Phosphine Functionalized CpC Ligands and Their Metal Complexes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Ligand Synthesis and Characterization
3.2. Transition Metal Complexes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Charrier, C.; Mathey, F. La diphenyl-cyclopentadienylmethyl-phosphine et ses complexesferroceniques et cymantreniques. Tetrahedron Lett. 1978, 19, 2407–2410. [Google Scholar] [CrossRef]
- Kettenbach, R.T.; Bonrath, W.; Butenschön, H. [ω-(Phosphanyl)alkyl]cyclopentadienyl Complexes. Chem. Ber. 1993, 126, 1657–1669. [Google Scholar] [CrossRef]
- Butenschön, H. Cyclopentadienylmetal Complexes Bearing Pendant Phosphorus, Arsenic, and Sulfur Ligands. Chem. Rev. 2000, 100, 1527–1564. [Google Scholar] [CrossRef] [PubMed]
- Bensley, D.M.; Mintz, E.A.; Sussangkarn, S.J. Synthesis of [C5(CH3)4H]CH2CH2CH2P(C6H5)2: A novel heterodifunctional ligand possessing both a tetramethylcyclopentadiene and a remote diphenylphosphine functionality. J. Org. Chem. 1988, 53, 4417–4419. [Google Scholar] [CrossRef]
- Bensley, D.M.; Mintz, E. 1,2,3,4,6-Pentamethylfulvene: A convenient precursor to substituted tetramethylcyclopentadienyl transition metal complexes. J. Organomet. Chem. 1988, 353, 93–102. [Google Scholar] [CrossRef]
- Hayashi, T.; Kumada, M. Asymmetric synthesis catalyzed by chiral ferrocenylphosphine-transition metal complexes. 2. Nickel- and palladium-catalyzed asymmetric Grignard cross-coupling. Acc. Chem. Res. 1982, 15, 395–401. [Google Scholar] [CrossRef]
- Fihri, A.; Meunier, P.; Hierso, J.-C. Performances of symmetrical achiral ferrocenylphosphine ligands in palladium-catalyzed cross-coupling reactions: A review of syntheses, catalytic applications and structural properties. Coord. Chem. Rev. 2007, 251, 2017–2055. [Google Scholar] [CrossRef]
- Kataoka, N.; Shelby, Q.; Stambuli, J.P.; Hartwig, J.F. Air Stable, Sterically Hindered Ferrocenyl Dialkylphosphines for Palladium-Catalyzed C−C, C−N, and C−O Bond-Forming Cross-Couplings. J. Org. Chem. 2002, 67, 5553–5566. [Google Scholar] [CrossRef]
- Ito, Y.; Sawamura, M.; Hayashi, T. Catalytic asymmetric aldol reaction: Reaction of aldehydes with isocyanoacetate catalyzed by a chiral ferrocenylphosphine-gold(I) complex. J. Am. Chem. Soc. 1986, 108, 6405–6406. [Google Scholar] [CrossRef]
- Hayashi, T.; Mise, T.; Fukushima, M.; Kagotani, M.; Nagashima, N.; Hamada, Y.; Matsumoto, A.; Kawakami, S.; Konishi, M. Asymmetric Synthesis Catalyzed by Chiral Ferrocenylphosphine–Transition Metal Complexes. I. Preparation of Chiral Ferrocenylphosphines. Bull. Chem. Soc. Jpn. 1980, 53, 1138–1151. [Google Scholar] [CrossRef]
- Hayashi, T.; Yamamoto, A.; Ito, Y.; Nishioka, E.; Miura, H.; Yanagi, K. Asymmetric Synthesis Catalyzed by Chiral Ferrocenylphosphine-Transition-Metal Complexes. 8. Palladium-Catalyzed Asymmetric Allylic Amination. J. Am. Chem. Soc. 1989, 111, 6301–6311. [Google Scholar] [CrossRef]
- Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, Y. Asymmetric synthesis catalyzed by chiral ferrocenylphosphine-transition-metal complexes. 6. Practical asymmetric synthesis of 1,1′-binaphthyls via asymmetric cross-coupling with a chiral [(alkoxyalkyl)ferrocenyl]monophosphine/nickel catalyst. J. Am. Chem. Soc. 1988, 110, 8153–8156. [Google Scholar] [CrossRef]
- Chen, Y.; Yi, X.; Cheng, Y.; Huang, A.; Yang, Z.; Zhao, X.; Ling, F.; Zhong, W. Rh-Catalyzed Highly Enantioselective Hydrogenation of Functionalized Olefins with Chiral Ferrocenylphosphine-Spiro Phosphonamidite Ligands. J. Org. Chem. 2022, 87, 7864–7874. [Google Scholar] [CrossRef] [PubMed]
- Barth, E.L.; Davis, R.M.; Mohadjer Beromi, M.; Walden, A.G.; Balcells, D.; Brudvig, G.W.; Dardir, A.H.; Hazari, N.; Lant, H.M.C.; Mercado, B.Q.; et al. Bis(dialkylphosphino)ferrocene-Ligated Nickel(II) Precatalysts for Suzuki–Miyaura Reactions of Aryl Carbonates. Organometallics 2019, 38, 3377–3387. [Google Scholar] [CrossRef]
- Škoch, K.; Schulz, J.; Císařová, I.; Štěpnička, P. Pd(II) Complexes with Chelating Phosphinoferrocene Diaminocarbene Ligands: Synthesis, Characterization, and Catalytic Use in Pd-Catalyzed Borylation of Aryl Bromides. Organometallics 2019, 38, 3060–3073. [Google Scholar] [CrossRef]
- Škoch, K.; Císařová, I.; Štěpnička, P. Synthesis of a Polar Phosphinoferrocene Amidosulfonate Ligand and Its Application in Pd-Catalyzed Cross-Coupling Reactions of Aromatic Boronic Acids and Acyl Chlorides in an Aqueous Medium. Organometallics 2016, 35, 3378–3387. [Google Scholar] [CrossRef]
- Chung, J.-Y.; Schulz, C.; Bauer, H.; Sun, Y.; Sitzmann, H.; Auerbach, H.; Pierik, A.J.; Schünemann, V.; Neuba, A.; Thiel, W.R. Cyclopentadienide Ligand CpC– Possessing Intrinsic Helical Chirality and Its Ferrocene Analogues. Organometallics 2015, 34, 5374–5382. [Google Scholar] [CrossRef]
- Chung, J.-Y.; Sun, Y.; Thiel, W.R. Titanium(IV) complexes bearing the (CpC)− ligand. J. Organometal. Chem. 2017, 829, 31–36. [Google Scholar] [CrossRef]
- Nährig, F.; Gemmecker, G.; Chung, J.-Y.; Hütchen, P.; Lauk, S.; Klein, M.; Sun, Y.; Niedner-Schatteburg, G.; Sitzmann, H.; Thiel, W.R. Complexes of Platinum Group Elements Containing the Intrinsically Chiral Cyclopentadienide Ligand (CpC)−1. Organometallics 2020, 39, 1934–1944. [Google Scholar] [CrossRef]
- Nährig, F.; Nunheim, N.; Salih, K.S.M.; Chung, J.-Y.; Gond, D.; Sun, Y.; Becker, S.; Thiel, W.R. A Novel Cyclopentadienone and its Ruthenium and Iron Tricarbonyl Complexes. Eur. J. Inorg. Chem. 2021, 4832–4841. [Google Scholar] [CrossRef]
- Armarego, W.L.F.; Chai, C.L.L. Purification of Laboratory Chemicals, 6th ed.; Butterworth-Heinemann: Oxford, UK, 2009. [Google Scholar]
- Herrmann, J.; Pregosin, P.S.; Salzmann, R.; Albinati, A. Palladium π-Allyl Chemistry of New P,S Bidentate Ligands. Selective but Variable Dynamics in the Isomerization of the η3-C3H5 and η3-PhCHCHCHPh π-Allyl Ligands. Organometallics 1995, 14, 3311–3318. [Google Scholar] [CrossRef]
- Rauchfuss, T.B.; Patino, F.T.; Roundhill, D.M. Platinum Metal Complexes of Amine- and Ether-Substituted Phosphines. Inorg. Chem. 2002, 14, 652–656. [Google Scholar] [CrossRef]
- Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M.C.; Polidori, G.; Camalli, M. SIR92—A program for automatic solution of crystal structures by direct methods. J. Appl. Cryst. 1994, 27, 435. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction; Version 1.171.38.46; CrysAlisPro: Seattle, WA, USA, 2015.
- Li, J.; Yin, J.; Wang, G.-X.; Yin, Z.-B.; Zhang, W.-X.; Xi, Z. Synthesis and reactivity of asymmetric Cr(i) dinitrogen complexes supported by cyclopentadienyl–phosphine ligands. Chem. Commun. 2019, 55, 9641–9644. [Google Scholar] [CrossRef] [PubMed]
- Ireland, T.; Tappe, K.; Grossheimann, G.; Knochel, P. Synthesis of a New Class of Chiral 1,5-Diphosphanylferrocene Ligands and Their Use in Enantioselective Hydrogenation. Chem. Eur. J. 2002, 8, 843–852. [Google Scholar] [CrossRef]
- Trampert, J.; Sun, Y.; Thiel, W.R. The reactivity of [{2-(diphenylphosphino)phenyl}methyl]-3-imidazol-2-ylidenes towards group VIII element precursors. J. Organometal. Chem. 2020, 915, 121222. [Google Scholar] [CrossRef]
- Keough, P.T.; Grayson, M. Phosphonioethylation. Michael Addition to Vinylphosphonium Salts. J. Org. Chem. 1964, 29, 631–635. [Google Scholar] [CrossRef]
- Matsusaka, Y.; Shitaya, S.; Nomura, K.; Inagaki, A. Synthesis of Mono-, Di-, and Trinuclear Rhodium Diphosphine Complexes Containing Light-Harvesting Fluorene Backbones. Inorg. Chem. 2017, 56, 1027–1030. [Google Scholar] [CrossRef]
- Xie, L.; Zhao, S.; Zhang, M.; Wu, C.; Li, T.; Gao, M. Compound of Fluorene Class Containing Dual Hetero Atoms as well as Its Synthetic Method and Application. CN Patent 1480453A, 10 March 2004. [Google Scholar]
- Liu, H.; Xie, L.; Jing, J.M. Solid Catalyst Composition for Olefinic Polymerization and Catalyst Thereof. CN Patent 1508159A, 30 June 2004. [Google Scholar]
- Eger, T.R.; Munstein, I.; Steiner, A.; Sun, Y.; Niedner-Schatteburg, G.; Thiel, W.R. New cationic organometallic phosphane ligands and their coordination to gold(I). J. Organomet. Chem. 2016, 810, 51–56. [Google Scholar] [CrossRef]
- Batchelor, L.K.; Păunescu, E.; Soudani, M.; Scopelliti, R.; Dyson, P.J. Influence of the Linker Length on the Cytotoxicity of Homobinuclear Ruthenium(II) and Gold(I) Complexes. Inorg. Chem. 2017, 56, 9617–9633. [Google Scholar] [CrossRef] [PubMed]
- Borissova, A.O.; Korlyukov, A.A.; Antipin, M.Y.; Lyssenko, K.A. Estimation of Dissociation Energy in Donor−Acceptor Complex AuCl·PPh3 via Topological Analysis of the Experimental Electron Density Distribution Function. J. Phys. Chem. A 2008, 112, 11519–11522. [Google Scholar] [CrossRef] [PubMed]
- Zi, W.; Dean Toste, F. Recent advances in enantioselective gold catalysis. Chem. Soc. Rev. 2016, 45, 4567–4589. [Google Scholar] [CrossRef]
- Johnson, B.F.G. The chemistry of gold. Gold Bull. 1971, 4, 9–11. [Google Scholar] [CrossRef]
- Scherbaum, F.; Grohmann, A.; Huber, B.; Krüger, C.; Schmidbaur, H. Use of the CH Acidity of 2,4,4-Trimethyl-4,5-dihydrooxazole to Synthesize Triauriomethanes and Novel Gold Clusters. Angew. Chem. Int. Ed. Engl. 1988, 27, 1544–1546. [Google Scholar] [CrossRef]
- Janiak, C. (Organo)thallium (I) and (II) chemistry: Syntheses, structures, properties and applications of subvalent thallium complexes with alkyl, cyclopentadienyl, arene or hydrotris(pyrazolyl)borate ligands. Coord. Chem. Rev. 1997, 163, 107–216. [Google Scholar] [CrossRef]
- Schumann, H.; Janiak, C.; Khani, H. Cyclopentadienylthallium(I) compounds with bulky cyclopentadienyl ligands. J. Organomet. Chem. 1987, 330, 347–355. [Google Scholar] [CrossRef]
- Schumann, H.; Janiak, C.; Khan, M.A.; Zuckerman, J.J. Eine zweite ungewöhnliche Kristallmodifikation von pentabezylcyclopentadienylthallium(I), (PhCH2)5C5Tl. J. Organomet. Chem. 1988, 354, 7–13. [Google Scholar] [CrossRef]
- Frasson, E.; Menegus, F.; Panattoni, C. Chain Structure of the Cyclopentadienily of Monovalent Indium and Thallium. Nature 1963, 199, 1087–1089. [Google Scholar] [CrossRef]
- Werner, H.; Otto, H.; Kraus, H.J. Die Kristallstruktur von TlC5Me5. J. Organomet. Chem. 1986, 315, C57–C60. [Google Scholar] [CrossRef]
- Schmidbaur, H.; Bublak, W.; Riede, J.; Müller, G. [{1,3,5-(CH3)3H3C6}6TI4]·[GaBr4]4—Synthese und Struktur eines gemischten Mono- und Bis(aren)thallium-Komplexes. Angew. Chem. 1985, 97, 402–403. [Google Scholar] [CrossRef]
- Schmidbaur, H. Arenkomplexe von einwertigem Gallium, Indium und Thallium. Angew. Chem. 1985, 97, 893–904. [Google Scholar] [CrossRef]
- Nakayama, H.; Nishijima, C.; Tachiyashiki, S. Ion-Molecule Reactions Betwee Thallium(I) and Various Ligands: Formation of 1:1 Complexes in Gas Phase. Chem. Lett. 1974, 3, 733–736. [Google Scholar] [CrossRef]
- Betley, T.A.; Peters, J.C. The Strong-Field Tripodal Phosphine Donor, [PhB(CH2PiPr2)3]−, Provides Access to Electronically and Coordinatively Unsaturated Transition Metal Complexes. Inorg. Chem. 2003, 42, 5074–5084. [Google Scholar] [CrossRef]
- Szlosek, R.; Ackermann, M.T.; Marquardt, C.; Seidl, M.; Timoshkin, A.Y.; Scheer, M. Coordination of Pnictogenylboranes Towards Tl(I) Salts and a Tl- Mediated P-P Coupling. Chem. Eur. J. 2023, 29, e202202911. [Google Scholar] [CrossRef]
- Doppiu, A.; Englert, U.; Salzer, A. Cationic half-sandwich ruthenium(II) complexes with cyclopentadienyl–phosphine ligands. Inorg. Chim. Acta 2003, 350, 435–441. [Google Scholar] [CrossRef]
- Doppiu, A.; Salzer, A. A New Route to Cationic Half-Sandwich Ruthenium(II) Complexes with Chiral Cyclopentadienylphos phane Ligands. Eur. J. Inorg. Chem. 2004, 2244–2252. [Google Scholar] [CrossRef]
- Azerraf, C.; Cohen, S.; Gelman, D. Roof-Shaped Halide-Bridged Bimetallic Complexes via Ring Expansion Reaction. Inorg. Chem. 2006, 45, 7010–7017. [Google Scholar] [CrossRef] [PubMed]
- Azerraf, C.; Grossman, O.; Gelman, D. Rigid trans-spanning triptycene-based ligands: How flexible they can be? J. Organomet. Chem. 2007, 692, 761–767. [Google Scholar] [CrossRef]
- Noskowska, M.; Śliwińska, E.; Duczmal, W. Simple fast preparation of neutral palladium (II) complexes with SnCl−3 and Cl− ligands. Trans. Met. Chem. 2003, 28, 756–759. [Google Scholar] [CrossRef]
- Aullón, G.; Ujaque, G.; Lledós, A.; Alvarez, S.; Alemany, P. To Bend or Not To Bend: Dilemma of the Edge-Sharing Binuclear Square Planar Complexes of d8 Transition Metal Ions. Inorg. Chem. 1998, 37, 804–813. [Google Scholar] [CrossRef]
- Bunten, K.A.; Farrar, D.H.; Poë, A.J.; Lough, A. Stoichiometric and Catalytic Oxidation of BINAP by Dioxygen in a Rhodium(I) Complex. Organometallics 2002, 21, 3344–3350. [Google Scholar] [CrossRef]
- Mondal, J.U.; Young, K.G.; Blake, D.M. Enthalpy changes in oxidative addition reactions of iodine with monomeric and dimeric rhodium(I) complexes. J. Organomet. Chem. 1982, 240, 447–451. [Google Scholar] [CrossRef]
- Dyer, G.; Wharf, R.M.; Hill, W.E. 31P NMR studies of cis-[RhCl(CO)(bis-phosphine)] complexes. Inorg. Chim. Acta 1987, 133, 137–140. [Google Scholar] [CrossRef]
- Mann, B.E.; Masters, C.; Shaw, B.L. Nuclear magnetic resonance studies on metal complexes. Part VII. The 31P n.m.r. spectra of some complexes of the type trans-RhCl-(CO)L2 [L = tertiary phosphine or P(OMe3)]. J. Chem. Soc. A 1971, 1104–1106. [Google Scholar] [CrossRef]
- Vallarino, L. Carbonyl complexes of rhodium. Part I. Complexes with triarylphosphines, triarylarsines, and triarylstibines. J. Chem. Soc. 1957, 2287–2292. [Google Scholar] [CrossRef]
- Marty, W.; Kapoor, P.N.; Bürgi, H.-B.; Fischer, E. Complexes of 3,3′-Oxybis[(diphenylphosphino)methylbenzene] with Ni(II), Pd(II), Pt(II), Rh(I), and Ag(I). How Important is Backbone Rigidity in the Formation of trans-Spanning Bidenatate Chelates? Helv. Chim. Acta 1987, 70, 158–170. [Google Scholar] [CrossRef]
- Eberhard, M.R.; Heslop, K.M.; Orpen, A.G.; Pringle, P.G. Nine-Membered Trans Square-Planar Chelates Formed by a bisbi Analogue. Organometallics 2005, 24, 335–337. [Google Scholar] [CrossRef]
- Reed, F.J.S.; Venanzi, L.M. Transition metal complexes with bidentate ligands spanning trans-positions. IV. Preparation and properties of some rhodium and iridium complexes of 2,11-bis(diphenylphosphinomethyl)benzo[c]phenanthrene. Helv. Chim. Acta 1977, 60, 2804–2814. [Google Scholar] [CrossRef]
- López-Valbuena, J.M.; Escudero-Adan, E.C.; Benet-Buchholz, J.; Freixa, Z.; van Leeuwen, P.W.N.M. An approach to bimetallic catalysts by ligand design. Dalton Trans. 2010, 39, 8560–8574. [Google Scholar] [CrossRef]
- Hierso, J.-C.; Lacassin, F.; Broussier, R.; Amardeil, R.; Meunier, P. Synthesis and characterisation of a new class of phosphine-phosphonite ferrocenediyl dinuclear rhodium complexes. J. Organomet. Chem. 2004, 689, 766–769. [Google Scholar] [CrossRef]
- Meeuwissen, J.; Sandee, A.J.; de Bruin, B.; Siegler, M.A.; Spek, A.L.; Reek, J.N.H. Phosphinoureas: Cooperative Ligands in Rhodium-Catalyzed Hydroformylation? On the Possibility of a Ligand-Assisted Reductive Elimination of the Aldehyde. Organometallics 2010, 29, 2413–2421. [Google Scholar] [CrossRef]
- Sanger, A.R.J. Reactions of di-µ-chloro-bis[cyclo-octa-1,5-dienerhodium(I)] with carbon mono-oxide and mono-, di-, or tri-tertiary phosphines, or 1,2-bis(diphenylarsino)ethane. Chem. Soc. Dalton Trans. 1977, 120–129. [Google Scholar] [CrossRef]
- Thurner, C.L.; Barz, M.; Spiegler, M.; Thiel, W.R. Ligands with cycloalkane backbones II. Chelate ligands from 2-(diphenylphosphinyl)cyclohexanol: Syntheses and transition metal complexes. J. Organomet. Chem. 1997, 541, 39–49. [Google Scholar] [CrossRef]
3 | 4 | 5 | |
---|---|---|---|
empirical formula | C83H68P | C57H45AuClP | C50H36PTl |
formula weight | 1127.31 | 993.31 | 872.13 |
crystal size [mm] | 0.408 × 0.307 × 0.239 | 0.244 × 0.106 × 0.069 | 0.313 × 0.093 × 0.063 |
T [K] | 293(2) | 150(2) | 150(2) |
λ [Å] | 1.54184 | 1.54184 | 1.54184 |
crystal system | triclinic | triclinic | monoclinic |
space group | P21/n | ||
a [Å] | 14.1471(5) | 10.3433(3) | 18.7154(2) |
b [Å] | 14.5119(4) | 15.2162(6) | 12.2606(1) |
c [Å] | 17.7514(6) | 15.5558(7) | 20.4489(2) |
α [°] | 107.920(3) | 106.743(4) | 90 |
β [°] | 109.661(3) | 107.515(3) | 97.058(1) |
γ [°] | 93.028(3) | 96.040(3) | 90 |
V [Å3] | 3215.3(2) | 2185.84(16) | 4656.69(8) |
Z | 2 | 2 | 4 |
ρ calcd. [g·cm−3] | 1.164 | 1.509 | 1.244 |
μ [mm−1] | 0.950 | 7.519 | 7.198 |
Θ-range [°] | 3.251–62.736 | 3.608–62.729 | 3.417–62.775 |
refl. coll. | 24,391 | 15,048 | 35,775 |
indep. refl. | 10,246 [Rint = 0.0229] | 6947 [Rint = 0.0481] | 7447 [Rint = 0.0257] |
data/restr./param. | 10246/0/768 | 6947/0/542 | 7447/0/469 |
final R indices [I > 2σ(I)] a | 0.0522, 0.1455 | 0.0367, 0.0946 | 0.0171, 0.0402 |
R indices (all data) | 0.0573, 0.1524 | 0.0381, 0.0961 | 0.0179, 0.0407 |
GooF b | 1.036 | 1.082 | 1.029 |
Δρmax/min (e·Å−3) | 1.687/−0.283 | 1.444/−1.808 | 0.391/−0.266 |
7 | 8 | 9 | 10 | |
---|---|---|---|---|
empirical formula | C69H52Au2Cl2P2 | C69H52Cl4P2Pd2 | C71H52Cl2O2P2Rh2 | C70H52ClOP2Rh |
formula weight | 1407.88 | 1297.64 | 1275.78 | 1109.41 |
crystal size [mm] | 0.216 × 0.095 × 0.079 | 0.199 × 0.101 × 0.044 | 0.272 × 0.151 × 0.137 | 0.233 × 0.121 × 0.059 |
T [K] | 150(2) | 150(2) | 150(2) | 150(2) |
λ [Å] | 1.54184 | 1.54184 | 1.54184 | 1.54184 |
crystal system | triclinic | monoclinic | triclinic | monoclinic |
space group | P2/n | P21/n | ||
a [Å] | 13.1508(3) | 21.0446(7) | 13.2483(3) | 13.3016(3) |
b [Å] | 13.5694(4) | 13.2823(4) | 14.1374(3) | 21.0013(4) |
c [Å] | 22.2637(5) | 23.4004(9) | 20.4213(4) | 20.0864(4) |
α [°] | 76.934(2) | 90 | 89.220(2) | 90 |
β [°] | 87.525(2) | 107.894(4) | 73.556(2) | 109.243(2) |
γ [°] | 64.608(3) | 90 | 75.287(2) | 90 |
V [Å3] | 3489.67(17) | 6224.5(4) | 3541.10(14) | 5297.7(2) |
Z | 2 | 4 | 2 | 4 |
ρ calcd. [g·cm−3] | 1.340 | 1.385 | 1.197 | 1.391 |
μ [mm−1] | 9.186 | 7.028 | 5.189 | 3.997 |
Θ-range [°] | 3.705–62.698 | 3.327–62.748 | 3.238–62.724 | 3.140–62.754 |
refl. coll. | 27,287 | 24,022 | 49,439 | 21,589 |
indep. refl. | 11,102 [Rint = 0.0308] | 9919 [Rint = 0.0550] | 11,257 [Rint = 0.0564] | 8461 [Rint = 0.0294] |
data/restr./param. | 11102/0/676 | 9919/0/695 | 11257/0/713 | 8461/0/676 |
final R indices [I > 2σ(I)] a | 0.0296, 0.0721 | 0.0510, 0.1388 | 0.0310, 0.0790 | 0.0321, 0.0852 |
R indices (all data) | 0.0349, 0.0739 | 0.0623, 0.1466 | 0.0335, 0.0807 | 0.0362, 0.0886 |
GooF b | 1.037 | 1.082 | 1.023 | 1.032 |
Δρmax/min (e·Å−3) | 1.310/−1.262 | 1.253/−0.718 | 0.734/−0.840 | 0.713/−0.518 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nährig, F.; Sun, Y.; Thiel, W.R. Phosphine Functionalized CpC Ligands and Their Metal Complexes. Chemistry 2023, 5, 912-933. https://doi.org/10.3390/chemistry5020062
Nährig F, Sun Y, Thiel WR. Phosphine Functionalized CpC Ligands and Their Metal Complexes. Chemistry. 2023; 5(2):912-933. https://doi.org/10.3390/chemistry5020062
Chicago/Turabian StyleNährig, Florian, Yu Sun, and Werner R. Thiel. 2023. "Phosphine Functionalized CpC Ligands and Their Metal Complexes" Chemistry 5, no. 2: 912-933. https://doi.org/10.3390/chemistry5020062
APA StyleNährig, F., Sun, Y., & Thiel, W. R. (2023). Phosphine Functionalized CpC Ligands and Their Metal Complexes. Chemistry, 5(2), 912-933. https://doi.org/10.3390/chemistry5020062