Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = cyclopentadiene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1994 KiB  
Article
Modeling of the General Trends of Reactivity and Regioselectivity in Cyclopentadiene–Nitroalkene Diels–Alder Reactions
by Adrianna Fałowska, Stanisław Grzybowski, Daniel Kapuściński, Karol Sambora and Agnieszka Łapczuk
Molecules 2025, 30(11), 2467; https://doi.org/10.3390/molecules30112467 - 4 Jun 2025
Cited by 1 | Viewed by 1268
Abstract
This study presents a theoretical investigation of the electronic properties of mono- and pentasubstituted cyclopentadiene analogs and variously substituted conjugated nitroalkenes bearing electron-donating and electron-withdrawing groups. Conceptual Density Functional Theory (CDFT) and Electron Localization Function (ELF) analyses were employed to characterize the global [...] Read more.
This study presents a theoretical investigation of the electronic properties of mono- and pentasubstituted cyclopentadiene analogs and variously substituted conjugated nitroalkenes bearing electron-donating and electron-withdrawing groups. Conceptual Density Functional Theory (CDFT) and Electron Localization Function (ELF) analyses were employed to characterize the global and local reactivity indices of the reactants. The obtained data provided insights into the nucleophilic and electrophilic nature of the investigated systems, allowing for the prediction of their reactivity patterns in Diels–Alder reactions. A reactivity model for conjugated alkenes toward cyclopentadienes was developed based on correlation analysis using Hammett substituent constants. This approach enabled the prediction of reaction polarity in (4+2) cycloaddition processes, providing insight into how the electronic effects of substituents influence the reaction course. These findings contribute to a deeper understanding of structure–reactivity relationships in Diels–Alder processes. Full article
(This article belongs to the Special Issue Cyclization Reactions in Organic Synthesis: Recent Developments)
Show Figures

Figure 1

33 pages, 9334 KiB  
Article
Preclinical and Molecular Docking Insights into the Chemopreventive Role of Fenugreek Seed Extract in a Murine Model of Colorectal Cancer
by Arif Khan, Khaled S. Allemailem, Arwa Essa Alradhi and Faizul Azam
Pharmaceuticals 2025, 18(4), 490; https://doi.org/10.3390/ph18040490 - 28 Mar 2025
Viewed by 916
Abstract
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer-related mortality, necessitating the development of effective preventive strategies. Fenugreek (Trigonella foenum-graecum) possesses well-documented pharmacological properties; however, its chemopreventive potential in colorectal cancer (CRC) remains unexplored. This study evaluates the efficacy of [...] Read more.
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer-related mortality, necessitating the development of effective preventive strategies. Fenugreek (Trigonella foenum-graecum) possesses well-documented pharmacological properties; however, its chemopreventive potential in colorectal cancer (CRC) remains unexplored. This study evaluates the efficacy of methanolic fenugreek seed extract (FSE) in an azoxymethane (AOM)-induced murine colorectal cancer (CRC) model, focusing on the modulation of oxidative stress, regulation of biomarkers, induction of apoptosis, and maintenance of epithelial integrity. Methods: FSE was extracted using cold maceration (yield: 24%) and analyzed by gas chromatography–mass spectrometry (GC-MS), identifying 13 bioactive compounds, including benzene, 1,3-dimethyl-; 1,3-cyclopentadiene, 5-(1-methylethylidene)-; o-Xylene; benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-; and benzene, 1,2,3-trimethyl-. All 13 compounds identified were matched with the NIST library with high confidence. Molecular docking was used to assess the interactions of FSE bioactives with E-cadherin–β-catenin complexes. Swiss albino mice received an FSE pre-treatment before AOM induction and continued this treatment three times weekly for 21 weeks. Key assessments included survival analysis, body weight changes, serum biomarker levels (GGT, 5′-NT, LDH), antioxidant enzyme activities (SOD, CAT, GPx1, MDA), reactive oxygen species (ROS) quantification, apoptosis detection via flow cytometry, and immunofluorescence-based evaluation of E-cadherin dynamics. Results: FSE improved survival rates, mitigated AOM-induced weight loss, and dose-dependently reduced serum biomarker levels. Antioxidant enzyme activity was restored, while MDA levels declined. A dose-dependent increase in ROS facilitated apoptosis, as confirmed by flow cytometry (16.7% in the low-dose FSE group and 34.5% in the high-dose FSE group). Immunofluorescence studies revealed that FSE-mediated restoration of E-cadherin localization counteracted AOM-induced epithelial disruptions. Conclusions: FSE exhibits potent chemopreventive potential against CRC by modulating oxidative stress, regulating key biomarkers, inducing apoptosis, and restoring epithelial integrity. These findings support further investigations into its clinical relevance for CRC prevention. Full article
Show Figures

Graphical abstract

16 pages, 2654 KiB  
Article
PyBox–La(OTf)3-Catalyzed Enantioselective Diels–Alder Cycloadditions of 2-Alkenoylpyridines with Cyclopentadiene
by Hao Wei, Yujie Zhang, Sanlin Jin, Ying Yu, Ning Chen, Jiaxi Xu and Zhanhui Yang
Molecules 2024, 29(13), 2978; https://doi.org/10.3390/molecules29132978 - 22 Jun 2024
Cited by 1 | Viewed by 1911
Abstract
The PyBox–La(OTf)3-catalyzed enantioselective Diels–Alder cycloaddition of 2-alk-2-enoylpyridines with cyclopentadiene is realized, producing enantiopure disubstituted norbornenes, which possess four contiguous stereocenters and are biologically relevant structures in up to 92:8 dr and 99:1 er. Full article
(This article belongs to the Special Issue Current Development of Asymmetric Catalysis and Synthesis)
Show Figures

Graphical abstract

15 pages, 2980 KiB  
Article
Revealing the Critical Role of Global Electron Density Transfer in the Reaction Rate of Polar Organic Reactions within Molecular Electron Density Theory
by Luis R. Domingo and Mar Ríos-Gutiérrez
Molecules 2024, 29(8), 1870; https://doi.org/10.3390/molecules29081870 - 19 Apr 2024
Cited by 9 | Viewed by 1670
Abstract
The critical role of global electron density transfer (GEDT) in increasing the reaction rate of polar organic reactions has been studied within the framework of Molecular Electron Density Theory (MEDT). To this end, the series of the polar Diels–Alder (P-DA) reactions of cyclopentadiene [...] Read more.
The critical role of global electron density transfer (GEDT) in increasing the reaction rate of polar organic reactions has been studied within the framework of Molecular Electron Density Theory (MEDT). To this end, the series of the polar Diels–Alder (P-DA) reactions of cyclopentadiene with cyanoethylene derivatives, for which experimental kinetic data are available, have been chosen. A complete linear correlation between the computed activation Gibbs free energies and the GEDT taking place at the polar transition state structures (TSs) is found; the higher the GEDT at the TS, the lower the activation Gibbs free energy. An interacting quantum atoms energy partitioning analysis allows for establishing a complete linear correlation between the electronic stabilization of the electrophilic ethylene frameworks and the GEDT taking place at the polar TSs. This finding supports Parr’s proposal for the definition of the electrophilicity ω index. The present MEDT study establishes the critical role of the GEDT in the acceleration of polar reactions, since the electronic stabilization of the electrophilic framework with the electron density gain is greater than the destabilization of the nucleophilic one, making a net favorable electronic contribution to the decrease in the activation energy. Full article
(This article belongs to the Special Issue Feature Papers in Computational and Theoretical Chemistry)
Show Figures

Figure 1

17 pages, 4775 KiB  
Article
Adsorption Affinities of Small Volatile Organic Molecules on Graphene Surfaces for Novel Nanofiller Design: A DFT Study
by Francesco Moriggi, Vincenzina Barbera, Maurizio Galimberti and Giuseppina Raffaini
Molecules 2023, 28(22), 7633; https://doi.org/10.3390/molecules28227633 - 16 Nov 2023
Cited by 5 | Viewed by 2481
Abstract
The adsorption of organic molecules on graphene surfaces is a crucial process in many different research areas. Nano-sized carbon allotropes, such as graphene and carbon nanotubes, have shown promise as fillers due to their exceptional properties, including their large surface area, thermal and [...] Read more.
The adsorption of organic molecules on graphene surfaces is a crucial process in many different research areas. Nano-sized carbon allotropes, such as graphene and carbon nanotubes, have shown promise as fillers due to their exceptional properties, including their large surface area, thermal and electrical conductivity, and potential for weight reduction. Surface modification methods, such as the “pyrrole methodology”, have been explored to tailor the properties of carbon allotropes. In this theoretical work, an ab initio study based on Density Functional Theory is performed to investigate the adsorption process of small volatile organic molecules (such as pyrrole derivatives) on graphene surface. The effects of substituents, and different molecular species are examined to determine the influence of the aromatic ring or the substituent of pyrrole’s aromatic ring on the adsorption energy. The number of atoms and presence of π electrons significantly influence the corresponding adsorption energy. Interestingly, pyrroles and cyclopentadienes are 10 kJ mol−1 more stable than the corresponding unsaturated ones. Pyrrole oxidized derivatives display more favorable supramolecular interactions with graphene surface. Intermolecular interactions affect the first step of the adsorption process and are important to better understand possible surface modifications for carbon allotropes and to design novel nanofillers in polymer composites. Full article
Show Figures

Graphical abstract

13 pages, 3499 KiB  
Article
Dynamic Properties of Di(cyclopentadienecarboxylic Acid) Dimethyl Esters
by Alojz Anžlovar, Damjan Jan Pavlica, David Pahovnik and Ema Žagar
Int. J. Mol. Sci. 2023, 24(19), 14980; https://doi.org/10.3390/ijms241914980 - 7 Oct 2023
Cited by 1 | Viewed by 1833
Abstract
Di(cyclopentadienecarboxylic acid) dimethyl ester (DCPDME) is a potential dynamic covalent system. When such molecules are used as dynamic crosslinkers in polymers, understanding the reversibility of cyclopentadiene dimerization is crucial to determine optimal melt processing conditions. To this end, we synthesized DCPDME, which consists [...] Read more.
Di(cyclopentadienecarboxylic acid) dimethyl ester (DCPDME) is a potential dynamic covalent system. When such molecules are used as dynamic crosslinkers in polymers, understanding the reversibility of cyclopentadiene dimerization is crucial to determine optimal melt processing conditions. To this end, we synthesized DCPDME, which consists of three regioisomers with different physicochemical properties, which were investigated by isolating them and further characterizing them using 1H NMR, FTIR and DSC. There have been many attempts to improve the synthesis process to increase the reaction yield and purity of isomer 3, and this goal remains a challenge today. In this work, we show that pure isomers 1 and 2 irreversibly convert to the more stable DCPDME isomer 3 at temperatures between 120 and 140 °C in N2. This shows that isolation of the pure isomer 3 from the DCPDME isomer mixture is not necessary. The DCPDME isomer 3 is reversibly cleaved to the monomeric cyclopentadienecarboxylic acid methyl ester (CPME), as confirmed with GC–MS and the resulting mass spectrum. The conversion of DCPDME isomers 1 and 2 to isomer 3 was confirmed by heating the synthesized mixture of DCPDME isomers at 135 °C for 5 min in N2, producing an almost pure isomer 3 which increased its synthesis yield by 35%. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

13 pages, 1594 KiB  
Article
Catalysis of a Diels–Alder Reaction between Azachalcones and Cyclopentadiene by a Recyclable Copper(II)-PEIP Metal-Organic Framework
by Eleni Hadjikyprianou, Sotiris Petrides, Andreas Kourtellaris, Anastasios J. Tasiopoulos and Savvas N. Georgiades
Materials 2023, 16(15), 5298; https://doi.org/10.3390/ma16155298 - 27 Jul 2023
Cited by 1 | Viewed by 1829
Abstract
Metal-organic frameworks (MOFs) have attracted considerable interest as emerging heterogeneous catalysts for organic transformations of synthetic utility. Herein, a Lewis-acidic MOF, {[Cu3(PEIP)2(5-NH2-mBDC)(DMF)]·7DMF}∞, denoted as Cu(ΙΙ)-PEIP, has been synthesized via a one-pot process and deployed as [...] Read more.
Metal-organic frameworks (MOFs) have attracted considerable interest as emerging heterogeneous catalysts for organic transformations of synthetic utility. Herein, a Lewis-acidic MOF, {[Cu3(PEIP)2(5-NH2-mBDC)(DMF)]·7DMF}∞, denoted as Cu(ΙΙ)-PEIP, has been synthesized via a one-pot process and deployed as an efficient heterogeneous catalyst for a Diels–Alder cycloaddition. Specifically, the [4 + 2] cycloaddition of 13 substituted azachalcone dienophiles with cyclopentadiene has been investigated. MOF-catalyzed reaction conditions were optimized, leading to the selection of water as the solvent, in the presence of 10% mol sodium dodecyl sulfate (SDS) to address substrate solubility. The Cu(II)-PEIP catalyst showed excellent activity under these green and mild conditions, exhibiting comparable or, in some cases, superior efficiency to a homogeneous catalyst often employed in Diels–Alder reactions, namely, Cu(OTf)2. The nature of the azachalcone substituent played a significant role in the reactivity of the dienophiles, with electron-withdrawing (EW) substituents enhancing conversion and electron-donating (ED) ones exhibiting the opposite effect. Coordinating substituents appeared to enhance the endo selectivity. Importantly, the Cu(II)-PEIP catalyst can be readily isolated from the reaction mixture and recycled up to four times without any significant reduction in conversion or selectivity. Full article
(This article belongs to the Special Issue Chemistry and Applications of Metal-Organic Frameworks)
Show Figures

Graphical abstract

13 pages, 2671 KiB  
Article
Understanding the Molecular Mechanism of Thermal and LA-Catalysed Diels–Alder Reactions between Cyclopentadiene and Isopropyl 3-Nitroprop-2-Enate
by Ewa Dresler, Aneta Wróblewska and Radomir Jasiński
Molecules 2023, 28(14), 5289; https://doi.org/10.3390/molecules28145289 - 8 Jul 2023
Cited by 20 | Viewed by 1754
Abstract
The molecular mechanism of the Diels–Alder reaction with the participation of cyclopentadiene and isopropyl 3-nitroprop-2-enate was examined based on wb97xd/6-311+G(d) (PCM) quantum chemical calculations. It was found that the type of mechanism for the conversion of addends depends significantly on the reaction conditions. [...] Read more.
The molecular mechanism of the Diels–Alder reaction with the participation of cyclopentadiene and isopropyl 3-nitroprop-2-enate was examined based on wb97xd/6-311+G(d) (PCM) quantum chemical calculations. It was found that the type of mechanism for the conversion of addends depends significantly on the reaction conditions. In less-polar environments, a one-step polar mechanism is realised. In more polar solvents, the formation of “extended”-type zwitterionic intermediates is possible. In contrast, in the presence of an LA-type catalyst, the one-step mechanisms are replaced by respective stepwise mechanisms with zwitterionic or heterocyclic intermediates. Full article
(This article belongs to the Special Issue Computational and Theoretical Studies on Isomeric Organic Compounds)
Show Figures

Figure 1

25 pages, 7510 KiB  
Article
Novel Route to Cationic Palladium(II)–Cyclopentadienyl Complexes Containing Phosphine Ligands and Their Catalytic Activities
by Dmitry S. Suslov, Mikhail V. Bykov, Marina V. Pakhomova, Timur S. Orlov, Zorikto D. Abramov, Anastasia V. Suchkova, Igor A. Ushakov, Pavel A. Abramov and Alexander S. Novikov
Molecules 2023, 28(10), 4141; https://doi.org/10.3390/molecules28104141 - 17 May 2023
Cited by 4 | Viewed by 2713
Abstract
The Pd(II) complexes [Pd(Cp)(L)n]m[BF4]m were synthesized via the reaction of cationic acetylacetonate complexes with cyclopentadiene in the presence of BF3∙OEt2 (n = 2, m = 1: L = PPh3 (1 [...] Read more.
The Pd(II) complexes [Pd(Cp)(L)n]m[BF4]m were synthesized via the reaction of cationic acetylacetonate complexes with cyclopentadiene in the presence of BF3∙OEt2 (n = 2, m = 1: L = PPh3 (1), P(p-Tol)3, tris(ortho-methoxyphenyl)phosphine (TOMPP), tri-2-furylphosphine, tri-2-thienylphosphine; n = 1, m = 1: L = dppf, dppp (2), dppb (3), 1,5-bis(diphenylphosphino)pentane; n = 1, m = 2 or 3: 1,6-bis(diphenylphosphino)hexane). Complexes 13 were characterized using X-ray diffractometry. The inspection of the crystal structures of the complexes enabled the recognition of (Cp)⋯(Ph-group) and (Cp)⋯(CH2-group) interactions, which are of C–H…π nature. The presence of these interactions was confirmed theoretically via DFT calculations using QTAIM analysis. The intermolecular interactions in the X-ray structures are non-covalent in origin with an estimated energy of 0.3–1.6 kcal/mol. The cationic palladium catalyst precursors with monophosphines were found to be active catalysts for the telomerization of 1,3-butadiene with methanol (TON up to 2.4∙104 mol 1,3-butadiene per mol Pd with chemoselectivity of 82%). Complex [Pd(Cp)(TOMPP)2]BF4 was found to be an efficient catalyst for the polymerization of phenylacetylene (PA) (catalyst activities up to 8.9 × 103 gPA·(molPd·h)−1 were observed) Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry 2.0)
Show Figures

Graphical abstract

22 pages, 5871 KiB  
Article
Phosphine Functionalized CpC Ligands and Their Metal Complexes
by Florian Nährig, Yu Sun and Werner R. Thiel
Chemistry 2023, 5(2), 912-933; https://doi.org/10.3390/chemistry5020062 - 18 Apr 2023
Viewed by 2379
Abstract
Simple nucleophilic aliphatic substitution gives access to mono- and diphosphine ligands with a CpC group in the backbone. The monophosphine ligand coordinates to gold(I) via the phosphine site, to thallium(I) via the cyclopentadienyl site and to ruthenium(II) via a combination of both, [...] Read more.
Simple nucleophilic aliphatic substitution gives access to mono- and diphosphine ligands with a CpC group in the backbone. The monophosphine ligand coordinates to gold(I) via the phosphine site, to thallium(I) via the cyclopentadienyl site and to ruthenium(II) via a combination of both, resulting in an ansa-type structure. Coordination with the cyclopentadiene site is not possible for the diphosphine ligand. In this case, monodentate coordination to gold(I) and bidentate coordination to the [PdCl(μ2-Cl)]2, the [Rh(CO)(μ2-Cl)]2, and the Rh(CO)Cl fragment is observed, showing the variability in coordination modes possible for the long-chain diphosphine ligand. Ligands and complexes were characterized by means of NMR and IR spectroscopy, elemental analysis and X-ray structure analysis. Full article
(This article belongs to the Special Issue Commemorating 150 Years of Justus von Liebig’s Legacy)
Show Figures

Graphical abstract

17 pages, 2248 KiB  
Article
[4+2]-Cycloaddition to 5-Methylidene-Hydantoins and 5-Methylidene-2-Thiohydantoins in the Synthesis of Spiro-2-Chalcogenimidazolones
by Dmitry E. Shybanov, Maxim E. Kukushkin, Yanislav S. Hrytseniuk, Yuri K. Grishin, Vitaly A. Roznyatovsky, Viktor A. Tafeenko, Dmitry A. Skvortsov, Nikolai V. Zyk and Elena K. Beloglazkina
Int. J. Mol. Sci. 2023, 24(5), 5037; https://doi.org/10.3390/ijms24055037 - 6 Mar 2023
Cited by 10 | Viewed by 2683
Abstract
Novel hydantion and thiohydantoin-based spiro-compounds were prepared via theDiels–Alder reactions between 5-methylidene-hydantoins or 5-methylidene-2-thiohydantoins and 1,3-dienes (cyclopentadiene, cyclohexadiene, 2,3-dimethylbutadiene, isoprene). It was shown that the cycloaddition reactions proceed regioselectively and stereoselectively with the formation of exo-isomers in the reactions with cyclic dienes andthe [...] Read more.
Novel hydantion and thiohydantoin-based spiro-compounds were prepared via theDiels–Alder reactions between 5-methylidene-hydantoins or 5-methylidene-2-thiohydantoins and 1,3-dienes (cyclopentadiene, cyclohexadiene, 2,3-dimethylbutadiene, isoprene). It was shown that the cycloaddition reactions proceed regioselectively and stereoselectively with the formation of exo-isomers in the reactions with cyclic dienes andthe less sterically hindered products in the reactions with isoprene. Reactions of methylideneimidazolones with cyclopentadiene proceed viaco-heating the reactants; reactions with cyclohexadiene, 2,3-dimethylbutadiene, and isoprene require catalysis by Lewis acids. It was demonstrated that ZnI2 is an effective catalyst in the Diels–Alder reactions of methylidenethiohydantoins with non-activated dienes. The possibility of alkylation and acylation of the obtained spiro-hydantoinsat the N(1)nitrogen atoms with PhCH2Cl or Boc2O and the alkylation of the spiro-thiohydantoinsat the S atoms with MeI or PhCH2Cl in high yields have been demonstrated. The preparativetransformation of spiro-thiohydantoins into corresponding spiro-hydantoinsin mild conditions by treating with 35% aqueous H2O2 or nitrile oxide has been carried out. The obtained compounds show moderate cytotoxicity in the MTT test on MCF7, A549, HEK293T, and VA13 cell lines. Some of the tested compounds demonstrated some antibacterial effect against Escherichia coli (E. coli) BW25113 DTC-pDualrep2 but were almost inactive against E. coli BW25113 LPTD-pDualrep2. Full article
(This article belongs to the Special Issue Development and Synthesis of Biologically Active Compounds)
Show Figures

Figure 1

26 pages, 5685 KiB  
Article
Synthesis of New Amino-Functionalized Porphyrins:Preliminary Study of Their Organophotocatalytic Activity
by Pol Torres, Marian Guillén, Marc Escribà, Joaquim Crusats and Albert Moyano
Molecules 2023, 28(4), 1997; https://doi.org/10.3390/molecules28041997 - 20 Feb 2023
Cited by 5 | Viewed by 5251
Abstract
The design, synthesis, and initial study of amino-functionalized porphyrins as a new class of bifunctional catalysts for asymmetric organophotocatalysis is described. Two new types of amine–porphyrin hybrids derived from 5,10,15,20-tetraphenylporphyrin (TPPH2), in which a cyclic secondary amine moiety is covalently linked [...] Read more.
The design, synthesis, and initial study of amino-functionalized porphyrins as a new class of bifunctional catalysts for asymmetric organophotocatalysis is described. Two new types of amine–porphyrin hybrids derived from 5,10,15,20-tetraphenylporphyrin (TPPH2), in which a cyclic secondary amine moiety is covalently linked either to a β-pyrrolic position (Type A) or to the p-position of one of the meso phenyl groups (Type B), were prepared by condensation, reductive amination, or amidation reactions from the suitable porphyrins (either formyl or methanamine derivatives) with readily available chiral amines. A preliminary study of the possible use of Type A amine–porphyrin hybrids as asymmetric, bifunctional organophotocatalysts was performed using the chiral, imidazolidinone-catalyzed Diels–Alder cycloaddition between cyclopentadiene 28 and trans-cinnamaldehyde 29 as a benchmark reaction. The yield and the stereochemical outcome of this process, obtained under purely organocatalytic conditions, under dual organophocatalysis, and under bifunctional organophotocatalysis, were compared. Full article
(This article belongs to the Special Issue Porphyrin-Based Compounds: Synthesis and Application)
Show Figures

Figure 1

7 pages, 762 KiB  
Communication
Synthesis of Pentacycloundecane (PCUD) Based Spiro-Pyrano-Cage Framework via Ring-Closing Metathesis
by Sambasivarao Kotha, Mohammad Salman and Subba Rao Cheekatla
Molbank 2023, 2023(1), M1567; https://doi.org/10.3390/M1567 - 23 Jan 2023
Cited by 1 | Viewed by 2337
Abstract
Here, we demonstrate a short synthetic route to pyrano cage systems containing pentacycloundecane units by employing ring-closing metathesis (RCM) as a key step. These cage systems were constructed starting with readily available starting materials by adopting atomic economic processes such as cycloadditions (Diels-Alder [...] Read more.
Here, we demonstrate a short synthetic route to pyrano cage systems containing pentacycloundecane units by employing ring-closing metathesis (RCM) as a key step. These cage systems were constructed starting with readily available starting materials by adopting atomic economic processes such as cycloadditions (Diels-Alder reaction and [2+2] cycloaddition), Grignard addition, and olefin metathesis. The key building block, such as hexacyclic cage dione, was prepared from 1,4-naphthoquinone derivative and freshly cracked 1,3-cyclopentadiene. Some of these heterocyclic motifs are useful in biological chemistry and valuable as key synthons for high-energy-density materials. Full article
(This article belongs to the Collection Heterocycle Reactions)
Show Figures

Figure 1

17 pages, 3217 KiB  
Article
Coordination Polymers of Polyphenyl-Substituted Potassium Cyclopentadienides
by Pavel D. Komarov, Kirill P. Birin, Alexander A. Vinogradov, Evgenia A. Varaksina, Lada N. Puntus, Konstantin A. Lyssenko, Andrei V. Churakov, Ilya E. Nifant’ev, Mikhail E. Minyaev and Dmitrii M. Roitershtein
Molecules 2022, 27(22), 7725; https://doi.org/10.3390/molecules27227725 - 9 Nov 2022
Cited by 2 | Viewed by 2001
Abstract
A series of potassium salts of di- and tri-arylsubstituted cyclopentadienes has been obtained by the metalation of the corresponding cyclopentadienes with benzylpotassium in THF media. Crystals of all compounds, afforded by recrystallization from THF/hexane, diglyme-THF/hexane and toluene/hexane mixtures, have been studied by X-ray [...] Read more.
A series of potassium salts of di- and tri-arylsubstituted cyclopentadienes has been obtained by the metalation of the corresponding cyclopentadienes with benzylpotassium in THF media. Crystals of all compounds, afforded by recrystallization from THF/hexane, diglyme-THF/hexane and toluene/hexane mixtures, have been studied by X-ray diffraction. All studied potassium cyclopentadienides exhibit the luminescence at room temperature and overall quantum yield of photoluminescence for potassium salt of diarylsubstituted cyclopentadiene is 18%. Full article
Show Figures

Graphical abstract

18 pages, 3456 KiB  
Article
Unveiling the Chemistry of Higher-Order Cycloaddition Reactions within the Molecular Electron Density Theory
by Luis R. Domingo, Mar Ríos-Gutiérrez and Patricia Pérez
Chemistry 2022, 4(3), 735-752; https://doi.org/10.3390/chemistry4030052 - 26 Jul 2022
Cited by 9 | Viewed by 3559
Abstract
The higher-order cycloaddition (HOCA) reaction of tropone with cyclopentadiene (Cp) has been studied within the Molecular Electron Density Theory. The Electron Localization Function (ELF) analysis of the electronic structure of tropone and Cp characterizes the structural behaviors of the two conjugated unsaturated systems, [...] Read more.
The higher-order cycloaddition (HOCA) reaction of tropone with cyclopentadiene (Cp) has been studied within the Molecular Electron Density Theory. The Electron Localization Function (ELF) analysis of the electronic structure of tropone and Cp characterizes the structural behaviors of the two conjugated unsaturated systems, while the conceptual DFT reactivity indices classify tropone as a strong electrophile and Cp as a strong nucleophile participating in polar cycloaddition reactions of reverse electron density flux. Eight competitive reaction paths have been characterized for this cycloaddition reaction. The most favorable one allowing the formation of the formal out [6 + 4] cycloadduct has an activation enthalpy of 16.2 kcal·mol−1, and the reaction is exothermic by −21.4 kcal·mol−1. This HOCA reaction, which takes place through a non-concerted two-stage one-step mechanism, presents high stereo-, pseudocyclic- and regioselectivities, explaining the exclusive formation of the experimental [6 + 4] cycloadduct. While the most favorable nucleophilic attack of Cp on most electrophilic C2 positions of tropone accounts for regioselectivities, the favorable electrostatic interactions present between the Cp framework and the negatively charged O8 oxygen of tropone account for the stereo- and pseudocyclic selectivities. Despite the symmetry of the two reagents, this HOCA reaction takes place via a highly asynchronous transition state structure as a consequence of the most favorable two-center interactions taking place between the electrophilic C2 center of tropone and the nucleophilic C9 center of Cp. Full article
Show Figures

Graphical abstract

Back to TopTop