L.; Giacomini, K.; Altman, R.B.; Klein, T.E. PharmGKB Summary: Very Important Pharmacogene Information for SLC22A1. Pharmacogenet. Genom. 2014, 24, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Tzvetkov, M.V.; Dos Santos Pereira, J.N.; Meineke, I.; Saadatmand, A.R.; Stingl, J.C.; Brockmöller, J. Morphine Is a Substrate of the Organic Cation Transporter OCT1 and Polymorphisms in OCT1 Gene Affect Morphine Pharmacokinetics after Codeine Administration. Biochem. Pharmacol. 2013, 86, 666–678. [Google Scholar] [CrossRef]
- Tzvetkov, M.V.; Saadatmand, A.R.; Lötsch, J.; Tegeder, I.; Stingl, J.C.; Brockmöller, J. Genetically Polymorphic OCT1: Another Piece in the Puzzle of the Variable Pharmacokinetics and Pharmacodynamics of the Opioidergic Drug Tramadol. Clin. Pharmacol. Ther. 2011, 90, 143–150. [Google Scholar] [CrossRef]
- Ozberk, D.; Haywood, A.; Sutherland, H.G.; Yu, C.; Albury, C.L.; Zunk, M.; George, R.; Good, P.; Griffiths, L.R.; Hardy, J.; et al. Association of Polymorphisms in ARRB2 and Clinical Response to Methadone for Pain in Advanced Cancer. Pharmacogenomics 2022, 23, 281–289. [Google Scholar] [CrossRef]
- Donaldson, R.; Sun, Y.; Liang, D.Y.; Zheng, M.; Sahbaie, P.; Dill, D.L.; Peltz, G.; Buck, K.J.; Clark, J.D. The Multiple PDZ Domain Protein Mpdz/MUPP1 Regulates Opioid Tolerance and Opioid-Induced Hyperalgesia. BMC Genom. 2016, 17, 313. [Google Scholar] [CrossRef]
- Liang, D.Y.; Zheng, M.; Sun, Y.; Sahbaie, P.; Low, S.A.; Peltz, G.; Scherrer, G.; Flores, C.; Clark, J.D. The Netrin-1 Receptor DCC Is a Regulator of Maladaptive Responses to Chronic Morphine Administration. BMC Genom. 2014, 15, 345. [Google Scholar] [CrossRef]
- Magarbeh, L.; Gorbovskaya, I.; Le Foll, B.; Jhirad, R.; Müller, D.J. Reviewing Pharmacogenetics to Advance Precision Medicine for Opioids. Biomed. Pharmacother. 2021, 142, 112060. [Google Scholar] [CrossRef]
- Lemberg, K.K.; Heiskanen, T.E.; Neuvonen, M.; Kontinen, V.K.; Neuvonen, P.J.; Dahl, M.L.; Kalso, E.A. Does Co-Administration of Paroxetine Change Oxycodone Analgesia: An Interaction Study in Chronic Pain Patients. Scand. J. Pain 2010, 1, 24–33. [Google Scholar] [CrossRef]
- Armstrong, S.C.; Cozza, K.L. Pharmacokinetic Drug Interactions of Morphine, Codeine, and Their Derivatives: Theory and Clinical Reality, Part II. Psychosomatics 2003, 44, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Nahid, N.A.; Johnson, J.A. CYP2D6 Pharmacogenetics and Phenoconversion in Personalized Medicine. Expert. Opin. Drug Metab. Toxicol. 2022, 18, 769–785. [Google Scholar] [CrossRef] [PubMed]
- Klomp, S.D.; Manson, M.L.; Guchelaar, H.J.; Swen, J.J. Phenoconversion of Cytochrome P450 Metabolism: A Systematic Review. J. Clin. Med. 2020, 9, 2890. [Google Scholar] [CrossRef]
- Cicali, E.J.; Elchynski, A.L.; Cook, K.J.; Houder, J.T.; Thomas, C.D.; Smith, D.M.; Elsey, A.; Johnson, J.A.; Cavallari, L.H.; Wiisanen, K. How to Integrate CYP2D6 Phenoconversion Into Clinical Pharmacogenetics: A Tutorial. Clin. Pharmacol. Ther. 2021, 110, 677–687. [Google Scholar] [CrossRef]
- Stamer, U.M.; Musshoff, F.; Kobilay, M.; Madea, B.; Hoeft, A.; Stuber, F. Concentrations of Tramadol and O-Desmethyltramadol Enantiomers in Different CYP2D6 Genotypes. Clin. Pharmacol. Ther. 2007, 82, 41–47. [Google Scholar] [CrossRef]
- Ashraf, M.W.; Poikola, S.; Neuvonen, M.; Kiiski, J.I.; Kontinen, V.K.; Olkkola, K.T.; Backman, J.T.; Niemi, M.; Saari, T.I. Population Pharmacokinetic Quantification of CYP2D6 Activity in Codeine Metabolism in Ambulatory Surgical Patients for Model-Informed Precision Dosing. Clin. Pharmacokinet. 2024, 63, 1547–1560. [Google Scholar] [CrossRef]
- Armstrong, S.C.; Cozza, K.L. Med-Psych Drug-Drug Interactions Update. Psychosomatics 2002, 43, 169–170. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.G.; Au, N.T.; Rettie, A.E. P450-Based Drug-Drug Interactions of Amiodarone and Its Metabolites: Diversity of Inhibitory Mechanisms. Drug Metab. Dispos. 2015, 43, 1661–1669. [Google Scholar] [CrossRef]
- Nieminen, T.H.; Hagelberg, N.M.; Saari, T.I.; Pertovaara, A.; Neuvonen, M.; Laine, K.; Neuvonen, P.J.; Olkkola, K.T. Rifampin Greatly Reduces the Plasma Concentrations of Intravenous and Oral Oxycodone. Anesthesiology 2009, 110, 1371–1378. [Google Scholar] [CrossRef]
- Samer, C.F.; Daali, Y.; Wagner, M.; Hopfgartner, G.; Eap, C.B.; Rebsamen, M.C.; Rossier, M.F.; Hochstrasser, D.; Dayer, P.; Desmeules, J.A. Genetic Polymorphisms and Drug Interactions Modulating CYP2D6 and CYP3A Activities Have a Major Effect on Oxycodone Analgesic Efficacy and Safety. Br. J. Pharmacol. 2010, 160, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Stringer, J.; Welsh, C.; Tommasello, A. Methadone-Associated Q-T Interval Prolongation and Torsades de Pointes. Am. J. Health-Syst. Pharm. 2009, 66, 825–833. [Google Scholar] [CrossRef]
- Lötsch, J.; Skarke, C.; Tegeder, I.; Geisslinger, G. Drug Interactions with Patient-Controlled Analgesia. Clin. Pharmacokinet. 2002, 41, 31–57. [Google Scholar] [CrossRef] [PubMed]
- Gougis, P.; Hilmi, M.; Geraud, A.; Mir, O.; Funck-Brentano, C. Potential Cytochrome P450-Mediated Pharmacokinetic Interactions between Herbs, Food, and Dietary Supplements and Cancer Treatments. Crit. Rev. Oncol. Hematol. 2021, 166, 103342. [Google Scholar] [CrossRef] [PubMed]
| CYP3A4 | CYP2D6 | UGT2B7 | ||||
|---|---|---|---|---|---|---|
| Active | Inactive | Active | Inactive | Active | Inactive | |
| Codeine | NORC § | Morphine | C-6-G | |||
| Morphine | M-6-G | M-3-G | ||||
| Tramadol | M2 | M1, M5 § | ||||
| Fentanyl | Norfentanyl | |||||
| Hydromorphone * | H-6-G, H-3-G | |||||
| Buprenorphine | Norbuprenorphine | |||||
| Oxycodone | Noroxycodone § | Oxymorphone | ||||
| Methadone | EDDP, EMDP | |||||
| Gene | Polymorphism | Drug |
|---|---|---|
| CYP2D6 | *1, *2, *35 | Tramadol |
| *3, *4, *6 | codeine | |
| *9, *10, *17, *29, *41 | Hydromorphone | |
| CYP3A4 | *1b, *2, *3, *22 | Codeine, oxycodone, buprenorphine, fentanyl |
| CYP3A5 | *1b, *2, *3, *22 | Methadone, fentanyl, alfentanil |
| CYP2B6 | *6 | Methadone |
| ABCB1 | 1236C>T, 3435C>T and 2677G>T/A | Morphine, fentanyl |
| UGT2B7 | 802T>C and 900G>A | Morphine |
| Drug | CYP3A4 | CYP2D6 | Clinical Consequences | ||
|---|---|---|---|---|---|
| Inducer | Inhibitor | Inducer | Inhibitor | ||
| Tramadol | NR | NR | NR | Antidepressants (fluoxetine, paroxetine, bupropion) | Reduced formation of the active metabolite (O-desmethyltramadol) and decreased analgesic efficacy |
| Codeine | NR | NR | NR | Antidepressants (fluoxetine, paroxetine, bupropion) Antihistamines (cimetidine) Antiarrhythmic (amiodarone, quinidine) Antiemetics (ondansetron) Antiretrovirals (ritonavir) | Reduced conversion to morphine and decreased analgesic effect |
| Oxycodone | Antibiotic (rifampicin) | NR | Antibiotic (rifampicin) | NR | Reduced plasma concentration and analgesia |
| NR | Antifungals (voriconazole, itraconazole, ketoconazole) | NR | NR | Increased plasma concentration and risk of sedation, nausea, hypotension, respiratory depression | |
| Fentanyl | NR | Antiretrovirals (ritonavir, nelfinavir) Antifungals (voriconazolo, ketoconazole, itraconazole) Antibiotics (ciprofloxacin, troleandomycin, clarithromycin) | NR | NR | Increased plasma levels and risk of respiratory depression and bradycardia |
| Methadone | Antibiotics (rifampicin) Anticonvulsants (carbamazepine) Antiepileptics (phenytoin) Barbiturates (pentobarbital) | NR | NR | NR | Decreased plasma level and withdrawal risk |
| NR | Antiretroviral (ritonavir, nelfinavir) Antifungals (voriconazolo, ketoconazole, itraconazole), Antibiotics (ciprofloxacin, troleandomycin clarithromycin) Calcium Channel Blocker (diltiazem) | NR | NR | Increased plasma level and risk of sedation, confusion, respiratory depression, QT prolongation | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Di Salvo, C.; Valdiserra, G.; Balestrieri, S.; Beucci, G.; Paciulli, G.; Luculli, G.I.; De Vita, A.; Fornai, M.; Di Paolo, A.; Antonioli, L. The Role of Clinical Pharmacogenetics and Opioid Interactions in Pain Management: Current Evidence and Future Perspectives. Pharmaceutics 2026, 18, 59. https://doi.org/10.3390/pharmaceutics18010059
Di Salvo C, Valdiserra G, Balestrieri S, Beucci G, Paciulli G, Luculli GI, De Vita A, Fornai M, Di Paolo A, Antonioli L. The Role of Clinical Pharmacogenetics and Opioid Interactions in Pain Management: Current Evidence and Future Perspectives. Pharmaceutics. 2026; 18(1):59. https://doi.org/10.3390/pharmaceutics18010059
Chicago/Turabian StyleDi Salvo, Clelia, Giulia Valdiserra, Stefano Balestrieri, Giuditta Beucci, Giulia Paciulli, Giovanna Irene Luculli, Alessandro De Vita, Matteo Fornai, Antonello Di Paolo, and Luca Antonioli. 2026. "The Role of Clinical Pharmacogenetics and Opioid Interactions in Pain Management: Current Evidence and Future Perspectives" Pharmaceutics 18, no. 1: 59. https://doi.org/10.3390/pharmaceutics18010059
APA StyleDi Salvo, C., Valdiserra, G., Balestrieri, S., Beucci, G., Paciulli, G., Luculli, G. I., De Vita, A., Fornai, M., Di Paolo, A., & Antonioli, L. (2026). The Role of Clinical Pharmacogenetics and Opioid Interactions in Pain Management: Current Evidence and Future Perspectives. Pharmaceutics, 18(1), 59. https://doi.org/10.3390/pharmaceutics18010059

