Adsorption Affinities of Small Volatile Organic Molecules on Graphene Surfaces for Novel Nanofiller Design: A DFT Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorption of Linear Alkanes on the Pristine Graphene Surface
2.2. Adsorption of Saturated Cyclic Compounds on the Pristine Graphene Surface
2.2.1. Adsorption of Cyclopentane Compounds on the Pristine Graphene Surface
2.2.2. Adsorption of Pyrrolidine Compounds on the Pristine Graphene Surface
2.3. Adsorption of Unsaturated Cyclic Compounds on the Pristine Graphene Surface
2.3.1. Adsorption of Cyclopentadiene Compounds on Pristine Graphene Surface
2.3.2. Adsorption of Pyrrole Compounds on the Pristine Graphene Surface
2.4. Adsorption of 1,2,5-Trimethylpyrrole and Its Oxidized Derivatives on Pristine Graphene Surface
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magne, T.M.; Vieira, T.D.; Alencar, L.M.R.; Maia, F.F.M.; Gemini-Piperni, S.; Carneiro, S.V.; Fechine, L.M.U.D.; Freire, R.M.; Golokhvast, K.; Metrangolo, P.; et al. Graphene and its derivatives: Understanding the main chemical and medicinal chemistry roles for biomedical applications. J. Nanostructure Chem. 2022, 12, 693–727. [Google Scholar] [CrossRef]
- Criado, A.; Melchionna, M.; Marchesan, S.; Prato, M. The Covalent Functionalization of Graphene on Substrates. Angew. Chem. Int. Ed. 2015, 54, 10734–10750. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Shin, H.; Choi, B.; Rhim, W.K.; Na, K.; Keun Han, D. Advanced hybrid nanomaterials for biomedical applications. Prog. Mater. Sci. 2020, 114, 1–110. [Google Scholar]
- Liu, S. Cooperative adsorption on solid surfaces. J. Colloid Interface Sci. 2015, 450, 224. [Google Scholar] [CrossRef]
- Freund, H.J. Adsorption of gases on complex: Solid surfaces. Angew. Chem. Int. Ed. 1997, 36, 452. [Google Scholar] [CrossRef]
- Carr, A.J.; Carr, A.; Lee, S.E.; Uysal, A. Ion and water adsorption to graphene and graphene oxide surfaces. Nanoscale 2023, 15, 14319. [Google Scholar] [CrossRef]
- Krishna, R.H.; Chandraprabha, M.N.; Samrat, K.; Murthy, T.P.K.; Manjunatha, C.; Kumar, S.G. Carbon nanotubes and graphene-based materials for adsorptive removal of metal ions—A review on surface functionalization and related adsorption mechanism. Appl. Surf. Sci. Adv. 2023, 16, 100431. [Google Scholar]
- Yang, G.; Li, L.; Lee, W.B.; Ng, M.C. Structure of Graphene and Its Disorders: A Review. Sci. Technol. Adv. Mater. 2018, 19, 613–648. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, Z.; Li, Z.; Chen, Y. High-power instant-synthesis technology of carbon nanomaterials and nanocomposites. Nano Energy 2021, 80, 1–61. [Google Scholar]
- Ali, I.; Pakharukov, Y.; Shabiev, F.K.; Galunin, E.; Safargaliev, R.F.; Vasiljev, S.A.; Ezdin, B.S.; Burakov, A.E.; Alothman, Z.A.; Sillanpaa, M. Preparation of graphene based nanofluids: Rheology determination and theoretical analysis of the molecular interactions of graphene nanoparticles. J. Mol. Liq. 2023, 390, 122954. [Google Scholar] [CrossRef]
- Old 6 Bahiraei, M.; Heshmatian, S. Graphene family nanofluids: A critical review and future research directions. Energy Convers. Manag. 2019, 196, 1222–1256. [Google Scholar] [CrossRef]
- Kumar, K.V.; Gadipelli, S.; Wood, B.; Ramisetty, K.A.; Stewart, A.A.; Howard, C.A.; Brett, D.J.L.; Rodriguez-Reinoso, F. Characterization of the adsorption site energies and heterogeneous surfaces of porous materials. J. Mater. Chem. A 2019, 7, 10104. [Google Scholar] [CrossRef]
- Lin, L.C.; Thirumavalavan, M.; Wang, Y.T.; Lee, J.F. Surface area and pore size tailoring of mesoporous silica materials by different hydrothermal treatments and adsorption of heavy metal ions. Colloids Surf. A Physicochem. Eng. Asp. 2010, 319, 223. [Google Scholar] [CrossRef]
- Dong, D.M.; Hua, X.Y.; Li, Y.; Li, Z.H. Lead adsorption to metal oxides and organic material of freshwater surface coatings determined using a novel selective extraction method. Environ. Pollut. 2002, 119, 317. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, C.M.; Li, Y.R. Determination of the surface properties and adsorption states of nanoporous materials using the zeta adsorption isotherm. Phys. Chem. Chem. Phys. 2023, 25, 22669. [Google Scholar] [CrossRef]
- Mao, K.; Gao, L.S.; Lv, X.C.; Gao, D.D.; Lv, J.Z.; Bai, M.L. Numerical simulation of forced convection heat transfer mechanism and comprehensive performance on hydrophobic structure surface. Int. J. Therm. Sci. 2023, 184, 107895. [Google Scholar] [CrossRef]
- Kubota, T.; Watanabe, N.; Ohtsuka, S.; Iwasaki, T.; Ono, K.; Iriye, Y.; Samukawa, S. Numerical simulation on neutral beam generation mechanism by collision of positive and negative chlorine ions with graphite surface. J. Phys. D Appl. Phys. 2011, 44, 125203. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, X.Q. Study on the microscopic mechanism of adsorption and diffusion of hydrocarbon oil drops on coal surface using molecular dynamics simulations. Int. J. Quantum. Chem. 2023, 123, e27229. [Google Scholar] [CrossRef]
- Zhao, L.F.; Liu, W.L.; Shen, Y.Z.; Xu, Y.J.S.; Jiang, B.; Tao, J. Ice adhesion mechanism on the patterned surface of aluminum matrix and array graphene based on molecular dynamics simulations. Appl. Phys. Lett. 2023, 123, 061602. [Google Scholar] [CrossRef]
- James, J.N.; Sholl, D.S. Theoretical studies of chiral adsorption on solid surfaces. J. Colloid Interface Sci. 2008, 13, 60. [Google Scholar] [CrossRef]
- Amrhar, O.; Lee, H.S.; Lgaz, H.; Berisha, A.; Ebenso, E.E.; Cho, Y.J. Computational insights into the adsorption mechanisms of anionic dyes on the rutile TiO2 (110) surface: Combining SCC-DFT tight binding with quantum chemical and molecular dynamics simulations. J. Mol. Liq. 2023, 377, 121554. [Google Scholar] [CrossRef]
- Dehmani, Y.; Lgaz, H.; Alrashdi, A.A.; Lamhasni, T.; Abouarnadasse, S.; Chung, I.M. Phenol adsorption mechanism on the zinc oxide surface: Experimental, cluster DFT calculations, and molecular dynamics simulations. J. Mol. Liq. 2021, 324, 114993. [Google Scholar] [CrossRef]
- Yi, P.; Zuo, X.Z.; Lang, D.; Wu, M.; Dong, W.; Chen, Q.; Zhang, L.J. Competitive adsorption of methanol co-solvent and dioctyl phthalate on functionalized graphene sheet: Integrated investigation by molecular dynamics simulations and quantum chemical calculations. J. Colloid Interface Sci. 2021, 605, 354. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Zhang, S.Y.; Huang, T.L.; Cui, F.Y.; Xing, B.S. pH-Dependent adsorption of aromatic compounds on graphene oxide: An experimental, molecular dynamics simulation and density functional theory investigation. J. Hazard. Mater. 2020, 395, 122680. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.Z.; Liu, M.; Bai, B.F. Molecular simulations on graphene-based membranes. Carbon 2019, 153, 481–494. [Google Scholar] [CrossRef]
- Qiu, Z.Y.; Li, P.; Li, Z.Y.; Yang, J.L. Atomistic Simulations of Graphene Growth: From Kinetics to Mechanism. Acc. Chem. Res. 2018, 51, 728–735. [Google Scholar] [CrossRef]
- Ganazzoli, F.; Raffaini, G. Classical atomistic simulations of protein adsorption on carbon nanomaterials. Curr. Opin. Colloid Interface Sci. 2019, 41, 11–26. [Google Scholar] [CrossRef]
- Yang, J.; Yang, X.N.; Li, Y.P. Molecular simulation perspective of liquid-phase exfoliation, dispersion, and stabilization for graphene. Curr. Opin. Colloid Interface Sci. 2015, 20, 339–345. [Google Scholar] [CrossRef]
- Thapa, R.; Ugwumadu, C.; Nepal, K.; Trembly, J.; Drabold, D.A. Ab Initio Simulation of Amorphous Graphite. Phys. Rev. Lett. 2022, 128, 236402. [Google Scholar] [CrossRef]
- Cutini, M.; Civalleri, B.; Corno, M.; Orlando, R.; Brandenburg, J.G.; Maschio, L.; Ugliengo, P. Assessment of Different Quantum Mechanical Methods for the Prediction of Structure and Cohesive Energy of Molecular Crystals. J. Chem. Theory Comput. 2016, 12, 3340. [Google Scholar] [CrossRef]
- Brann, M.R.; Ma, X.Y.; Sibener, S.J. Isotopic Enrichment Resulting from Differential Condensation of Methane Isotopologues Involving Non-equilibrium Gas-Surface Collisions Modeled with Molecular Dynamics Simulations. J. Phys. Chem. C 2023, 127, 13286–13294. [Google Scholar] [CrossRef]
- Jiang, M.M.; Zhang, C.; Liao, N.B.; Zhao, T.C.; Ge, J.Q. Self-cantilever phenomenon of graphite/graphenes micro/nano structure: Experiment and DFT simulation analysis. Appl. Surf. Sci. 2021, 545, 149009. [Google Scholar] [CrossRef]
- Raffaini, G.; Catauro, M. Surface Interactions between Ketoprofen and Silica-Based Biomaterials as Drug Delivery System Synthesized. Sol-Gel: A Molecular Dynamics Study. Materials 2022, 15, 2759. [Google Scholar] [CrossRef]
- Catauro, M.; Barrino, F.; Dal Poggetto, G.; Milazzo, M.; Blanco, I.; Ciprioti, S.V. Structure, drug absorption, bioactive and antibacterial properties of sol-gel SiO2/ZrO2 materials. Ceram. Int. 2020, 46, 29459. [Google Scholar] [CrossRef]
- Johnson, R.P.; Jeong, Y.I.; Choi, E.; Chung, C.W.; Kang, D.H.; Oh, S.O.; Suh, H.; Kim, I. Biocompatible Poly(2-hydroxyethyl methacrylate)-b-poly(L-histidine) Hybrid Materials for pH-Sensitive Intracellular Anticancer Drug Delivery. Adv. Funct. Mater. 2012, 22, 1058. [Google Scholar] [CrossRef]
- Xie, Y.H.; Kong, Y.; Gao, H.J.; Soh, A.K. Molecular dynamics simulation of polarizable carbon nanotubes. Comput. Mater. Sci. 2007, 40, 460–465. [Google Scholar] [CrossRef]
- Li, J.; Liu, Q.H.; Flores, R.A.; Lemmon, J.; Bligaard, T. DFT simulation of the X-ray diffraction pattern of aluminum-ion-intercalated graphite used as the cathode material of the aluminum-ion battery. Phys. Chem. Chem. Phys. 2020, 22, 5969–5975. [Google Scholar] [CrossRef]
- Pal, G.; Kumar, S. Modeling of carbon nanotubes and carbon nanotube-polymer composites. Prog. Aerosp. Sci. 2016, 80, 33–58. [Google Scholar] [CrossRef]
- Raffaini, G.; Elli, S.; Ganazzoli, F. Computer simulation of bulk mechanical properties and surface hydration of biomaterials. J. Biomed. Mater. Res. A 2006, 77A, 618–626. [Google Scholar] [CrossRef]
- Guo, W.M.; Bai, Q.S.; Dou, Y.H.; Wang, H.F.; Chen, S.D. Molecular Dynamics Study on the Effects of Substrate Grain Boundaries on the Adsorption State of Graphene: Implications for Nanoscale Lubrication. ACS Appl. Nano Mater. 2023, 6, 8093. [Google Scholar] [CrossRef]
- Li, Q.L.; Zhu, S.M.; Hao, G.Z.; Hu, Y.B.; Wu, F.; Jiang, W. Fabrication of thermoresponsive metal-organic nanotube sponge and its application on the adsorption of endocrine-disrupting compounds and pharmaceuticals/personal care products: Experiment and molecular simulation study. Environ. Pollut. 2021, 273, 116466. [Google Scholar] [CrossRef]
- Salehi, A.; Rash-Ahmadi, S. Effect of adsorption, hardener, and temperature on mechanical properties of epoxy nanocomposites with functionalized graphene: A molecular dynamics study. J. Mol. Graph. Model. 2022, 117, 108311. [Google Scholar] [CrossRef]
- Mantero, S.; Piuri, D.; Montevecchi, F.M.; Vesentini, S.; Ganazzoli, F.; Raffaini, G. Albumin adsorption onto pyrolytic carbon: A molecular mechanics approach. J. Biomed. Mater. Res. 2002, 59, 329–339. [Google Scholar] [CrossRef]
- Li, B.; Mi, C.W. Atomistic insights on the adsorption of long-chain undecane molecules on carbon nanotubes: Roles of chirality and surface hydroxylation. Diam. Relat. Mater. 2023, 133, 109706. [Google Scholar] [CrossRef]
- Taheri, Z.; Pour, A.N. Studying of the adsorption and diffusion behaviors of methane on graphene oxide by molecular dynamics simulation. J. Mol. Model. 2021, 27, 59. [Google Scholar] [CrossRef] [PubMed]
- Comer, J.; Chen, R.; Poblete, H.; Vergara-Jaque, A.; Riviere, J.E. Predicting Adsorption Affinities of Small Molecules on Carbon Nanotubes Using Molecular Dynamics Simulation. ACS Nano 2015, 9, 11761–11774. [Google Scholar] [CrossRef] [PubMed]
- Raffaini, G.; Ganazzoli, F. Separation of chiral nanotubes with an opposite handedness by chiral oligopeptide adsorption: A molecular dynamics study. J. Chromatogr. A 2016, 1425, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Barinov, N.A.; Prokhorov, V.V.; Dubrovin, E.V.; Klinov, D.V. AFM visualization at a single-molecule level of denaturated states of proteins on graphite. Colloids Surf. B-Biointerfaces 2016, 146, 777–784. [Google Scholar] [CrossRef]
- Karajanagi, S.S.; Yang, H.C.; Asuri, P.; Sellitto, E.; Dordick, J.S.; Kane, R.S. Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir 2006, 22, 1392–1395. [Google Scholar] [CrossRef]
- Hasnip, P.J.; Refson, K.; Probert MI, J.; Yates, J.R.; Clark, S.J.; Pickard, C.J. Density Functional Theory in the Solid State. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372. [Google Scholar] [CrossRef]
- Ostovari, F.; Hasanpoori, M.; Abbasnejad, M.; Saleh, M.A. DFT calculations of graphene monolayer in presence of Fe dopant and vacancy. Phys. B Condens. Matter. 2018, 541, 6–13. [Google Scholar] [CrossRef]
- Gecim, G.; Ozekmekci, M. A density functional theory study of molecular H2S adsorption on (4,0) SWCNT doped with Ge, Ga and B. Surf. Sci. 2021, 711, 121876. [Google Scholar] [CrossRef]
- Kamedulski, P.; Kaczmarek-Kedziera, A.; Lukaszewicz, J. Influence of intermolecular interactions on the properties of carbon nanotubes. Bull. Mater. Sci 2018, 41, 76. [Google Scholar] [CrossRef]
- Lejaeghere, K.; Bihlmayer, G.; Björkman, T.; Blaha, P.; Blügel, S.; Blum, V.; Caliste, D.; Castelli, I.E.; Clark, S.J.; Dal Corso, A.; et al. Reproducibility in Density Functional Theory Calculations of Solids. Science 2016, 351, aad3000. [Google Scholar] [CrossRef]
- Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.J.; Lee, W.R. A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. [Google Scholar] [CrossRef]
- Al-Hartomy, O.A.; Al-Ghamdi, A.A.; Al-Salamy, F.; Dishovsky, N.; Slavcheva, D.; El-Tantawy, F. Properties of Natural Rubber-Based Composites Containing Fullerene. Int. J. Polym. Sci. 2012, 2012, 967276. [Google Scholar] [CrossRef]
- Khuntawee, W.; Sutthibutpong, T.; Phongphanphanee, S.; Karttunen, M.; Wong-ekkabut, J. Molecular dynamics study of natural rubber-fullerene composites: Connecting microscopic properties to macroscopic behavior. Phys. Chem. Chem. Phys. 2019, 21, 19403–19413. [Google Scholar] [CrossRef] [PubMed]
- Kitjanon, J.; Khuntawee, W.; Phongphanphanee, S.; Sutthibutpong, T.; Chattham, N.; Karttunen, M.; Wong-ekkabut, J. Nanocomposite of Fullerenes and Natural Rubbers: MARTINI Force Field Molecular Dynamics Simulations. Polymers 2021, 13, 4044. [Google Scholar] [CrossRef]
- Rong, M.Z.; Zhang, M.Q.; Ruan, W.H. Surface Modification of Nanoscale Fillers for Improving Properties of Polymer Nanocomposites: A Review. Mater. Sci. Technol. 2006, 22, 787–796. [Google Scholar] [CrossRef]
- Shen, X.; Wang, Z.; Wu, Y.; Liu, X.; Kim, J.K. Effect of Functionalization on Thermal Conductivities of Graphene/Epoxy Composites. Carbon N. Y. 2016, 108, 412–422. [Google Scholar] [CrossRef]
- Patti, A.; Russo, P.; Acierno, D.; Acierno, S. The Effect of Filler Functionalization on Dispersion and Thermal Conductivity of Polypropylene/Multi Wall Carbon Nanotubes Composites. Compos. Part B Eng. 2016, 94, 350–359. [Google Scholar] [CrossRef]
- Shen, C.; Oyadiji, S.O. The Processing and Analysis of Graphene and the Strength Enhancement Effect of Graphene-Based Filler Materials: A Review. Mater. Today Phys. 2020, 15, 100257. [Google Scholar] [CrossRef]
- Tang, B.; Hu, G.; Gao, H.; Hai, L. Application of Graphene as Filler to Improve Thermal Transport Property of Epoxy Resin for Thermal Interface Materials. Int. J. Heat Mass Transf. 2015, 85, 420–429. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, S.; Zhang, Y.; Zhang, Y. Effect of Different Carbon Fillers on the Properties of PP Composites: Comparison of Carbon Black with Multiwalled Carbon Nanotubes. J. Appl. Polym. Sci. 2006, 102, 4823–4830. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Park, J.B.; Jeon, Y.P.; Hong, J.Y.; Park, H.S.; Lee, J.U. A Review of Polymer Composites Based on Carbon Fillers for Thermal Management Applications: Design, Preparation, and Properties. Polymers 2021, 13, 1312. [Google Scholar] [CrossRef]
- Kim, H.; Abdala, A.A.; MacOsko, C.W. Graphene/Polymer Nanocomposites. Macromolecules 2010, 43, 6515–6530. [Google Scholar] [CrossRef]
- Dai, J.-F.; Wang, G.-J.; Ma, L.; Wu, C.-K.; Wang, G.-J.; Dai, J.-F.; Wang, G.-J.; Ma, L.; Wu, C.-K. Surface Porperties of Graphene: Relationship to Graphene-Polymer composites. Rev. Adv. Mater. Sci. 2015, 40, 60–71. [Google Scholar]
- Cadek, M.; Coleman, J.N.; Ryan, K.P.; Nicolosi, V.; Bister, G.; Fonseca, A.; Nagy, J.B.; Szostak, K.; Béguin, F.; Blau, W.J. Reinforcement of Polymers with Carbon Nanotubes: The Role of Nanotube Surface Area. Nano Lett. 2004, 4, 353–356. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, T.; Kim, Y.S.; Choi, H.S.; Lim, H.J.; Yang, S.J.; Park, C.R. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 2012, 50, 3–33. [Google Scholar] [CrossRef]
- Eitan, A.; Jiang, K.Y.; Dukes, D.; Andrews, R.; Schadler, L.S. Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites. Chem. Mater. 2003, 15, 3198–3201. [Google Scholar] [CrossRef]
- Zhao, W.; Song, C.H.; Pehrsson, P.E. Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J. Am. Chem. Soc. 2002, 124, 12418–12419. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.T.; Hong, C.Y.; Pan, C.Y. Surface modification of carbon nanotubes with dendrimers or hyperbranched polymers. Polym. Chem. 2011, 2, 998. [Google Scholar] [CrossRef]
- Verma, B.; Balomajumder, C. Surface modification of one-dimensional Carbon Nanotubes: A review for the management of heavy metals in wastewater. Environ. Technol. Innov. 2020, 17, 100596. [Google Scholar] [CrossRef]
- Atif, M.; Afzaal, I.; Naseer, H.; Abrar, M.; Bongiovanni, R. Review-Surface Modification of Carbon Nanotubes: A Tool to Control Electrochemical Performance. ECS J. Solid State Sci. Technol. 2020, 9, 041009. [Google Scholar] [CrossRef]
- Barbera, V.; Bernardi, A.; Palazzolo, A.; Rosengart, A.; Brambilla, L.; Galimberti, M. Facile and Sustainable Functionalization of Graphene Layers with Pyrrole Compounds. Pure Appl. Chem. 2018, 90, 253–270. [Google Scholar] [CrossRef]
- Galimberti, M.; Barbera, V.; Guerra, S.; Conzatti, L.; Castiglioni, C.; Brambilla, L.; Serafini, A. Biobased Janus Molecule for the Facile Preparation of Water Solutions of Few Layer Graphene Sheets. RSC Adv. 2015, 5, 81142–81152. [Google Scholar] [CrossRef]
- Barbera, V.; Brambilla, L.; Milani, A.; Palazzolo, A.; Castiglioni, C.; Vitale, A.; Bongiovanni, R.; Galimberti, M. Domino Reaction for the Sustainable Functionalization of Few-Layer Graphene. Nanomaterials 2019, 9, 44. [Google Scholar] [CrossRef]
- Galimberti, M.; Barbera, V.; Citterio, A.; Sebastiano, R.; Truscello, A.; Valerio, A.M.; Conzatti, L.; Mendichi, R. Supramolecular Interactions of Carbon Nanotubes with Biosourced Polyurethanes from 2-(2,5-Dimethyl-1H-Pyrrol-1-Yl)-1,3-Propanediol. Polymer 2015, 63, 62–70. [Google Scholar] [CrossRef]
- Prioglio, G.; Agnelli, S.; Conzatti, L.; Balasooriya, W.; Schrittesser, B.; Galimberti, M. Graphene Layers Functionalized with a Janus Pyrrole-Based Compound in Natural Rubber Nanocomposites with Improved Ultimate and Fracture Properties. Polymers 2020, 12, 944. [Google Scholar] [CrossRef]
- Dindorkar, S.S.; Sinha, N.; Yadav, A. Comparative Study on Adsorption of Volatile Organic Compounds on Graphene, Boron Nitride and Boron Carbon Nitride Nanosheets. Solid State Commun. 2023, 359, 115021. [Google Scholar] [CrossRef]
- Lazar, P.; Karlický, F.; Jurecka, P.; Kocman, M.; Otyepková, E.; Šafářová, K.; Otyepka, M. Adsorption of Small Organic Molecules on Graphene. J. Am. Chem. Soc. 2013, 135, 6372–6377. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Min, K.A.; Hong, S.; Kim, G. Ab Initio Study of Adsorption Properties of Hazardous Organic Molecules on Graphene: Phenol, Phenyl Azide, and Phenylnitrene. Chem. Phys. Lett. 2015, 618, 57–62. [Google Scholar] [CrossRef]
- Xu, H.; Guan, D.; Ma, L. The bio-inspired heterogeneous single-cluster catalyst Ni100–Fe4S4 for enhanced electrochemical CO2 reduction to CH4. Nanoscale 2023, 15, 2756. [Google Scholar] [CrossRef] [PubMed]
- Knorr, L. Einwirkung des Diacetbernsteinsäureesters auf Ammoniak und primäre Aminbasen. Chem. Ber. 1885, 18, 299. [Google Scholar] [CrossRef]
- Paal, C. Synthese von Thiophen-und Pyrrolderivaten. Chem. Ber. 1885, 18, 367. [Google Scholar] [CrossRef]
- Barbera, V.; Galimberti, M.; Giannini, L.; Naddeo, S. Process for the Preparation of Diketones and Pyrrole Derivatives. Patent Application n. PCT/IB2022/062453, 19 December 2022. [Google Scholar]
- Prioglio, G.; Naddeo, S.; Giese, U.; Barbera, V.; Galimberti, M. Bio-Based Pyrrole Compounds Containing Sulfur Atoms as Coupling Agents of Carbon Black with Unsaturated Elastomers. Nanomaterials 2023, 13, 2761. [Google Scholar] [CrossRef]
- Magaletti, F.; Margani, F.; Monti, A.; Dezyani, R.; Prioglio, G.; Giese, U.; Barbera, V.; Galimberti, M.S. Adducts of Carbon Black with a Biosourced Janus Molecule for Elastomeric Composites with Lower Dissipation of Energy. Polymers 2023, 15, 3120. [Google Scholar] [CrossRef]
- Pirelli Tyre; Annual Report: The Human Dimension. 2020, 106. Available online: https://corporate.pirelli.com/var/files2020/EN/PDF/PIRELLI_ANNUAL_REPORT_2020_ENG.pdf (accessed on 4 October 2022).
- Raffaini, G.; Ganazzoli, F. Surface topography effects in protein adsorption on nanostructured carbon allotropes. Langmuir. 2013, 29, 4883. [Google Scholar] [CrossRef]
- Barbera, V.; Brambilla, L.; Porta, A.; Bongiovanni, R.; Vitale, A.; Torrisi, G.; Galimberti, M. Selective Edge Functionalization of Graphene Layers with Oxygenated Groups by Means of Reimer-Tiemann and Domino Reimer-Tiemann/Cannizzaro Reactions. J. Mater. Chem. A 2018, 6, 7749–7761. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- QuantumEspresso PWscf User’s Guide (v.7.2). Available online: https://www.quantum-espresso.org/Doc/pw_user_guide/ (accessed on 4 October 2022).
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Prandini, G.; Marrazzo, A.; Castelli, I.E.; Mounet, N.; Marzari, N. Precision and Efficiency in Solid-State Pseudopotential Calculations. NPJ Comput. Mater. 2018, 4, 72. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132. [Google Scholar] [CrossRef] [PubMed]
- Zhuoran, L.; Xu, H.; Xu, W.; Peng, B.; Zhao, C.; Xie, M.; Lv, X.; Gao, Y.; Hu, K.; Fang, Y.; et al. Quasi-Topological Intercalation Mechanism of Bi0.67NbS2 Enabling 100 C Fast-Charging for Sodium-Ion Batteries. Adv. Energy Mater. 2023, 13, 202300790. [Google Scholar]
- Xiao, W.; Kiran, G.K.; Yoo, K.; Kim, J.H.; Xu, H. The Dual-Site Adsorption and High Redox Activity Enabled by Hybrid Organic-Inorganic Vanadyl Ethylene Glycolate for High-Rate and Long-Durability Lithium–Sulfur Batteries. Small 2023, 19, 202206750. [Google Scholar] [CrossRef]
Compound | Structure Type | Structure |
---|---|---|
Alkane | Linear | |
Cyclopentane | Saturated cyclic | |
Pyrrolidine | ||
Cyclopentadiene | Unsaturated cyclic | |
Pyrrole |
Compound | Distance, d (Å) | Eads (kJ mol−1) |
---|---|---|
Methane | 3.46 | −13.2 |
Ethane | 3.55 | −18.7 |
Propane | 3.65 | −25.6 |
Butane | 3.65 | −32.7 |
Compound | Distance, d (Å) | Eads (kJ mol−1) |
---|---|---|
1,2,3-trimethylcyclopentane | 3.74 | −48.1 |
2-ethyl-1,3-dimethylcyclopentane | 3.67 | −53.2 |
2-propyl-1,3-dimethylcyclopentane | 3.50 | −58.5 |
2-butyl-1,3-dimethylcyclopentane | 3.61 | −64.1 |
Compound | Distance, d (Å) | Eads (kJ mol−1) |
---|---|---|
1,2,5-trimethylpyrrolidine | 3.57 | −46.2 |
1-ethyl-2,5-dimethylpyrrolidine | 3.58 | −51.3 |
1-propyl-2,5-dimethylpyrrolidine | 3.46 | −56.5 |
1-butyl-2,5-dimethylpyrrolidine | 3.54 | −62.1 |
Compound | Distance, d (Å) | Eads (kJ mol−1) |
---|---|---|
1,4,5-trimethylcyclopenta-1,3-diene | 3.57 | −46.2 |
5-ethyl -1,4-dimethylcyclopenta-1,3-diene | 3.58 | −51.3 |
5-propyl -1,4-dimethylcyclopenta-1,3-diene | 3.46 | −56.5 |
5-butyl-1,4-dimethylcyclopenta-1,3-diene | 3.54 | −62.1 |
Compound | Distance, d (Å) | Eads (kJ mol−1) |
---|---|---|
1,2,5-trimethylpyrrole | 3.47 | −55.3 |
1-ethyl-2,5-dimethylpyrrole | 3.33 | −54.9 |
1-propyl-2,5-dimethylpyrrole | 3.33 | −61.0 |
1-butyl-2,5-dimethylpyrrole | 3.31 | −66.3 |
Compound | Slope | Standard Error | R2 |
---|---|---|---|
Alkanes | −2.3522 | 0.0426 | 0.9990 |
Pyrrolidines | −1.9616 | 0.0142 | 0.9998 |
Pyrroles | −2.5122 | 0.1050 | 0.9948 |
Cyclopentanes | −1.9371 | 0.0194 | 0.9997 |
Cyclopentadienes | −2.4005 | 0.0624 | 0.9980 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moriggi, F.; Barbera, V.; Galimberti, M.; Raffaini, G. Adsorption Affinities of Small Volatile Organic Molecules on Graphene Surfaces for Novel Nanofiller Design: A DFT Study. Molecules 2023, 28, 7633. https://doi.org/10.3390/molecules28227633
Moriggi F, Barbera V, Galimberti M, Raffaini G. Adsorption Affinities of Small Volatile Organic Molecules on Graphene Surfaces for Novel Nanofiller Design: A DFT Study. Molecules. 2023; 28(22):7633. https://doi.org/10.3390/molecules28227633
Chicago/Turabian StyleMoriggi, Francesco, Vincenzina Barbera, Maurizio Galimberti, and Giuseppina Raffaini. 2023. "Adsorption Affinities of Small Volatile Organic Molecules on Graphene Surfaces for Novel Nanofiller Design: A DFT Study" Molecules 28, no. 22: 7633. https://doi.org/10.3390/molecules28227633
APA StyleMoriggi, F., Barbera, V., Galimberti, M., & Raffaini, G. (2023). Adsorption Affinities of Small Volatile Organic Molecules on Graphene Surfaces for Novel Nanofiller Design: A DFT Study. Molecules, 28(22), 7633. https://doi.org/10.3390/molecules28227633