Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (340)

Search Parameters:
Keywords = cultural and biological sustainability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 718 KiB  
Article
Evaluation and Verification of Starch Decomposition by Microbial Hydrolytic Enzymes
by Makoto Takaya, Manzo Uchigasaki, Koji Itonaga and Koichi Ara
Water 2025, 17(15), 2354; https://doi.org/10.3390/w17152354 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the Enzyme Biofilm Method (EBM), a biological wastewater treatment technology previously developed by the authors. EBM employs microbial-derived hydrolytic enzyme groups in the initial treatment stage to break down high-molecular-weight organic matter—such as starch, proteins, and fats—into low-molecular-weight compounds. These [...] Read more.
This study investigates the Enzyme Biofilm Method (EBM), a biological wastewater treatment technology previously developed by the authors. EBM employs microbial-derived hydrolytic enzyme groups in the initial treatment stage to break down high-molecular-weight organic matter—such as starch, proteins, and fats—into low-molecular-weight compounds. These compounds enhance the growth of native microorganisms, promoting biofilm formation on carriers and improving treatment efficiency. Over the past decade, EBM has been practically applied in food factory wastewater facilities handling high organic loads. The enzyme groups used in EBM are derived from cultures of Bacillus mojavensis, Saccharomyces cariocanus, and Lacticaseibacillus paracasei. To clarify the system’s mechanism and ensure its practical viability, this study focused on starch—a prevalent and recalcitrant component of food wastewater—using two evaluation approaches. Verification 1: Field testing at a starch factory showed that adding enzyme groups to the equalization tank effectively reduced biological oxygen demand (BOD) through starch degradation. Verification 2: Laboratory experiments confirmed that the enzyme groups possess both amylase and maltase activities, sequentially breaking down starch into glucose. The resulting glucose supports microbial growth, facilitating biofilm formation and BOD reduction. These findings confirm EBM’s potential as a sustainable and effective solution for treating high-strength food industry wastewater. Full article
(This article belongs to the Special Issue Advanced Biological Wastewater Treatment and Nutrient Removal)
20 pages, 11306 KiB  
Article
Bioactive Extracts of Spirulina platensis Inhibit Colletotrichum orchidearum and Fusarium nirenbergiae: A Green Approach to Hydroponic Lettuce Protection
by Leticia Eduarda Bender, Emily da Luz Monteiro, José Luís Trevizan Chiomento and Luciane Maria Colla
Processes 2025, 13(8), 2483; https://doi.org/10.3390/pr13082483 - 6 Aug 2025
Abstract
The growing demand for food and the environmental impact of conventional agriculture have prompted the search for sustainable alternatives. Phycocyanin (PC) and total phenolic compounds (TPC) extracted from Spirulina platensis have shown potential for the biological control of phytopathogens. The extraction method directly [...] Read more.
The growing demand for food and the environmental impact of conventional agriculture have prompted the search for sustainable alternatives. Phycocyanin (PC) and total phenolic compounds (TPC) extracted from Spirulina platensis have shown potential for the biological control of phytopathogens. The extraction method directly influences the yield and stability of these compounds. This study aimed to establish an efficient extraction protocol for PC and TPC and to evaluate their antimicrobial efficacy in vitro against Colletotrichum orchidearum, Fusarium nirenbergiae, and Alternaria sp. isolated from hydroponically grown lettuce. The phytopathogens were identified based on phylogenetic analyses using sequences from the ITS, EF1-α, GAPDH, and RPB2 gene regions. This is the first report of C. orchidearum in hydroponic lettuce culture in Brazil, expanding its known host range. Extracts were obtained using hydroalcoholic solvents and phosphate buffer (PB), combined with ultrasound-assisted extraction (bath and probe). The extracts were tested for in vitro antifungal activity. Data were analyzed by ANOVA (p < 0.05), followed by Tukey’s test. The combination of the PB and ultrasound probe resulted in the highest PC (95.6 mg·g−1 biomass) and TPC (21.9 mg GAE·g−1) yields, using 10% (w/v) biomass. After UV sterilization, the extract retained its PC and TPC content. The extract inhibited C. orchidearum by up to 53.52% after three days and F. nirenbergiae by 54.17% on the first day. However, it promoted the growth of Alternaria sp. These findings indicate that S. platensis extracts are a promising alternative for the biological control of C. orchidearum and F. nirenbergiae in hydroponic systems. Full article
Show Figures

Figure 1

20 pages, 4467 KiB  
Review
Structuring the Future of Cultured Meat: Hybrid Gel-Based Scaffolds for Edibility and Functionality
by Sun Mi Zo, Ankur Sood, So Yeon Won, Soon Mo Choi and Sung Soo Han
Gels 2025, 11(8), 610; https://doi.org/10.3390/gels11080610 - 3 Aug 2025
Viewed by 106
Abstract
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility [...] Read more.
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility and food safety. We explore recent advances in the use of naturally derived gel-forming polymers such as gelatin, chitosan, cellulose, alginate, and plant-based proteins as the structural backbone for edible scaffolds. Particular attention is given to the integration of food-grade functional additives into hydrogel-based scaffolds. These include nanocellulose, dietary fibers, modified starches, polyphenols, and enzymatic crosslinkers such as transglutaminase, which enhance mechanical stability, rheological properties, and cell-guidance capabilities. Rather than focusing on fabrication methods or individual case studies, this review emphasizes the material-centric design strategies for building scalable, printable, and digestible gel scaffolds suitable for cultured meat production. By systemically evaluating the role of each component in structural reinforcement and biological interaction, this work provides a comprehensive frame work for designing next-generation edible scaffold systems. Nonetheless, the field continues to face challenges, including structural optimization, regulatory validation, and scale-up, which are critical for future implementation. Ultimately, hybrid gel-based scaffolds are positioned as a foundational technology for advancing the functionality, manufacturability, and consumer readiness of cultured meat products, distinguishing this work from previous reviews. Unlike previous reviews that have focused primarily on fabrication techniques or tissue engineering applications, this review provides a uniquely food-centric perspective by systematically evaluating the compositional design of hybrid hydrogel-based scaffolds with edibility, scalability, and consumer acceptance in mind. Through a comparative analysis of food-safe additives and naturally derived biopolymers, this review establishes a framework that bridges biomaterials science and food engineering to advance the practical realization of cultured meat products. Full article
(This article belongs to the Special Issue Food Hydrocolloids and Hydrogels: Rheology and Texture Analysis)
Show Figures

Figure 1

22 pages, 6617 KiB  
Article
Natural Plant Oils as Anti-Algae Biocides for Sustainable Application in Cultural Heritage Protection
by Michał Komar, Nathnael Derese, Kamil Szymczak, Paulina Nowicka-Krawczyk and Beata Gutarowska
Sustainability 2025, 17(15), 6996; https://doi.org/10.3390/su17156996 - 1 Aug 2025
Viewed by 267
Abstract
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use [...] Read more.
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use in heritage conservation. This study evaluates the anti-algal activity of Salvia officinalis and Equisetum arvense (essential oils, hydrolates, and extracts) against a mixed culture of five green algae species (Bracteacoccus minor, Stichococcus bacillaris, Klebsormidium nitens, Chloroidium saccharophilum, and Diplosphaera chodatii). The plant materials were processed using hydrodistillation and solvent extraction, followed by chemical characterization through gas chromatography–mass spectrometry (GC-MS). Biological efficacy was assessed by measuring algal growth inhibition, changes in biomass colour, chlorophyll a concentration, and fluorescence. S. officinalis yielded higher extract quantities (extraction yield: 23%) than E. arvense and contained bioactive compounds such as thujone, camphor, and cineole, which correlated with its strong anti-algal effects. The essential oil of S. officinalis demonstrated the highest efficacy, significantly inhibiting biofilm formation (zones of inhibition: 15–94 mm) and photosynthetic activity at 0.5% concentration (reduction in chlorophyll a concentration 90–100%), without causing visible discolouration of treated surfaces (∆E < 2). These findings highlight the potential of S. officinalis essential oil as a natural, effective, and material-safe algicidal biocide for the sustainable protection of cultural heritage sites. Full article
Show Figures

Figure 1

34 pages, 6455 KiB  
Article
IBCar: Potent Orally Bioavailable Methyl N-[5-(3′-Iodobenzoyl)-1H-Benzimidazol-2-yl]Carbamate for Breast Cancer Therapy
by Janina Baranowska-Kortylewicz and Ying Yan
Cancers 2025, 17(15), 2526; https://doi.org/10.3390/cancers17152526 - 30 Jul 2025
Viewed by 294
Abstract
Objectives: To investigate the efficacy and underlying mechanisms of IBCar’s biological activity in breast cancer models, both in cell culture and in mice, and to compare its effects on cancer versus normal cells. Methods: The cytotoxicity of IBCar was evaluated using [...] Read more.
Objectives: To investigate the efficacy and underlying mechanisms of IBCar’s biological activity in breast cancer models, both in cell culture and in mice, and to compare its effects on cancer versus normal cells. Methods: The cytotoxicity of IBCar was evaluated using the MTS assay to assess metabolic activity and the clonogenic assay to determine reproductive integrity. The impact of IBCar on microtubule integrity, mitochondrial function, and multiple signaling pathways was analyzed using Western blotting, microarray analysis, and live cell imaging. The therapeutic effectiveness of orally administered IBCar was assessed in a transgenic mouse model of Luminal B breast cancer and in mice implanted with subcutaneous triple-negative breast cancer xenografts. Results: IBCar demonstrated potent cytotoxicity across a diverse panel of breast cancer cell lines, including those with mutant or wild-type TP53, and cell lines with short and long doubling times. Comparative analysis revealed distinct responses between normal and cancer cells, including differences in IBCar’s effects on the mitochondrial membrane potential, endoplasmic reticulum stress and activation of cell death pathways. In breast cancer cells, IBCar was cytotoxic at nanomolar concentrations, caused irreversible microtubule depolymerization leading to sustained mitochondrial dysfunction, endoplasmic reticulum stress, and induced apoptosis. In normal cells, protective mechanisms included reversible microtubule depolymerization and activation of pro-survival signaling via the caspase-8 and riptosome pathways. The therapeutic potential of IBCar was confirmed in mouse models of Luminal B and triple negative BC, where it exhibited strong antitumor activity without detectable toxicity. Conclusions: These findings collectively support IBCar as a promising, effective, and safe therapeutic candidate for breast cancer treatment. Full article
Show Figures

Figure 1

24 pages, 2749 KiB  
Article
Can In Vitro Cell Cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine Be an Alternative Source of Plant Biomass with Biological Antimicrobial and Anti-Acanthamoeba Activities?
by Anastasia Aliesa Hermosaningtyas, Anna Budzianowska, Dariusz Kruszka, Monika Derda, Jolanta Długaszewska and Małgorzata Kikowska
Appl. Sci. 2025, 15(15), 8292; https://doi.org/10.3390/app15158292 - 25 Jul 2025
Viewed by 223
Abstract
The sustainable production of plant bioactive compounds is increasingly important as natural habitats decline. This study investigates whether in vitro cell cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine can serve as alternative sources of biologically active biomass with antimicrobial [...] Read more.
The sustainable production of plant bioactive compounds is increasingly important as natural habitats decline. This study investigates whether in vitro cell cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine can serve as alternative sources of biologically active biomass with antimicrobial and anti-Acanthamoeba properties. Callus cultures were established under optimized and controlled conditions, and metabolomic profiling was completed using UPLC-HRMS/MS. In silico analysis, using a molecular docking approach, was applied to understand the interaction between target compounds and Acanthamoeba profilin and identify possible targets for antimicrobial properties. Untargeted metabolomic analysis confirmed the presence of valuable compounds in the callus cultures of the studied species. Biological activity was assessed through anti-Acanthamoeba and antimicrobial assays. Lychnis flos-cuculi and Kickxia elatine callus extracts showed significant inhibitory effects on Acanthamoeba trophozoites, with 87.5% and 80.1% inhibition at 10 mg/mL, respectively. In contrast, E. planum extract stimulated amoebic growth. The anti-Acanthamoeba activity correlated with the presence of ferulic acid and p-coumaric acid in L. flos-cuculi extract, and acteoside in K. elatine extract. Antibacterial testing revealed moderate activity of E. planum and K. elatine extracts against Staphylococcus spp., while Gram-negative bacteria and fungi were largely resistant. These findings highlight the potential of in vitro cultures—particularly those from L. flos-cuculi and K. elatine—as promising, sustainable sources of anti-Acanthamoeba and antimicrobial agents, warranting further investigation into their pharmacologically active constituents. Full article
Show Figures

Figure 1

19 pages, 847 KiB  
Article
Ichu Valorization by Pleurotus spp. Cultivation and Potential of the Residual Substrate as a Biofertilizer
by Richard Solórzano, Luis Dionisio, Lyana Burga, Rosario Javier-Astete, Cinthia Quispe-Apaza, Persing Oscco and Luis Johnson
Sustainability 2025, 17(15), 6695; https://doi.org/10.3390/su17156695 - 23 Jul 2025
Viewed by 385
Abstract
The high-Andean grass Jarava ichu (Poaceae) plays a vital role in water regulation and aquifer recharge. However, its limited use is often linked to forest fires, highlighting the need for sustainable alternatives. Therefore, this study aims to explore the valorization of ichu as [...] Read more.
The high-Andean grass Jarava ichu (Poaceae) plays a vital role in water regulation and aquifer recharge. However, its limited use is often linked to forest fires, highlighting the need for sustainable alternatives. Therefore, this study aims to explore the valorization of ichu as a substrate for the cultivation of Pleurotus spp. (P. citrinopileatus, P. djamor, and P. ostreatus) and to evaluate the potential of the residual substrate as a biofertilizer, offering an ecological alternative to grassland burning in the Peruvian Andes. Samples of ichu from the district of Tomás (Lima, Peru) were used as culture substrate, analyzing productivity indicators such as crop cycle (CC), biological efficiency (BE), and production rate (PR), together with the nutritional profile of the fungi and the chemical properties of the residual substrate. The results showed an average biological efficiency of 19.8%, with no significant differences (p > 0.05) in CC, BE, or PR among the species, confirming the viability of ichu as a substrate. The fungi presented a high protein content (24.1–30.41% on a dry basis), highlighting its nutritional value. In addition, the residual substrate exhibited elevated levels of phosphorus (795.9–1296.9 ppm) and potassium (253.1–291.3 ppm) compared to raw ichu (0.11–7.77 ppm for both nutrients). Germination tests on radish seeds showed rates between 80% and 100%, without inhibition, supporting its potential as a biofertilizer. This study demonstrates the double potential of ichu as a substrate for the sustainable production of edible mushrooms of high nutritional value and as a source of biofertilizers. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

18 pages, 751 KiB  
Article
Effects of Salinity, Temperature, and Diet on the Biological Characteristics of Brachionus plicatilis Müller, 1786
by Quynh-Anh Tran-Nguyen, Truong Nhat Phan, Quang-Anh Tran, Hong Thi Mai, Thao Linh Phan Thi, Dang Doan Phan and Mau Trinh-Dang
Biology 2025, 14(7), 878; https://doi.org/10.3390/biology14070878 - 18 Jul 2025
Viewed by 354
Abstract
This study investigates the effects of salinity, temperature, and diet on the biological characteristics of the rotifer Brachionus plicatilis, an essential live feed in aquaculture. The results indicate that environmental factors have a significant influence on reproductive traits and survival. At a [...] Read more.
This study investigates the effects of salinity, temperature, and diet on the biological characteristics of the rotifer Brachionus plicatilis, an essential live feed in aquaculture. The results indicate that environmental factors have a significant influence on reproductive traits and survival. At a salinity of 5 ppt, B. plicatilis achieved the highest fecundity (25.50 ± 0.58 inds.), while the longest lifespan (273.00 ± 72.52 h) was observed at 35 ppt. The temperature had a strong influence on developmental rates, with the shortest juvenile period recorded at 35 °C (8.00 ± 0.00 h) and the longest lifespan at 20 °C (270.62 ± 30.38 h). The diet also played a critical role, with Chlorella vulgaris supporting maximum fecundity, whereas mixed diets prolonged lifespan to 290.50 ± 62.83 (h). These findings provide valuable insights into optimizing rotifer culture systems to improve aquaculture productivity and sustainability. Full article
Show Figures

Figure 1

15 pages, 1006 KiB  
Review
Multifunctional Applications of Biofloc Technology (BFT) in Sustainable Aquaculture: A Review
by Changwei Li and Limin Dai
Fishes 2025, 10(7), 353; https://doi.org/10.3390/fishes10070353 - 17 Jul 2025
Viewed by 403
Abstract
Biofloc technology (BFT), traditionally centered on feed supplementation and water purification in aquaculture, harbors untapped multifunctional potential as a sustainable resource management platform. This review systematically explores beyond conventional applications. BFT leverages microbial consortia to drive resource recovery, yielding bioactive compounds with antibacterial/antioxidant [...] Read more.
Biofloc technology (BFT), traditionally centered on feed supplementation and water purification in aquaculture, harbors untapped multifunctional potential as a sustainable resource management platform. This review systematically explores beyond conventional applications. BFT leverages microbial consortia to drive resource recovery, yielding bioactive compounds with antibacterial/antioxidant properties, microbial proteins for efficient feed production, and algae biomass for nutrient recycling and bioenergy. In environmental remediation, its porous microbial aggregates remove microplastics and heavy metals through integrated physical, chemical, and biological mechanisms, addressing critical aquatic pollution challenges. Agri-aquatic integration systems create symbiotic loops where nutrient-rich aquaculture effluents fertilize plant cultures, while plants act as natural filters to stabilize water quality, reducing freshwater dependence and enhancing resource efficiency. Emerging applications, including pigment extraction for ornamental fish and the anaerobic fermentation of biofloc waste into organic amendments, further demonstrate its alignment with circular economy principles. While technical advancements highlight its capacity to balance productivity and ecological stewardship, challenges in large-scale optimization, long-term system stability, and economic viability necessitate interdisciplinary research. By shifting focus to its underexplored functionalities, this review positions BFT as a transformative technology capable of addressing interconnected global challenges in food security, pollution mitigation, and sustainable resource use, offering a scalable framework for the future of aquaculture and beyond. Full article
(This article belongs to the Section Sustainable Aquaculture)
Show Figures

Graphical abstract

20 pages, 3037 KiB  
Article
An Automated Microfluidic Platform for In Vitro Raman Analysis of Living Cells
by Illya Klyusko, Stefania Scalise, Francesco Guzzi, Luigi Randazzini, Simona Zaccone, Elvira Immacolata Parrotta, Valeria Lucchino, Alessio Merola, Carlo Cosentino, Ulrich Krühne, Isabella Aquila, Giovanni Cuda, Enzo Di Fabrizio, Patrizio Candeloro and Gerardo Perozziello
Biosensors 2025, 15(7), 459; https://doi.org/10.3390/bios15070459 - 16 Jul 2025
Viewed by 406
Abstract
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical [...] Read more.
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical microscopes and Raman spectrometers, allowing for the non-invasive imaging and spectroscopic analysis of cell cultures in vitro. The microfluidic device, which reproduces a dynamic environment, was optimized to sustain a passive, gravity-driven flow of medium, eliminating the need for an external pumping system and reducing mechanical stress on the cells. The platform was tested using Raman analysis and adherent tumoral cells to assess proliferation prior and subsequent to hydrogen peroxide treatment for oxidative stress induction. The results demonstrated a successful adhesion of cells onto the substrate and their proliferation. Furthermore, the platform is suitable for carrying out optical monitoring of cultures and Raman analysis. In fact, it was possible to discriminate spectra deriving from control and hydrogen peroxide-treated cells in terms of DNA backbone and cellular membrane modification effects provoked by reactive oxygen species (ROS) activity. The 800–1100 cm−1 band highlights the destructive effects of ROS on the DNA backbone’s structure, as its rupture modifies its vibration; moreover, unpaired nucleotides are increased in treated sample, as shown in the 1154–1185 cm−1 band. Protein synthesis deterioration, led by DNA structure damage, is highlighted in the 1257–1341 cm−1, 1440–1450 cm−1, and 1640–1670 cm−1 bands. Furthermore, membrane damage is emphasized in changes in the 1270, 1301, and 1738 cm−1 frequencies, as phospholipid synthesis is accelerated in an attempt to compensate for the membrane damage brought about by the ROS attack. This study highlights the potential use of this platform as an alternative to conventional culturing and analysis procedures, considering that cell culturing, optical imaging, and Raman spectroscopy can be performed simultaneously on living cells with minimal cellular stress and without the need for labeling or fixation. Full article
(This article belongs to the Special Issue Microfluidic Devices for Biological Sample Analysis)
Show Figures

Figure 1

32 pages, 857 KiB  
Review
Integrating Technological Innovations and Sustainable Practices to Abate Methane Emissions from Livestock: A Comprehensive Review
by Amr S. Morsy, Yosra A. Soltan, Waleed Al-Marzooqi and Hani M. El-Zaiat
Sustainability 2025, 17(14), 6458; https://doi.org/10.3390/su17146458 - 15 Jul 2025
Viewed by 564
Abstract
Livestock farming is a vital component of global food security, yet it remains a major contributor to greenhouse gas (GHG) emissions, particularly methane (CH4), which has a global warming potential 28 times greater than carbon dioxide (CO2). This review [...] Read more.
Livestock farming is a vital component of global food security, yet it remains a major contributor to greenhouse gas (GHG) emissions, particularly methane (CH4), which has a global warming potential 28 times greater than carbon dioxide (CO2). This review provides a comprehensive synthesis of current knowledge surrounding the sources, biological mechanisms, and mitigation strategies related to CH4 emissions from ruminant livestock. We first explore the process of methanogenesis within the rumen, detailing the role of methanogenic archaea and the environmental factors influencing CH4 production. A thorough assessment of both direct and indirect methods used to quantify CH4 emissions is presented, including in vitro techniques (e.g., syringe method, batch culture, RUSITEC), in vivo techniques (e.g., respiration chambers, Greenfeed, laser CH4 detectors), and statistical modeling approaches. The advantages and limitations of each method are critically analyzed in terms of accuracy, cost, feasibility, and applicability to different farming systems. We then examine a wide range of mitigation strategies, organized into four core pillars: (1) animal and feed management (e.g., genetic selection, pasture quality improvement), (2) diet formulation (e.g., feed additives such as oils, tannins, saponins, and seaweed), (3) rumen manipulation (e.g., probiotics, ionophores, defaunation, vaccination), and (4) manure management practices and policy-level interventions. These strategies are evaluated not only for their environmental impact but also for their economic and practical viability in diverse livestock systems. By integrating technological innovations with sustainable agricultural practices, this review highlights pathways to reduce CH4 emissions while maintaining animal productivity. It aims to support decision-makers, researchers, and livestock producers in the global effort to transition toward climate-smart, low-emission livestock farming. Full article
Show Figures

Figure 1

44 pages, 3979 KiB  
Review
Sesame Diseases and Pests: Assessment of Threats to the Establishment of an Australian Industry
by Dante L. Adorada, Lachlan C. Jones, Jian Liu and Geoff M. Gurr
Crops 2025, 5(4), 44; https://doi.org/10.3390/crops5040044 - 14 Jul 2025
Viewed by 594
Abstract
The emerging sesame (Sesamum indicum L.) industry in Australia faces potential threats from multiple pre-harvest diseases and pests, which will necessitate an initiative-taking approach for pest management. Here we assess the diseases and pests most likely to impede the development of a [...] Read more.
The emerging sesame (Sesamum indicum L.) industry in Australia faces potential threats from multiple pre-harvest diseases and pests, which will necessitate an initiative-taking approach for pest management. Here we assess the diseases and pests most likely to impede the development of a viable Australian sesame industry. Drawing on the international literature, we also consider the management approaches most likely to be viable and identify key research gaps necessary for effective and sustainable crop protection. More than sixty-seven plant pathogens have been identified worldwide that cause diseases in sesame, with some being observed to be major in Australia. Part of this review aims to provide an extensive overview of previous research on sesame and its diseases, shedding light on the evolving knowledge within sesame research, emerging trends, and the current state of understanding on the topic as it applies to Australia. Among the hundreds of pests reported to attack sesame internationally, this review identifies fifty-six pest taxa that are established in, or native to, Australia. We rank those most likely to be serious based on overseas damage levels and observations from recent trial plantings in Northern Australia. Chemical control methods have demonstrated efficacy overseas but are associated with concerns over resistance and environmental impact. Extremely limited numbers of pesticides are currently registered for pest or disease control in sesame by the Australian Pesticides and Veterinary Medicines Authority so non-chemical methods will be important. These include botanical, biological, cultural, and physical control approaches. This review underscores the need for continued research and tailored plant protection strategies to optimize sesame. Full article
Show Figures

Figure 1

22 pages, 2245 KiB  
Article
XPS Monitoring of Calcarenite Building Walls Long Exposed Outdoors: Estimation of Deterioration Trend from the Time Sequence of Curve-Fitted Spectra and PCA Exploration of the Large Dataset
by Maria A. Acquavia, Francesco Cardellicchio, Mariangela Curcio, Fausto Langerame, Anna M. Salvi, Laura Scrano and Carmen Tesoro
Appl. Sci. 2025, 15(14), 7741; https://doi.org/10.3390/app15147741 - 10 Jul 2025
Viewed by 208
Abstract
A temporal monitoring of monumental buildings in calcarenite, exposed outdoors in the considered Mediterranean environment of Southern Italy, was performed using XPS, the surface-specific technique. The methodology adopted to monitor the surfaces interacting with atmospheric agents and biotic/abiotic pollutants involved progressive sampling, extended [...] Read more.
A temporal monitoring of monumental buildings in calcarenite, exposed outdoors in the considered Mediterranean environment of Southern Italy, was performed using XPS, the surface-specific technique. The methodology adopted to monitor the surfaces interacting with atmospheric agents and biotic/abiotic pollutants involved progressive sampling, extended to about five years, from the walls of a new building, specifically installed in the immediate vicinity of an ancient farmhouse in an advanced state of degradation. Taking the ancient building as the final temporal reference, the aim was to obtain adequate information on the degradation processes of calcarenitic stones, from the initial and evolving phases of the new building towards those representative of the old reference. A large set of XPS data was obtained by resolving, through curve-fitting, the acquired spectra into component peaks, identified as ‘indicator’ chemical groups, which trend as a function of time, supported by PCA, demonstrates a close compositional similarity between the samples of the new building analyzed after 52 months from its installation and those of the ancient building dating back to over a century ago. The results obtained can be considered in the diagnostic strategy of the ongoing PNRR programs dedicated to the care of historical monuments and ecosystem sustainability. Full article
Show Figures

Figure 1

33 pages, 7004 KiB  
Review
Scientific Research for Amazonia: A Review on Key Trends and Gaps
by Carolina Cristina Fernandes, Lira Luz Benites Lazaro, Nádia Matioli Yazbek Bitar, Marco A. Franco and Paulo Artaxo
Conservation 2025, 5(3), 35; https://doi.org/10.3390/conservation5030035 - 9 Jul 2025
Viewed by 671
Abstract
Scientific research in Amazonia plays a fundamental role in identifying pathways to sustainable development for the region, addressing the challenges posed by climate change, preserving its unique ecosystems, and aligning with societal challenges and rights advocated by its diverse populations. This paper encompasses [...] Read more.
Scientific research in Amazonia plays a fundamental role in identifying pathways to sustainable development for the region, addressing the challenges posed by climate change, preserving its unique ecosystems, and aligning with societal challenges and rights advocated by its diverse populations. This paper encompasses a broad range of scientific publications, spanning from 1977 to 2024, and highlights key research areas, analyzing their results and trends to inform future developments. It also identifies areas that require deeper investigation. The results emphasize a focus on agricultural, biological, and environmental sciences. On the other hand, there is a need for more extensive research within the social sciences. As shown, research on indigenous land rights, cultural heritage, and the socio-economic impacts of environmental disruptions is essential for developing comprehensive conservation strategies. Furthermore, research on governance, policy, and socio-political dynamics in Amazonia can provide innovative approaches to addressing the challenges and opportunities for its people, biodiversity, and role in climate regulation, as demonstrated by the findings. The strategic research fields identified in this paper provide a guide for future studies and policy development aimed at protecting the forest and its inhabitants. This study emphasizes the need for approaches that integrate both natural and social sciences as essential for addressing the complex ecological and socio-economic challenges that continue to shape the contemporary research landscape. Furthermore, this paper highlights the importance of unity and cooperation among Amazonian countries and research institutions in achieving these goals. In this context, reinforcing long-term, large-scale research programs such as the LBA (Large-Scale Biosphere–Atmosphere Experiment in Amazonia) and the Scientific Panel for the Amazon (SPA) are crucial to advancing integrated, policy-relevant science for the sustainable future of the region. Full article
Show Figures

Figure 1

15 pages, 9151 KiB  
Article
Study of the Herbicidal Potential and Infestation Mechanism of Fusarium oxysporum JZ-5 on Six Broadleaved Weeds
by Suifang Zhang, Haixia Zhu, Yongqiang Ma and Liang Cheng
Microorganisms 2025, 13(7), 1541; https://doi.org/10.3390/microorganisms13071541 - 30 Jun 2025
Viewed by 245
Abstract
Weeds compete with crops for resources, posing multiple negative impacts for agricultural production systems and triggering degradation of ecosystem services (e.g., alterations in the soil microbial community structure). Under the guidance of green plant protection, the development of efficient biocontrol strains with environmentally [...] Read more.
Weeds compete with crops for resources, posing multiple negative impacts for agricultural production systems and triggering degradation of ecosystem services (e.g., alterations in the soil microbial community structure). Under the guidance of green plant protection, the development of efficient biocontrol strains with environmentally friendly characteristics has become a crucial research direction for sustainable agriculture. This study aimed to develop a fungal bioherbicide by isolating and purifying a pathogenic fungal strain (JZ-5) from infected redroot pigweed (Amaranthus retroflexus L.). The strain exhibited pathogenicity rates ranging from 23.46% to 86.25% against six weed species, with the most pronounced control efficacy observed against henbit deadnettle (Lamium amplexicaule L.), achieving a pathogenicity rate of 86.25%. Through comprehensive characterization of cultural features, morphological observations, and molecular biological identification, the strain was taxonomically classified as Fusarium oxysporum. Scanning electron microscopy revealed that seven days post-inoculation, F. oxysporum JZ-5 formed dense mycelial networks on the leaf surfaces of cluster mallow (Malva verticillata L.), causing severe tissue damage. Safety assessments demonstrated that the spore suspension (104 spores/mL) had no adverse effects on three crops: hulless barley (Hordeum vulgare var. coeleste L.), wheat (Triticum aestivum L.), and potato (Solanum tuberosum L.). These findings suggest that F. oxysporum strain JZ-5 warrants further investigation as a potential bioherbicide for controlling three problematic weed species—Chenopodium album L. (common lambsquarters), Elsholtzia densa Benth. (dense-flowered elsholtzia), and Lamium amplexicaule L. (henbit deadnettle)—in cultivated fields of hulless barley (Hordeum vulgare var. coeleste L.), wheat (Triticum aestivum L.), and potato (Solanum tuberosum L.). This discovery provides valuable fungal resources for ecologically sustainable weed management strategies, contributing significantly to the advancement of sustainable agricultural practices. Full article
(This article belongs to the Special Issue Fungal Biology and Interactions—3rd Edition)
Show Figures

Figure 1

Back to TopTop