Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (294)

Search Parameters:
Keywords = crystallographic texture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9644 KB  
Article
Microstructure and Texture Evolution of Friction-Stir-Welded AA5052 and AA6061 Aluminum Alloys
by Luqman Hakim Ahmad Shah, Amirali Shamsolhodaei, Scott Walbridge and Adrian Gerlich
Metals 2026, 16(1), 73; https://doi.org/10.3390/met16010073 - 8 Jan 2026
Viewed by 125
Abstract
This study examines the through-thickness microstructure and crystallographic texture evolution in friction-stir-welded (FSWed) AA5052-H32 and AA6061-T651 aluminum alloys using a tri-flats threaded pin tool. Optical microscopy and electron backscatter diffraction (EBSD) were employed to characterize grain morphology, boundary misorientation, and texture components across [...] Read more.
This study examines the through-thickness microstructure and crystallographic texture evolution in friction-stir-welded (FSWed) AA5052-H32 and AA6061-T651 aluminum alloys using a tri-flats threaded pin tool. Optical microscopy and electron backscatter diffraction (EBSD) were employed to characterize grain morphology, boundary misorientation, and texture components across the weld thickness. Both alloys exhibited progressive grain refinement and increased high-angle grain boundary fractions from the top to the bottom of the stir zone due to combined thermal and strain gradients. The FSWed AA5052 displayed dominant {111}<110> and Y + γ fiber components at the upper and mid regions, whereas AA6061 showed more randomized textures. At the bottom region, both alloys developed rotated Goss {011}<01-1> and weak A ({112}<110>) and α fiber components. These results clarify how alloy strengthening mechanisms—solid-solution versus precipitation hardening—govern texture evolution under different strain-path and heat input conditions. The findings contribute to optimizing process parameters and material selection for structural-scale FSW aluminum joints in industrial applications such as bridge decks, transportation panels, and marine structures. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

20 pages, 6603 KB  
Article
Effect of Cryogenic Treatment on Low-Density Magnesium Multicomponent Alloys with Exceptional Ductility
by Yu Fang, Michael Johanes and Manoj Gupta
Materials 2026, 19(1), 100; https://doi.org/10.3390/ma19010100 - 27 Dec 2025
Viewed by 288
Abstract
There is growing emphasis on lightweight and energy-efficient metallic materials, with multicomponent alloying (MCA) being one strategy to achieve this. This was combined with the inherently lightweight magnesium (Mg) as the base metal. Two Mg-based MCAs, namely Mg-71MCA and Mg-80MCA (Mg-10Li-9Al-6Zn-4Si and Mg-10Li-6Al-2Zn-2Si, [...] Read more.
There is growing emphasis on lightweight and energy-efficient metallic materials, with multicomponent alloying (MCA) being one strategy to achieve this. This was combined with the inherently lightweight magnesium (Mg) as the base metal. Two Mg-based MCAs, namely Mg-71MCA and Mg-80MCA (Mg-10Li-9Al-6Zn-4Si and Mg-10Li-6Al-2Zn-2Si, respectively, wt.%), with density in the range of 1.55–1.632 g/cc akin to plastics were synthesized via the Disintegrated Melt Deposition method in this work. The effects of cryogenic treatment (CT) at –20 °C, 80 °C, and –196 °C (LN) on the physical, microstructural, thermal, and mechanical properties were systematically evaluated. CT resulted in densification, significant grain refinement (up to a 27.9% reduction in grain diameter after LN treatment), alterations in crystallographic texture, and notable changes to secondary phases—namely, an increased precipitate area fraction. These led to enhanced mechanical performance such as damping capacity, microhardness, and compressive response (most apparent for Mg-71MCA with 12.1%, 6.7%, and 1.6% increase in yield strength, ultimate compressive strength, and energy absorbed, respectively, after RF20 treatment), coupled with exceptional ductility (>80% strain without fracture), which is superior to pure Mg and commercial Mg alloys. Overall, this work showcases the potential of MCAs compared to existing conventional lightweight materials, as well as the property-enhancing/tailoring effects brought upon by different CT temperatures. This highlights the multi-faceted nature of material designs where compositional control and judicious processing parameter selection need to be both leveraged to optimize final properties, and serves as a baseline for further lightweight MCA development to meet future needs. Full article
Show Figures

Graphical abstract

40 pages, 4728 KB  
Review
Crystallographic Texture and Phase Transformation in Titanium Alloys Fabricated via Powder Bed Fusion Processes: A Comprehensive Review
by Rajesh Kannan Arasappan, Hafiz Muhammad Rehan Tariq, Ha-Seong Baek, Minki Kim and Tea-Sung Jun
Metals 2026, 16(1), 25; https://doi.org/10.3390/met16010025 - 26 Dec 2025
Viewed by 336
Abstract
Additive manufacturing (AM) of titanium alloys enables the production of complex, high-performance components, but the steep thermal gradients and rapid solidification involved make it challenging to control crystallographic texture and phase evolution. This review synthesizes the current understanding of how these thermal conditions [...] Read more.
Additive manufacturing (AM) of titanium alloys enables the production of complex, high-performance components, but the steep thermal gradients and rapid solidification involved make it challenging to control crystallographic texture and phase evolution. This review synthesizes the current understanding of how these thermal conditions influence grain morphology, texture intensity, and solid-state transformations in key alloys such as Ti-6Al-4V (Ti64), Ti-6Al-2Sn-4Zr-2Mo (Ti6242), Ti-5Al-5Mo-5V-3Cr (Ti5553), and metastable β-Ti systems processed by powder bed fusion-based processes (PBF) such as laser powder bed fusion (LPBF) and electron beam powder bed fusion (EBPBF/EBM). Emphasis is placed on mechanisms governing epitaxial columnar β-grain growth, α′ martensite formation, and the development of heterogeneous α/β distributions. The impact of processing variables on texture development and transformation kinetics is critically examined, alongside phase fractions. Across studies, AM-induced textures are consistently linked to mechanical anisotropy, with performance strongly dependent on build direction and alloy chemistry. Post-processing strategies, including tailored heat treatments and hot isostatic pressing (HIP), show clear potential to modify grain structure, reduce texture intensity, and stabilize desirable phase balances in titanium alloys. These insights highlight the emerging ability to deliberately engineer microstructures for reliable, application-specific properties in powder-based AM titanium alloys. Full article
Show Figures

Figure 1

17 pages, 10396 KB  
Article
Laser Powder Bed-Fused Scalmalloy®: Effect of Long Thermal Aging on Hardness and Electrical Conductivity
by Emanuele Ghio, Lorenzo Curti, Daniele Carosi, Alessandro Morri and Emanuela Cerri
Metals 2025, 15(12), 1364; https://doi.org/10.3390/met15121364 - 11 Dec 2025
Viewed by 420
Abstract
This study investigates the microstructural evolution, porosity characteristics, and mechanical behavior of LPBF-manufactured Scalmalloy®, which were investigated in the as-built conditions and after long-term exposure to direct aging of 275, 325, and 400 °C. Optical microscopy, and electron backscatter diffraction (EBSD) [...] Read more.
This study investigates the microstructural evolution, porosity characteristics, and mechanical behavior of LPBF-manufactured Scalmalloy®, which were investigated in the as-built conditions and after long-term exposure to direct aging of 275, 325, and 400 °C. Optical microscopy, and electron backscatter diffraction (EBSD) analyses were employed to examine the grain morphology, pore distribution, and defect characteristics. In the as-built state, the microstructure displayed the typical fish-scale melt pool morphology with columnar grains in the melt pool centers and fine equiaxed grains along their boundaries, combined with a small number of gas pores and lack-of-fusion defects. After direct aging, coarsening of grains was revealed, accompanied by partial spheroidization of pores, though the global density remained above 99.7%, ensuring structural integrity. Grain orientation analyses revealed a reduction in crystallographic texture and local misorientation after direct aging, suggesting stress relaxation and a more homogeneous microstructure. The hardness distribution reflected this transition: in the as-built state, higher hardness values were found at melt pool edges, while coarser central grains exhibited lower hardness. After direct aging, the hardness differences between these regions decreased, and the average hardness increased from (104 ± 7) HV0.025 to (170 ± 10) HV0.025 due to precipitation of Al3(Sc,Zr) phases. Long-term aging studies confirmed the stability of mechanical performance at 325 °C, whereas aging at 400 °C induced overaging and hardness loss due to precipitate coarsening. Electrical conductivities increased monotonically at all tested temperatures from ~11.7 MS/m, highlighting the interplay between solute depletion and precipitate evolution. Full article
(This article belongs to the Special Issue Recent Advances in Powder-Based Additive Manufacturing of Metals)
Show Figures

Figure 1

20 pages, 8523 KB  
Article
Structural, Mechanical and Corrosion Properties of AZ31 Alloy Produced by Electron-Beam Additive Manufacturing
by Veronika Utyaganova, Alexey Goncharov, Andrey Sliva, Dmitry Shishkin, Boris Zotov, Leonid Fedorenko and Viktor Semin
Alloys 2025, 4(4), 28; https://doi.org/10.3390/alloys4040028 - 5 Dec 2025
Viewed by 405
Abstract
A thin-walled product made of AZ31 magnesium alloy was successfully fabricated using wire-feed electron-beam additive manufacturing. The microstructure of the initial wire, used as a precursor, comprises a α-Mg(Al, Zn) solid solution and a minor amount of the Al8Mn5 intermetallic [...] Read more.
A thin-walled product made of AZ31 magnesium alloy was successfully fabricated using wire-feed electron-beam additive manufacturing. The microstructure of the initial wire, used as a precursor, comprises a α-Mg(Al, Zn) solid solution and a minor amount of the Al8Mn5 intermetallic phase. The microstructure of the as-printed AZ31 alloy exhibits a three-phase structure: α-Mg(Al, Zn), Al8Mn5, and β-Mg17Al12. It was proposed that the secondary β-phase was formed via a primary solidification process upon the cooling of the welded layers. The texture effect was evident in the <011¯2> direction, corresponding to the printing direction, while other crystallographic orientations demonstrated near-equal pole densities as the XRD lines. The yield strength for the as-printed alloy was found to be 86 MPa; the tensile strength reached 240 MPa; and the relative elongation was 21.5%. For the first time, the corrosion resistance of an EBAM-fabricated AZ31 alloy was studied. It was revealed that the corrosion current density in the referenced as-cast and as-printed alloys was below 2·10−4 A/cm2. Full article
Show Figures

Figure 1

13 pages, 4146 KB  
Article
Laser Cladding of Iron Aluminide Coatings for Surface Protection in Soderberg Electrolytic Cells
by Alex Fukunaga Gomes, Henrique Correa dos Santos, Roberto Seno, Adriano Francisco, Nelson Batista de Lima, Gisele Fabiane Costa Almeida, Luis Reis, Marcos Massi and Antonio Augusto Couto
Metals 2025, 15(12), 1337; https://doi.org/10.3390/met15121337 - 4 Dec 2025
Viewed by 321
Abstract
In this work, iron aluminide coatings (FeAl and Fe3Al) were developed on carbon steel substrates using the laser cladding process with mixtures of elemental iron and aluminum powders, aiming at protecting anodic pins in Soderberg electrolytic cells against oxidation and corrosion [...] Read more.
In this work, iron aluminide coatings (FeAl and Fe3Al) were developed on carbon steel substrates using the laser cladding process with mixtures of elemental iron and aluminum powders, aiming at protecting anodic pins in Soderberg electrolytic cells against oxidation and corrosion at high temperatures. These components operate under atmospheres rich in CO2, alumina dust, and intense thermal cycles. The influence of processing parameters on the microstructure, phase formation, and mechanical properties of the coatings was investigated. X-ray diffraction confirmed the formation of the FeAl phase with a B2 ordered structure, while the expected D03 ordering in Fe3Al was not detected, likely due to crystallographic texture effects. Microstructural analysis, optical and scanning electron microscopy, revealed dense coatings with good metallurgical bonding to the substrate and low porosity, being the conditions of 3.5 kW with 3 mm/s resulted in the best quality coatings. The FeAl coatings exhibited microhardness values of approximately 400 HV, whereas the Fe3Al coatings showed values around 350 HV, indicating a significant improvement compared to the carbon steel substrate. These results demonstrate that laser cladding is an effective technique for producing iron aluminide coatings with potential application for corrosion and wear protection of anodic pins in Soderberg electrolytic cells. Full article
(This article belongs to the Special Issue Metallurgy, Surface Engineering and Corrosion of Metals and Alloys)
Show Figures

Figure 1

17 pages, 7529 KB  
Article
Effect of the Ferrite–Austenite Phase Ratio on the Silver Coating Properties of Super Duplex Stainless Steel EN 1.4501 for Li-Ion Battery Cases
by Yelee Paeng, Shinho Kim, Sung-Bo Heo, Seung Hun Lee, Sanghun Lee, Byung-Hyun Shin and Yangdo Kim
Coatings 2025, 15(12), 1423; https://doi.org/10.3390/coatings15121423 - 4 Dec 2025
Viewed by 522
Abstract
With the growing demand for durable and corrosion-resistant materials in advanced Li-ion battery cases, super duplex stainless steels (SDSSs) have emerged as promising candidates due to their excellent mechanical and electrochemical properties. This study aims to investigate how the ferrite and austenite phase [...] Read more.
With the growing demand for durable and corrosion-resistant materials in advanced Li-ion battery cases, super duplex stainless steels (SDSSs) have emerged as promising candidates due to their excellent mechanical and electrochemical properties. This study aims to investigate how the ferrite and austenite phase balance in SDSS EN 1.4501 affects the microstructural and electrochemical behavior of Ag coatings, tailored for next-generation battery enclosure applications. Ag coatings were deposited to PVD (to 1 μm) on SDSS EN 1.4501 substrates with varying ferrite (from 32 vol.% to 70 vol.%) and austenite ratios (from 56 vol.% to 30 vol.%) to evaluate the influence of phase balance on coating performance. Microstructural analysis was performed using field emission scanning electron microscopy (FE-SEM, mag x 1000), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD, from 20° to 80°), which provided insights into surface morphology, crystallographic texture, and phase distribution. Electrochemical characteristics were assessed through open circuit potential (OCP), and potentiodynamic polarization in a simulated corrosive environment. The results showed that a balanced duplex microstructure promoted superior Ag coating adhesion, grain refinement, and uniform phase distribution. Furthermore, the electrochemical analyses indicated enhanced corrosion resistance and passivation layer stability in volume fraction balanced substrates, as evidenced by more noble OCP values (form −0.06 V to −0.11 V), and potentiodynamic polarization value (higher corrosion potential (from 0.08 V to 0.10 V), and lower corrosion current densities (from 3 × 10−7 A/cm2 to 4 × 10−7 A/cm2)). These findings demonstrate that optimizing the phase balance in SDSS is critical for achieving high-performance Ag coated surfaces, offering significant potential for durable and corrosion-resistant Li ion battery casing applications. Full article
Show Figures

Figure 1

20 pages, 7671 KB  
Article
Study on the Secondary Recrystallization Process and Influencing Factors of 4N Pure Copper Wires
by Hao Xu, Xin Dong, Tianle Li, Zhixiang Qi and Guang Chen
Materials 2025, 18(23), 5431; https://doi.org/10.3390/ma18235431 - 2 Dec 2025
Viewed by 244
Abstract
The transverse grain boundaries in pure copper wires increase resistivity, generating capacitance and inductance effects, leading to a decrease in the electrical conductivity of pure copper wires. Directional heat treatment technology can eliminate transverse grain boundaries in pure copper conductors, which is of [...] Read more.
The transverse grain boundaries in pure copper wires increase resistivity, generating capacitance and inductance effects, leading to a decrease in the electrical conductivity of pure copper wires. Directional heat treatment technology can eliminate transverse grain boundaries in pure copper conductors, which is of great significance for improving electrical conductivity. Directional heat treatment is essentially a secondary recrystallization process, with influencing factors involving microstructure, texture, etc. This study systematically investigated the effects of cold-drawing deformation rate and heat treatment processes on secondary recrystallization microstructure, grain boundary structure, and crystallographic texture in pure copper wires. The results demonstrate that higher deformation levels (≥89%) facilitate secondary recrystallization and enhance <100> texture development. Moreover, the heat treatment temperature exerts a more significant influence on secondary recrystallization than the heat treatment duration. The grain coarsening temperature for pure copper wires with a deformation degree of 89% was determined to be 400 °C. These findings provide a fundamental basis for formulating directed heat treatment processes for pure copper wires. Full article
Show Figures

Figure 1

28 pages, 2460 KB  
Article
Interpretation of Copper Rolling Texture Components Development Based on Computer Modeling
by Wiesław Łatas, Mirosław Wróbel, Krzysztof Wierzbanowski and Dorota Byrska-Wójcik
Crystals 2025, 15(12), 1011; https://doi.org/10.3390/cryst15121011 - 24 Nov 2025
Viewed by 434
Abstract
Plastic deformation processes are widely used in metal forming. At the same time, they produce crystallographic textures that determine a material’s anisotropy—for example, its elastic, plastic, or magnetic anisotropy. Because these properties have significant practical implications and require precise control, understanding the mechanisms [...] Read more.
Plastic deformation processes are widely used in metal forming. At the same time, they produce crystallographic textures that determine a material’s anisotropy—for example, its elastic, plastic, or magnetic anisotropy. Because these properties have significant practical implications and require precise control, understanding the mechanisms of texture formation is essential. Consequently, the evolution of texture during plastic forming remains an important topic for both scientific and engineering communities. The most important models describing crystallographic texture development during plastic deformation were briefly reviewed. Based on a comparison of experimental results with numerical simulations obtained using the authors’ original fluctuating stress state (FSS) model, the main texture components were identified. It was shown that their volume fractions are primarily related to deformation fields in grains of polycrystalline material constrained by extreme boundary conditions, as well as to anisotropy in slip system hardening (A). The influence of both parameters and rolling true strain (1.5 and 2) on the copper rolling texture was evaluated by quantifying the fractions of the texture components, including the strong ones (B, S, Cu) and the weaker ones (G, W, rW). This constitutes the main novelty of the present work. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

16 pages, 4111 KB  
Article
Mechanism of Grain Structure Formation in Pure Copper Wire During Directional Heat Treatment
by Hao Xu, Xin Dong, Huihui Ruan, Gong Zheng and Guang Chen
Metals 2025, 15(11), 1264; https://doi.org/10.3390/met15111264 - 19 Nov 2025
Cited by 1 | Viewed by 2284
Abstract
Directional heat treatment reduces the number of transverse grain boundaries in pure copper wires at suitable temperatures, thereby promoting the formation of columnar or even single-crystal structures. This process significantly enhances the electrical conductivity of the wires and has become a research focus. [...] Read more.
Directional heat treatment reduces the number of transverse grain boundaries in pure copper wires at suitable temperatures, thereby promoting the formation of columnar or even single-crystal structures. This process significantly enhances the electrical conductivity of the wires and has become a research focus. Fundamentally, directional heat treatment is a secondary recrystallization process, involving key microstructural evolutions such as grain growth and grain boundary migration. Investigating its mechanism in pure copper wires is essential for optimizing their conductive performance. In this study, pure copper wires were subjected to directional heat treatment and systematically characterized using electron backscatter diffraction (EBSD). The effects of treatment on grain growth and boundary migration were analyzed, clarifying the evolution of grain boundary structures and crystallographic textures during columnar grain development. It was revealed that grains with a <112> orientation preferentially develop into columnar structures, with most inter-columnar grain boundaries being low-energy ∑ 3 and ∑ 9 types. The novelty of this work lies in revealing the mechanism of directional grain boundary migration in pure copper wires and elucidating the formation mechanism of island grains after directional heat treatment. Full article
Show Figures

Figure 1

25 pages, 22359 KB  
Article
Hybrid GTAW–FCAW of 316L Stainless Steel Pipes: Influence of Oxygen Content in Baking Gas and Surface Preparation on Oxide Characteristics and Corrosion Behavior
by Mohammad Maroufkhani, Alireza Khodabandeh, Iulian Radu and Mohammad Jahazi
J. Manuf. Mater. Process. 2025, 9(11), 377; https://doi.org/10.3390/jmmp9110377 - 16 Nov 2025
Viewed by 917
Abstract
This study investigates the combined effects of oxygen content in the purging gas and pre-weld surface finish on the discoloration and corrosion resistance of AISI 316L pipe joints, with relevance to pipe welding where internal cleaning is constrained. The hybrid GTAW–FCAW process was [...] Read more.
This study investigates the combined effects of oxygen content in the purging gas and pre-weld surface finish on the discoloration and corrosion resistance of AISI 316L pipe joints, with relevance to pipe welding where internal cleaning is constrained. The hybrid GTAW–FCAW process was used. Welds were produced at two oxygen levels (500 and 5000 ppm) and two finishes (40- vs. 60-grit). Discoloration and oxide morphology were examined by SEM/EDS, and corrosion behavior was evaluated without oxide removal using cyclic polarization and electrochemical impedance spectroscopy. The results reveal that higher oxygen levels in the purging gas produced more porous, less protective oxide layers, along with intensified oxidation around surface defects such as micro-holes. Surface roughness was also found to influence corrosion behavior: rougher surfaces exhibited higher resistance to pit initiation, whereas smoother surfaces were more susceptible to initiation but offered greater resistance to pit propagation. The corresponding governing mechanisms were identified and discussed in terms of how surface preparation affects crystallographic texture, heterogeneities and recrystallization. Taken together, the results link oxide morphology and near-surface microstructure to electrochemical response and offer practical guidance for pipe welding when internal cleaning is constrained, balancing purging control with surface preparation to preserve corrosion performance. The findings further highlight the critical roles of both purging-gas composition and surface preparation in the corrosion performance of stainless steel welded pipes. Full article
Show Figures

Figure 1

17 pages, 5927 KB  
Article
Evaluation of the Possibility of Using Non-Conventional Technological Approaches for the Heat Treatment of Hot-Rolled DP Steel
by Alexandros Banis, Jasmien Flore Arijs and Roumen H. Petrov
Metals 2025, 15(11), 1230; https://doi.org/10.3390/met15111230 - 7 Nov 2025
Viewed by 498
Abstract
This study investigates the transformation behavior of advanced high-strength dual-phase (DP) steel subjected to thermal cycling, aiming to support improved automotive steel-processing technologies in terms of properties, cost, and speed. The heat treatment applied consisted of 1–7 cycles through the intercritical region at [...] Read more.
This study investigates the transformation behavior of advanced high-strength dual-phase (DP) steel subjected to thermal cycling, aiming to support improved automotive steel-processing technologies in terms of properties, cost, and speed. The heat treatment applied consisted of 1–7 cycles through the intercritical region at a conventional heating rate. Results were compared with the conventional dual-phase steel treatment currently used in industry, as well as with variants that combine thermal cycling and fast heating, the latter offering potential for carbon-free methods. The goal is to gain a deeper understanding of the transformations that occur in the material and the potential benefits that may result. Characterization was performed using dilatometry, electron microscopy techniques, and Vickers hardness testing. Findings show the initial ferrite–martensite microstructure remained largely unchanged after cycling, though preferential austenite nucleation within ferrite and Mn segregation remained. The resulting microstructure consisted of ferrite, bainite, martensite, and retained austenite. Crystallographic orientation analysis revealed texture memory effects, with preferred orientations persisting after multiple cycles. Grain refinement occurred mainly in transformed zones, while ferrite showed slight growth with more cycles, correlating with a reduced bainite/martensite fraction. Hardness increased significantly after the first cycle but declined with subsequent cycles, reflecting a reduction in bainite/martensite fraction. It is found that when up to two cycles are used, the process can be beneficial for the steel properties; otherwise, other alternatives, such as fast heating, can be applied to optimize production. Full article
Show Figures

Figure 1

33 pages, 8769 KB  
Article
Microstructure of Additively Manufactured SUS316L Stainless Steel with SrO Heterogeneous Nucleation Site Particles
by Yoshimi Watanabe, Shimon Sekiyama, Mami Mihara-Narita, Tomokazu Moritani, Hisashi Sato, Kaname Fujii, Ayahito Saikai and Masato Ono
Materials 2025, 18(21), 5061; https://doi.org/10.3390/ma18215061 - 6 Nov 2025
Viewed by 601
Abstract
It is known that the addition of SrO heterogeneous nucleation site particles can refine the microstructure of SUS316L stainless steel additively manufactured (AMed) by powder bed fusion (PBF). In this study, this idea was confirmed by directed energy deposition (DED). However, there are [...] Read more.
It is known that the addition of SrO heterogeneous nucleation site particles can refine the microstructure of SUS316L stainless steel additively manufactured (AMed) by powder bed fusion (PBF). In this study, this idea was confirmed by directed energy deposition (DED). However, there are several types of DED machines, and the energy system and the material supply system of these machines are different depending on each machine. In this study, the grain refinement behavior and the formability of AMed SUS316L stainless steel with the addition of SrO heterogeneous nucleation site particles are evaluated using a single-beam type LAMDA 200 machine and a multi-beam type ALPION Series machine. The size of the melt pool made by the ALPION Series machine is smaller than that of the LAMDA 200 machine, which results in a shorter residence time in the liquid state of the melt pool for the ALPION Series machine. The grains formed in the inoculated sample manufactured by the ALPION Series machine under the unidirectional scanning strategy are found to be refined compared to those in the uninoculated sample. On the other hand, it is found that the formation of defects and the crystallographic texture observed in the samples manufactured by the LAMDA 200 machine is suppressed by the addition of SrO heterogeneous nucleation site particles. These differences between the ALPION Series and LAMDA 200 machines would come from the differences in the melting state, including temperature, cooling conditions, and re-heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

26 pages, 6552 KB  
Article
The Role of Process Parameters in Shaping the Microstructure and Porosity of Metallic Components Manufactured by Additive Technology
by Dariusz Sala, Piotr Ledwig, Hubert Pasiowiec, Kamil Cichocki, Magdalena Jasiołek, Marek Libura and Michał Pyzalski
Appl. Sci. 2025, 15(21), 11624; https://doi.org/10.3390/app152111624 - 30 Oct 2025
Cited by 1 | Viewed by 634
Abstract
Laser Powder Bed Fusion (LPBF) technology represents one of the most promising additive manufacturing methods, enabling the production of components with high geometric complexity and a wide range of industrial and biomedical applications. In this study, the influence of both standard and high-productivity [...] Read more.
Laser Powder Bed Fusion (LPBF) technology represents one of the most promising additive manufacturing methods, enabling the production of components with high geometric complexity and a wide range of industrial and biomedical applications. In this study, the influence of both standard and high-productivity process parameters on the microstructure, porosity, surface roughness, and hardness of three commonly used materials, stainless steel 316L, aluminum alloy AlSi10Mg, and titanium alloy Ti6Al4V, was analyzed. The investigations were carried out on samples fabricated using the EOS M290 system, and their characterization was performed with scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), porosity analysis by point counting, Vickers hardness measurements, and optical profilometry. The obtained results revealed significant differences depending on the alloy and the applied parameters. For stainless steel 316L, the high-productivity variant led to grain refinement and stronger crystallographic orientation, albeit at the expense of increased porosity (0.11% vs. 0.05% for the standard variant). In the case of AlSi10Mg alloy, high-productivity parameters enabled a substantial reduction in porosity (from 0.82% to 0.27%) accompanied by an increase in hardness (from 115 HV1 to 122 HV1), highlighting their particular suitability for engineering applications. For the Ti6Al4V alloy, a decrease in porosity (from 0.17% to 0.07%) was observed; however, the increase in mechanical anisotropy resulting from a stronger texture may limit its application in cases requiring isotropic material behavior. The presented research confirms that optimization of LPBF parameters must be strictly tailored to the specific alloy and intended application, ranging from industrial components to biomedical implants. The results provide a foundation for further studies on the relationship between microstructure and functional properties, as well as for the development of hybrid strategies and predictive models of the LPBF process. Full article
(This article belongs to the Special Issue Manufacturing Process of Alloy Materials)
Show Figures

Figure 1

19 pages, 8169 KB  
Article
The Electrochemical Performance of Co3O4 Electrodes with Platinum Nanoparticles for Chlorine Evolution
by Guan-Ting Pan and Aleksandar N. Nikoloski
Inorganics 2025, 13(11), 355; https://doi.org/10.3390/inorganics13110355 - 28 Oct 2025
Viewed by 770
Abstract
Different morphologies of cobalt oxide (Co3O4) electrodes were prepared through the electrochemical deposition technique with various electrodeposition times from 10 min to 50 min. Platinum (Pt) nanoparticles were deposited on the Co3O4 electrodes through sputter coating. [...] Read more.
Different morphologies of cobalt oxide (Co3O4) electrodes were prepared through the electrochemical deposition technique with various electrodeposition times from 10 min to 50 min. Platinum (Pt) nanoparticles were deposited on the Co3O4 electrodes through sputter coating. The crystallographic, microstructural, surface functional, textural–structural, and electric properties of the Co3O4 electrodes were investigated. X-ray diffraction analysis identified a pure cubic Co3O4 crystal structure in the samples. In the electrodeposition process, the microstructure of the electrodes varied from hierarchical 3D flower-like to 2D hexagonal porous nanoplates due to an increase in oxygen vacancies. The carrier densities of all samples were between 5.77 × 1014 cm−3 and 8.77 × 1014 cm−3. The flat band potentials of all samples were between −5.91 V and −6.21 V vs. an absolute electron potential, and the potential values for electrodes became more positive as the oxygen vacancy concentration in the film structure increased. The 2D hexagonal porous nanoplate Pt/Co3O4 electrodes offered the highest oxygen vacancies and thus the maximum current density of 102.66 mA/cm2, with an external potential set at 1.5 V vs. an Ag/AgCl reference electrode. Full article
Show Figures

Graphical abstract

Back to TopTop