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Jasiński, R. Understanding the

Molecular Mechanism of Thermal

and LA-Catalysed Diels–Alder

Reactions between Cyclopentadiene

and Isopropyl 3-Nitroprop-2-Enate.

Molecules 2023, 28, 5289. https://

doi.org/10.3390/molecules28145289

Academic Editor: Ewa

Daniela Raczyńska
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Abstract: The molecular mechanism of the Diels–Alder reaction with the participation of cyclopen-
tadiene and isopropyl 3-nitroprop-2-enate was examined based on wb97xd/6-311+G(d) (PCM)
quantum chemical calculations. It was found that the type of mechanism for the conversion of
addends depends significantly on the reaction conditions. In less-polar environments, a one-step
polar mechanism is realised. In more polar solvents, the formation of “extended”-type zwitterionic
intermediates is possible. In contrast, in the presence of an LA-type catalyst, the one-step mechanisms
are replaced by respective stepwise mechanisms with zwitterionic or heterocyclic intermediates.

Keywords: Diels–Alder reaction; nitroalkene; molecular mechanism; molecular electron density
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1. Introduction

The Diels–Alder (DA) reaction with the participation of cyclopentadiene 1 is a most
universal strategy for the preparation of different types of compounds containing nor-
bornene carbon skeleton [1,2]. The potential of structures obtained in this way is especially
greater when the norbornene molecular segment is conjugated with the nitro group. This
stimulates the possibility of further functionalisation for amines [3], nitrile N-oxides [4,5],
oximes [6], nitronates [7,8] and many others [9,10]. Additionally, the nitro group’s presence
within organic molecules stimulates its bioactive function [11–13]. The introduction of a
NO2 group to the norbornene skeleton is possible via direct nitration or the substitution
of halogen atoms [14,15]. However, the easiest strategy for the preparation of nitronor-
bornenes is based on DA reactions with the participation of conjugated nitroalkenes. These
processes have recently been a special subject of our comprehensive research [16–19].

Some time ago, Corey and coworkers [20] conducted DA reactions of cyclopentadiene 1
with isopropyl 3-nitroprop-2-enate 2. It was found that in the dichloromethane (DCM) solu-
tion, the mentioned process led to endo-nitronorbornene 4 as the major product (Scheme 1).
Additionally, exo-nitronorbornene 3 was formed as the minor adduct. The mechanism of
this reaction was, however, unclear (Scheme 2). Due to the electrophilic nature of conjugated
nitroalkenes [21,22], in this case, the “classical” one-step mechanism can compete with the
stepwise mechanism realised via the zwitterionic intermediate (5 and/or 6). Interesting
examples of these types of DA reactions were recently detected [23–25]. Additionally, recent
publications suggest the possibility of the formation of a DA-type adduct via stepwise
sequence via the Hetero Diels–Alder stage and further [3.3]-sigmatropic rearrangement
of primary formed internal nitronate [16,18]. This is possible inter alia in the case of DA
reactions with the participation of trifluoromethylated nitroalkenes or 1-cyano-substituted
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nitroethenes. As a consequence, mechanistic aspects of the title reaction require deeper
exploration. For this purpose, we used data derived from the calculations based on the
density functional theory (DFT). In this computational study, we simulated the presence of
DCM (tested experimentally) and more polar nitromethane. Lastly, we also examined the
potential catalytic effect derived from the presence of a Lewis acid (LA) catalyst.
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uum Model) calculations suggest that the qualitative description of enthalpy profiles for 
both considered cycloaddition paths were similar. In particular, in both cases, the same 
type of critical structure was localised between the valley of reagents and the valley of 
adducts: molecular pre-reaction complex (MC) and the single transition state (TS). 

The interactions between addend molecules led, at the first reaction stage, to form-
ing the molecular pre-reaction complex (MCA and MCB, respectively, for paths A and B). 
The decrease in the enthalpy of the reaction system of about 6 kcal/mol was a conse-
quence of this transformation (Tables 1 and 2, Figure 1). It should be mentioned that the 
substantial reduction in the entropy was realised at the same time. Therefore, Gibbs free 
energy (ΔG) of the formation of MCs took a positive value, which excluded the possibil-
ity of MCs as stable intermediates. Therefore, valleys of MCs on the reaction profile can 
be considered to exist at the enthalpy, but not at the Gibbs energy surface. From a struc-
tural point of view, MCs should be treated as a molecular pair stabilised via coulombic 
interactions. Subsequently, no new sigma-bonds were formed at this stage (Table 3, Fig-
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Scheme 2. Theoretically possible one-step and stepwise formation of DA adducts in the reactions
between cyclopentadiene 1 and isopropyl 3-nitroprop-2-enate 2.

2. Results and Discussion

Our research started with the exploration of mechanistic aspects of the title reaction in
the DCM solution. The results of the wb97xd/6-311+G(d) (PCM—Polarisable Continuum
Model) calculations suggest that the qualitative description of enthalpy profiles for both
considered cycloaddition paths were similar. In particular, in both cases, the same type of
critical structure was localised between the valley of reagents and the valley of adducts:
molecular pre-reaction complex (MC) and the single transition state (TS).

The interactions between addend molecules led, at the first reaction stage, to forming
the molecular pre-reaction complex (MCA and MCB, respectively, for paths A and B). The
decrease in the enthalpy of the reaction system of about 6 kcal/mol was a consequence of
this transformation (Tables 1 and 2, Figure 1). It should be mentioned that the substantial
reduction in the entropy was realised at the same time. Therefore, Gibbs free energy (∆G) of
the formation of MCs took a positive value, which excluded the possibility of MCs as stable
intermediates. Therefore, valleys of MCs on the reaction profile can be considered to exist
at the enthalpy, but not at the Gibbs energy surface. From a structural point of view, MCs
should be treated as a molecular pair stabilised via coulombic interactions. Subsequently,
no new sigma-bonds were formed at this stage (Table 3, Figure 2). Additionally, no
electron density flux between substructures was observed at this stage (global electron
density transfer GEDT = 0.00). The substructures of addents adopted orientations which
were favourable for the further formation of the transition state. Similar pre-reaction
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complexes were recently detected regarding different-type intermolecular cycloaddition
reactions [26–28].

Table 1. Global (global electrophilicity ω, global nucleophilicity N) and local electronic properties
(local Parr functions P+/−

k, local nucleophilicity Nk, local electrophilicity ωk) of the cyclopentadiene
1 and isopropyl 3-nitroprop-2-enate 2.

No. Global
Properties

Local
Properties

ω

[eV]
N

[eV] P−C1 P−C2
NC1
[eV]

NC2
[eV] P+

C5 P+
C6

ω C5
[eV]

ω C6
[eV]

1 0.83 3.36 0.47 0.08 1.59 0.27

2 2.31 1.36 0.005 0.414 0.01 0.95

Table 2. Energetic parameters for the reactions between cyclopentadiene 1 and isopropyl 3-nitroprop-
2-enate 2 in light of the wb97xd/6-311+G(d) (PCM) calculations (∆H, ∆G are in kcal/mol; ∆S is in
cal/molK).

Solvent Path Transition ∆H ∆S ∆G

DCM A 1 + 2→MCA −6.3 −40.2 5.7
1 + 2→ TSA 6.9 −51.0 22.1

1 + 2→ 3 −32.6 −52.6 −16.9

B 1 + 2→MCB −6.7 −40.3 5.3
1 + 2→ TSB 5.9 −51.1 21.1

1 + 2→ 4 −32.2 −50.4 −17.2

Nitromethane A 1 + 2→MCA −6.1 −39.8 5.7
1 + 2→ TSA 6.8 −50.8 21.9

1 + 2→ 3 −32.4 −52.7 −16.7

B 1 + 2→MCB −6.5 −40.1 5.4
1 + 2→ TSB 5.7 −50.5 20.7

1 + 2→ 4 −32.1 −50.4 −17.1

C 1 + 2→MCA −6.1 −39.8 5.7
1 + 2→ TSC 18.9 −47.6 33.1

1 + 2→ 7 11.7 −46.4 25.6

DCM A 2 + BF3 → [2/BF3] −6.1 −36.5 4.7
1 + [2/BF3]→MCA/BF3 −7.7 −41.2 4.6
1 + [2/BF3]→ TS1A/BF3 −2.7 −50.6 12.4

1 + [2/BF3]→ 5/BF3 −13.3 −52.2 2.2
1 + [2/BF3]→ TS2A/BF3 −11.0 −57.3 6.1

1 + 2+BF3 → 3 + BF3 −32.6 −52.6 −16.9

B 1 + [2/BF3]→MCB/BF3 −8.5 −44.2 4.6
1 + [2/BF3]→ TS1B/BF3 −5.3 −51.4 10.0

1 + [2/BF3]→ 8/BF3 −37.7 −55.1 −21.2
1 + [2/BF3]→ TS2A/BF3 −14.8 −58.8 2.7

1 + 2 + BF3 → 4 + BF3 −32.2 −50.4 −17.2
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Figure 1. Enthalpy profiles for the reactions between cyclopentadiene 1 and isopropyl 3-nitroprop-2-
enate 2 in the DCM environment in light of the wb97xd/6-311+G(d) (PCM) calculations.

Table 3. Key parameters of critical structures of reactions between cyclopentadiene 1 and isopropyl
3-nitroprop-2-enate 2 in light of the wb97xd/6-311+G(d) (PCM) calculations.

Solvent Structure
Interatomic Distances [Å] GEDT

C1–C2 C2–C3 C3–C4 C4–C5 C5–C6 C6–C1 [e]

DCM 1 1.344 1.468 1.344
2 1.323

MCA 1.346 1.463 1.346 3.210 1.325 3.231 0.00
TSA 1.398 1.398 1.389 2.336 1.388 2.166 0.32

3 1.520 1.333 1.520 1.565 1.543 1.557

MCB 1.346 1.464 1.345 3.235 1.324 3.227
TSB 1.397 1.401 1.385 2.379 1.387 2.147 0.32

4 1.515 1.334 1.517 1.565 1.538 1.579 0.00

Nitromethane 1 1.344 1.468 1.344
2 1.323

MCA 1.346 1.463 1.346 3.211 1.325 3.231 0.00
TSA 1.399 1.398 1.388 2.364 1.388 2.150 0.33

3 1.520 1.333 1.519 1.565 1.544 1.557

MCB 1.346 1.464 1.346 3.236 1.324 3.228 0.00
TSB 1.398 1.402 1.383 2.421 1.388 2.127 0.34

4 1.515 1.334 1.517 1.565 1.538 1.579

MCA 0.00
TSC 1.415 1.411 1.367 4.371 1.416 1.855 0.61

7 1.472 1.379 1.388 4.351 1.492 1.561 0.99

DCM [2/BF3] 1.325
MCA/BF3 1.348 1.460 1.348 3.150 1.330 3.109 0.00
TS1A/BF3 1.388 1.418 1.368 2.870 1.382 2.181 0.39

5/BF3 1.481 1.372 1.392 3.398 1.489 1.579 0.93
TS2A/BF3 1.483 1.361 1.417 2.347 1.488 1.606 0.61

MCB/BF3 1.350 1.460 1.348 3.162 1.331 3.029 0.00
TS1B/BF3 1.385 1.426 1.360 2.966 1.377 2.233 0.35

8/BF3 1.546 1.491 1.328 3.688 1.488 1.548 0.34
TS2A/BF3 1.482 1.369 1.406 2.379 1.484 1.606 0.47
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Figure 2. Views of critical structures of the reactions between cyclopentadiene 1 and isopropyl 3-
nitroprop-2-enate 2 in the DCM environment in light of the wb97xd/6-311+G(d) (PCM) calculations.

The further reduction of key interatomic distances along the reaction coordinates led
to the formation of transition states (TSA and TSB, respectively, for paths A and B). This
was accompanied by an increase in the enthalpy of the reaction system by 6.9 kcal/mol
and 5.9 kcal/mol regarding paths A and B, respectively. Including the entropy factors
in the considerations shows that activation barriers ∆G on considered paths were equal
to 22.1 kcal/mol and 21.1 kcal/mol, respectively. Therefore, the cycloaddition channel
was favoured with the endo-orientation of the nitro group within the formed adduct. The
competitive channel leading to the exo-nitro cycloadduct cannot be treated as forbidden
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from the kinetic point of view. Therefore, the obtained values correlated well with the
stereoselectivity experimentally observed.

Within both TSs, the key interatomic distances were substantially reduced. It is
interesting that the distance C6–C1 was evidently shorter than the second one (C4–C5).
This was not a consequence of the sterical effects [29] and can be easily explained based
on the analysis of the local electrophilicities and nucleophilicities of addents [30]. It was
found that within the considered reagents pair, the cyclopentadiene 1 played the role of
nucleophilic agent (ω = 0.83 eV, N = 3.36 eV), whereas the nitroalkene must be treated as an
electrophile (ω = 2.31 eV). Next, the most nucleophilic centre was located at the C1 carbon
atom of cyclopentadiene, whereas the most electrophilic centre was located at the C6 carbon
atom of the nitrovinyl moiety. Therefore, the reaction proceeded under the control of the
interactions between the most activated positions at the unsaturated moieties of addends.

Analysis of the electron density distribution within TSs exhibits that the electron
density transfer from the substructure of cyclopentadiene to the substructure of nitroalkene
was observed in both cases. Therefore, formally, both cycloaddition channels should be
treated as Forward Electron Density Flux (FEDF) [29] processes. The internal reaction
coordinate (IRC) calculations connected directly localised TSs within valleys of respective
MCs and respective products. All attempts for the localisation of alternative paths leading
to adducts via hypothetical zwitterionic intermediates were not-successful. Therefore, the
analysed reaction can be treated as a polar but one-step Diels–Alder reaction [31].

We performed a similar study for the analogous reaction in a more polar solvent
(nitromethane). It was found that the energy profiles of both considered cycloaddition
channels were similar, as observed in the DCM solution. Next, the quantitative descriptions
of these profiles were in the nitromethane, almost identical to the DCM. The structural
characteristics of TSA and TSB were also similar in both considered solvents. Unexpect-
edly, however, the additional path C of the consumption of substrates was detected in the
nitromethane solution. This was the reaction channel leading to the zwitterion 7. The first
stage of this path was the formation of MCA, which can be considered a common inter-
mediate for paths A and C. This was confirmed via IRC analysis. The further conversion
of MCA can lead to the transition state TSC. This TS reduced the key interatomic distance
C6-C1 to 1.9 Å. In contrast, the C4-C5 interatomic distance was beyond the range typical
for C-C bonds within transition states [32–34]. TSC (Figure 3) subsequently exhibited
an evidently more polar nature than TSA and TSB. It should be noted that the path C
should be treated as forbidden from the kinetic point of view because the activation energy
was more than 12 kcal/mol higher, as in the case of paths A and B (∆H = 18.9 kcal/mol,
∆G = 33.1 kcal/mol). The further reduction in the C6–C1 distance led to the formation
of a zwitterion 7 molecule. Its zwitterionic nature was clearly confirmed by the value
of GEDT (Table 3). It is important that due to the Z-type, “extended” conformation [35],
the direct cyclisation of 7 into cycloadduct was impossible. Its cyclisation proceeded via
the stage of the dissociation into individual reagents and further conversion via A or B
cycloaddition paths.

The introduction of BF3 as the LA-type catalyst to the reaction environment enforced
fundamental changes in molecular mechanisms on both considered cycloaddition paths.
The BF3/nitroalkene molecular complex ([2/BF3]) was formed within the first reaction
stage. This was realised without any activation barrier and was accompanied by a reduction
in the enthalpy of the reaction system of about 6 kcal/mol. Within this complex, the boron
atom was located near the oxygen atom of the nitroalkene molecular segment. Similar
complexes between the nitro group and Lewis Acids were detected recently [36–38]. This
intermediate was stabilised via coulombic interactions between the boron shell, charac-
terised by a positive partial charge, and the nitro group’s oxygen atom, characterised by a
negative partial charge. Further chemical transformations were realised via the interaction
of this complex with the cyclopentadiene 1 molecule according to multi-step mechanisms.
These transformations exhibited, however, completely different natures depending on the
considered reaction path.
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The enthalpy profile of the reaction finally leading to the exo-nitronorbornene 3 is
presented in Figure 4. Within this profile, four critical points were localised between an area
of the starting molecular system (individual 1 and [2/BF3]) and an area of the final product.
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The first reaction step was the formation of the molecular complex MCA/BF3. This
step was realised without the activation barrier. The enthalpy of the reaction system was
reduced at this stage by 7.7 kcal/mol. Within the MCA/BF3, no new bonds were formed
(Figure 5). The further movement of the reaction system via the reaction coordinates led
to the area of the transition state TS1A/BF3. This was accompanied by an increase in the
enthalpy of the reaction system by about a few kcal/mol. Including the entropy factors
in the considerations shows that activation barriers ∆G on the considered path equalled
12.4 kcal/mol. Within this structure, the distance between reaction centres C1 and C6 was
reduced up to about 2.2 Å. On the other hand, the interatomic distance C4–C5 existed
beyond the area typical for new C-C bonds within transition states [32]. Subsequently,
the electron density transfer from the substructure of cyclopentadiene to the nitrovinyl
segment was observed. Therefore, according to Domingo’s terminology [31], this TS can
be classified as polar. The reduction of the C1–C6 distance directed the reaction system
into an area of the complex of intermediate 5 with BF3. Within this molecule, the key
C1–C6 bond exhibited a length of about 1.58 Å. Next, the analysed intermediate was
characterised by a strongly zwitterionic nature and “cyclic” conformation for the contrast
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of the zwitterion 7 mentioned above. This was confirmed by the GEDT value, which was
equal to almost 1e (Table 3). The zwitterion 5 was unstable from the thermodynamic point
of view and easy to convert to the target norbornene system 3. This process was realised
via the TS1A/BF3 transition state. Within this TS, the C4–C5 interatomic distance was
substantially reduced up to 2.3 Å. The IRC calculation connected this structure clearly with
the valleys of intermediate and product 3. Therefore, for the contrast of the non-catalysed
cycloaddition, a BF3-promoted reaction 1 + 2→ 4 was realised according to the stepwise
mechanism with the zwitterionic intermediate.
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Alternatively, the molecular complex [2/BF3]) can react with the cyclopentadiene 1 on
the competitive channel, finally leading to endo-nitronorbornene 4. This reaction proceeded
via four critical points (Figure 6). Similarly, as in the case of path A, discussed above,
the first step was connected with the barrier-less formation of the respective pre-reaction
complex within this reaction way. This is an MCB/BF3 complex. It is a “meeting complex”
with a sandwich structure that does not show the nature of a charge-transfer complex
(GEDT = 0.00 e). The consequence of the MCB/BF3 complex formation was a reduction in
the enthalpy of the reaction system by about a few kcal/mol.
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of the wb97xd/6-311+G(d) (PCM) calculations.

The further conversion of the molecular MCB/BF3 complex was its transformation
to the TS1B/BF3 transition state. This TS reduced the distance between reactions C1 and
C6 to about 2.2 Å. Unexpectedly, at the same time, the second interatomic distance C2–O7
(Figure 5) was also substantially shortened instead of the expected distance C4–C5. For-
mally, the considered TS was evidently like transition states observed within the transition
states of Hetero Diels–Alder (HDA) reactions [33,34]. This was confirmed via IRC calcula-
tions, which connected TS1B/BF3 with the 1,2-oxazine N-oxide 8 structure linked with BF3
(8/BF3) instead of the expected endo-nitronorbornene 4 linked by BF3. The rearrangement of
the 1,2-oxazine N-oxide 8 into the target norbornene structure was possible via the second
transition state (TS1B/BF3). Within this TS, the C1–O6 distance was practically unchanged.
Subsequently, the C4–C5 distance was evidently reduced, which was a consequence of
the formation of the norbornene skeleton. Formally, the considered TS was evidently like
transition states observed within the transition states of [3.3]-sigmatropic shifts [35]. It
should be underlined that both TSs, as well as the intermediate 8/BF3, exhibited polar
natures (GEDT = 0.3–0.5 e). The further conversion of the TS1B/BF3 led directly to the
valley of the target product. IRC calculations confirmed this.

3. Computational Details

The computational study was performed using the wb97xd/6-311+G(d) level of theory,
and the Gaussian 09 package was the software [39]. The PlGrid infrastructure in the national
computing centre “Cyfronet” was applied. A similar computational level has already been
successfully used to explore mechanistic aspects of different-type cycloaddition processes,
including Diels–Alder reactions [40–43]. All localised stationary points were characterised
using vibrational analysis. It was found that starting molecules, as well as products,
had positive Hessian matrices. On the other hand, all transition states (TS) showed only
one negative eigenvalue in their Hessian matrices. Intrinsic reaction coordinate (IRC)
calculations were performed for all optimised transition states. The presence of the solvent
in the reaction environment (dichloromethane, nitromethane) was included using the
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IEFPCM (Integral Equation Formalism Polarisable Continuum Model) algorithm [44].
Calculations of all critical structures were performed for the temperature T = 298 K and
pressure p = 1 atm. The results are collected in Tables 2 and 3. Consistent with previous
conventions in this paper, the pre-reaction complexes are denoted as MC, and the transition
structures as TS.

The global electron density transfer (GEDT) [45] was calculated according to the
formula:

GEDT = −ΣqA

where qA is the net charge, and the sum is taken over all the atoms of nitroalkene.
Global and local electronic properties of reactants were estimated according to the

equations recommended earlier by Parr and Domingo [46,47]. In particular, the electronic
chemical potentials (µ) and chemical hardness (η) were evaluated in terms of one-electron
energies of FMO (EHOMO and ELUMO) using the following equations:

µ ≈ (EHOMO + ELUMO)/2 η ≈ ELUMO − EHOMO

Next, the values of µ and ηwere then used for the calculation of global electrophilicity
(ω) according to the formula:

ω = µ2/2η

Subsequently, global nucleophilicity (N) [48] can be expressed in terms of the equation:

N = EHOMO − EHOMO (tetracyanoethene)

The local electrophilicity (ωk) condensed to atom k was calculated by projecting the
indexω onto any reaction centre k in the molecule using Parr functions P+

k [49]:

ωk = P+
k·ω

The local nucleophilicity (Nk) condensed to atom k was calculated using global nucle-
ophilicity N and Parr functions P−k [49] according to the formula:

Nk = P−k·N

The results are collected in Table 1.

4. Conclusions

Results of our wb97xd/6-311+G(d) (PCM) calculations shed light on the mechanistic
aspects of cyclopentadiene with isopropyl 3-nitroprop-2-enate 2. It was found that, de-
pending on the reaction conditions, the different mechanisms can be realised on the way,
leading to target nitronorbornene molecular systems. In particular, in the DCM solution,
two alternative reaction channels are possible and allowed from the kinetic point of view.
Both reactions are controlled by the attack of the more electrophilic beta carbon centre
at the nitrovinyl moiety of nitroalkene to the nucleophilically activated 1-position of the
cyclopentadiene. In the first scenario, the adduct with the exo-orientation of the nitro group
was formed, whereas, in the second one, the endo-nitro norbornene was formed. This
conclusion correlates well with the experimental results. From the mechanistic point of
view, considered processes should be classified as one-step but polar. The replacement of
DCM with a more polar solvent created an additional way for the conversion of addends.
This reaction channel leads to the zwitterionic intermediate characterised by “extended”
conformation. Lastly, introducing the BF3 catalyst to the reaction environment substantially
changed the mechanism on all considered paths. In particular, the cycloaddition leading
to the exo-nitro norbornene was realised via the stage of the formation of a zwitterionic
intermediate characterised by “cyclic” conformation. On the other hand, the competi-
tive reaction path leading, finally, to the endo-nitro norbornene should be interpreted
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as the domino process, including the stage of the Hetero Diels–Alder reaction and the
[3.3]-sigmatropic shift.
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8. Kącka-Zych, A. Understanding the uniqueness of the stepwise [4 + 1] cycloaddition reaction between conjugated nitroalkenes
and electrophilic carbene systems with a molecular electron density theory perspective. Int. J. Quantum Chem. 2021, 121, e26440.
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38. Kącka, A.; Domingo, L.R.; Jasiński, R. Does a fluorinated Lewis acid catalyst change the molecular mechanism of the decomposi-
tion process of nitroethyl carboxylates? Res Chem. Intermed. 2018, 44, 325.

39. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.;
Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009.
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