Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (238)

Search Parameters:
Keywords = crude protein degradability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4929 KiB  
Article
Assessment of Grassland Carrying Capacity and Grass–Livestock Balance in the Three River Headwaters Region Under Different Scenarios
by Wenjing Li, Qiong Luo, Zhe Chen, Yanlin Liu, Zhouyuan Li and Wenying Wang
Biology 2025, 14(8), 978; https://doi.org/10.3390/biology14080978 (registering DOI) - 1 Aug 2025
Viewed by 170
Abstract
It is crucial to clarify the grassland carrying capacity (CC) and the balance between grass and livestock under different scenarios for ecological protection and sustainable development in the Three River Headwaters Region (TRHR). This study focused on the TRHR and used livestock data, [...] Read more.
It is crucial to clarify the grassland carrying capacity (CC) and the balance between grass and livestock under different scenarios for ecological protection and sustainable development in the Three River Headwaters Region (TRHR). This study focused on the TRHR and used livestock data, MODIS Net Primary Productivity (NPP) data, and artificial supplementary feeding data to analyze grassland CC and explore changes in the grass–livestock balance across various scenarios. The results showed that the theoretical CC of edible forage under complete grazing conditions was much lower than that of crude protein under nutritional carrying conditions. Furthermore, without increasing the grazing intensity of natural grasslands, artificial supplementary feeding reduced overstocking areas by 21%. These results suggest that supplementary feeding effectively addresses the imbalance between forage supply and demand, serving as a key measure for achieving sustainable grassland livestock husbandry. Despite the effective mitigation of grassland degradation in the TRHR due to strict grass–livestock balance policies and ecological restoration projects, the actual livestock CC exceeded the theoretical capacity, leading to overgrazing in some areas. To achieve desired objectives, more effective grassland management strategies must be implemented in the future to minimize spatiotemporal conflicts between grasses and livestock and ensure the health and stability of grassland ecosystems. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Graphical abstract

21 pages, 719 KiB  
Article
Changes in Ruminal Dynamics and Microbial Populations Derived from Supplementation with a Protein Concentrate for Cattle with the Inclusion of Non-Conventional Feeding Sources
by Diana Sofía Torres-Velázquez, Daniel Francisco Ramos-Rosales, Manuel Murillo-Ortiz, Jesús Bernardo Páez-Lerma, Juan Antonio Rojas-Contreras, Karina Aide Araiza-Ponce and Damián Reyes-Jáquez
Fermentation 2025, 11(8), 438; https://doi.org/10.3390/fermentation11080438 - 30 Jul 2025
Viewed by 340
Abstract
Feed supplementation strategies are essential for optimizing cattle productivity, and the incorporation of non-conventional feed resources may reduce both production costs and environmental impact. This study evaluated the effects of pelletized protein concentrates (including Acacia farnesiana, A. schaffneri, and Agave duranguensis [...] Read more.
Feed supplementation strategies are essential for optimizing cattle productivity, and the incorporation of non-conventional feed resources may reduce both production costs and environmental impact. This study evaluated the effects of pelletized protein concentrates (including Acacia farnesiana, A. schaffneri, and Agave duranguensis bagasse) on rumen fermentation parameters, microbial communities, and gas emissions. Fistulated bullocks received the concentrate daily, and ruminal contents were collected and filtered before and after supplementation to assess in vitro gas and methane production, pH, and microbial composition using high-throughput sequencing of 16S rRNA and mcrA amplicons. In addition, in situ degradability was evaluated during and after the supplementation period. Supplementation led to a significant (p < 0.05) reduction in degradability parameters and methane production, along with a marked decrease in the abundance of Methanobrevibacter and an increase in succinate-producing taxa. These effects were attributed to the enhanced levels of non-fiber carbohydrates, hemicellulose, crude protein, and the presence of bioactive secondary metabolites and methanol. Rumen microbiota composition was consistent with previously described core communities, and mcrA-based sequencing proved to be a valuable tool for targeted methanogen detection. Overall, the inclusion of non-conventional ingredients in protein concentrates may improve ruminal fermentation efficiency and contribute to methane mitigation in ruminants, although further in vivo trials on a larger scale are recommended. Full article
Show Figures

Figure A1

13 pages, 672 KiB  
Article
Exploratory Meta-Analysis of the Effect of Malic Acid or Malate Addition on Ruminal Parameters, Nutrient Digestibility, and Blood Characteristics of Cattle
by Leonardo Tombesi da Rocha, Tiago Antonio Del Valle, Fernando Reimann Skonieski, Stela Naetzold Pereira, Paola Selau de Oliveira, Francine Basso Facco and Julio Viégas
Animals 2025, 15(15), 2177; https://doi.org/10.3390/ani15152177 - 24 Jul 2025
Viewed by 200
Abstract
The aim of this study was to determine, through meta-analysis, the effects of malic acid/malate addition on ruminal and blood parameters and diet digestibility in cattle. The literature search was conducted in Web of Science, Science Direct, and Google Scholar using the terms [...] Read more.
The aim of this study was to determine, through meta-analysis, the effects of malic acid/malate addition on ruminal and blood parameters and diet digestibility in cattle. The literature search was conducted in Web of Science, Science Direct, and Google Scholar using the terms “organic acids”, “malic acid”, “malate”, and “bovine”. The database was composed of papers published between 1980 and 2023. The average effect of malate/malic acid inclusion was calculated using the “DerSimonian and Laird” random effects model. Meta-regression and subgroup analyses were conducted to explore sources of heterogeneity. Overall, malic acid (MAC) addition did not significantly affect rumen pH (ES = 0.310, p = 0.17), but subgroup analysis showed that malate increased pH (ES = 1.420, p < 0.01). MAC increased rumen propionate (ES = 0.560, p < 0.01) and total volatile fatty acids (VFAs; ES = 0.508, p = 0.03), while reducing the acetate-to-propionate ratio (p < 0.01). Starch and NDF intake were significant covariates affecting pH and VFA-related variables. MAC improved total-tract digestibility of dry matter (DM; ES = 0.547, p ≤ 0.05), crude protein (CP; ES = 0.422, p ≤ 0.05), and acid detergent fiber (ADF; ES = 0.635, p ≤ 0.05). It increased glucose levels (Overall ES = 0.170, p = 0.05) and reduced NEFA (Overall ES = −0.404, p = 0.03). In conclusion, the effectiveness of MAC depends on its chemical form. Improvements in rumen pH, fiber degradation, and blood parameters suggest more efficient energy use and potential metabolic benefits. The influence of diet-related covariates suggests that the response to MAC may vary depending on the nutritional composition of the diet. Full article
(This article belongs to the Special Issue Feed Additives in Animal Nutrition)
Show Figures

Figure 1

23 pages, 8380 KiB  
Article
Characterizing the Fermentation of Oat Grass (Avena sativa L.) in the Rumen: Integrating Degradation Kinetics, Ultrastructural Examination with Scanning Electron Microscopy, Surface Enzymatic Activity, and Microbial Community Analysis
by Liepeng Zhong, Yujun Qiu, Mingrui Zhang, Shanchuan Wei, Shuiling Qiu, Zhiyi Ma, Mingming Gu, Benzhi Wang, Xinyue Zhang, Mingke Gu, Nanqi Shen and Qianfu Gan
Animals 2025, 15(14), 2049; https://doi.org/10.3390/ani15142049 - 11 Jul 2025
Viewed by 275
Abstract
The objective of this study is to investigate the degradation characteristics of oat grass in the rumen of Mindong goats and changes in microbial community attached to the grass surface. Four healthy male goats, aged 14 months, with permanent rumen fistula, in eastern [...] Read more.
The objective of this study is to investigate the degradation characteristics of oat grass in the rumen of Mindong goats and changes in microbial community attached to the grass surface. Four healthy male goats, aged 14 months, with permanent rumen fistula, in eastern Fujian, were selected as experimental animals. The rumen degradation rate of oat grass was measured at 4, 12, 24, 36, 48, and 72 h using the nylon bag method. Surface physical structure changes in oat grass were observed using scanning electron microscopy (SEM), cellulase activity was measured, and bacterial composition was analyzed using high-throughput 16S rRNA gene sequencing technology. The findings of this study indicate that oat grass had effective degradation rates (ED) of 47.94%, 48.69%, 38.41%, and 30.24% for dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), and acidic detergent fiber (ADF), respectively. The SEM was used to investigate the degradation process of oat grass in the rumen. After 24 h, extensive degradation of non-lignified tissue was observed, resulting in the formation of cavities. At 36 h, significant shedding was observed, and by 72 h, only the epidermis and thick-walled tissue, which exhibited resistance to degradation, remained intact. Surface-attached microorganisms produced β-GC, EG, CBH, and NEX enzymes. The activity of these enzymes exhibited a significant increase between 4 and 12 h and showed a positive correlation with the degradation rate of nutrients. However, the extent of correlation varied. Prevotella and Treponema were identified as key genera involved in the degradation of roughage, with their abundance decreasing over time. Principle Coordinate Analysis (PCOA) revealed no significant differences in the rumen microbial structure across different time points. However, Non-Metric Multidimensional Scaling (NMDS) indicated a discernible diversity order among the samples. According to the Spearman correlation coefficient test, Ruminococcus, Fibrobacter, and Saccharoferments exhibited the closest relationship with nutrient degradation rate and surface enzyme activity, displaying a significant positive correlation. In summary, this study delineates a time-resolved correlative framework linking microbial succession to structural and enzymatic dynamics during oat grass degradation. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

11 pages, 1379 KiB  
Article
Constitute Variety and Nutrient Analysis of the Different Main Plant Parts of Caragana korshinskii for Animal Feed
by Yifan Zhang, Zhijia Ding, Xia Hua, Fuyu Yang, Xin Zhou and Yong Xu
Agriculture 2025, 15(13), 1455; https://doi.org/10.3390/agriculture15131455 - 6 Jul 2025
Viewed by 315
Abstract
Caragana korshinskii, a protein-rich feed plant in arid regions, lacks comprehensive nutrient analysis. This study compared the chemical composition of its five parts (leaves, bark, twigs, branches, and stems) and evaluated protein quality through amino acid profiling and enzymatic digestion. Results showed [...] Read more.
Caragana korshinskii, a protein-rich feed plant in arid regions, lacks comprehensive nutrient analysis. This study compared the chemical composition of its five parts (leaves, bark, twigs, branches, and stems) and evaluated protein quality through amino acid profiling and enzymatic digestion. Results showed that leaves and bark contained higher crude protein (16.6–18.6%) than stems (6.8%), with fiber components (NDF > 81% and ADF > 65%) contributing to structural rigidity. Aspartic acid dominated caragana proteins, while bark and twigs exhibited elevated proline levels. CNCPS analysis revealed leaves contained 53.3% intermediately degradable protein (PB2) versus 11.6% non-protein nitrogen (PA), whereas bark and twigs had 38.8% and 45.8% PA, respectively. Despite higher PA content, bark and twigs demonstrated superior in vitro protein digestibility (73.2% and 67.4%) compared to leaves (61.2%). The findings established baseline nutritional data, highlighting part-specific variations in protein characteristics critical for optimizing caragana’s application in animal feed technology within resource-limited ecosystems. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

14 pages, 1682 KiB  
Article
Immobilization of Pleurotus eryngii Laccase via a Protein–Inorganic Hybrid for Efficient Degradation of Bisphenol A as a Potent Xenobiotic
by Sanjay K. S. Patel, Rahul K. Gupta and Jung-Kul Lee
J. Xenobiot. 2025, 15(4), 108; https://doi.org/10.3390/jox15040108 - 3 Jul 2025
Viewed by 431
Abstract
In the present investigation, an eco-friendly biocatalyst was developed using Pleurotus eryngii laccase (PeLac) through a copper (Cu)-based protein–inorganic hybrid system for the degradation of bisphenol A, a representative xenobiotic. After partial purification, the specific activity of crude PeLac was [...] Read more.
In the present investigation, an eco-friendly biocatalyst was developed using Pleurotus eryngii laccase (PeLac) through a copper (Cu)-based protein–inorganic hybrid system for the degradation of bisphenol A, a representative xenobiotic. After partial purification, the specific activity of crude PeLac was 92.6 U/mg of total protein. Immobilization of PeLac as Cu3(PO4)2–Lac (Cu–PeLac) nanoflowers (NFs) at 4 °C resulted in a relative activity 333% higher than that of the free enzyme. The Cu–PeLac NFs exhibited greater pH and temperature stability and enhanced catalytic activity compared to free laccase. This enhanced activity was validated through improved electrochemical properties. After immobilization, Cu–PeLac NFs retained up to 8.7-fold higher residual activity after storage at 4 °C for 30 days. Free and immobilized laccase degraded bisphenol A by 41.6% and 99.8%, respectively, after 2 h of incubation at 30 °C. After ten cycles, Cu–PeLac NFs retained 91.2% degradation efficiency. In the presence of potent laccase inhibitors, Cu–PeLac NFs exhibited a 47.3-fold improvement in bisphenol A degradation compared to free PeLac. Additionally, the synthesized Cu–PeLac NFs demonstrated lower acute toxicity against Vibrio fischeri than Cu nanoparticles. This study presents the first report of PeLac immobilization through an eco-friendly protein–inorganic hybrid system, with promising potential for degrading bisphenol A in the presence of inhibitors to support sustainable development. Full article
Show Figures

Figure 1

18 pages, 3016 KiB  
Article
Effects of Gallic Acid on In Vitro Ruminal Fermentation, Methane Emission, Microbial Composition, and Metabolic Functions
by Wei Zhu, Jianjun Guo, Xin Li, Yan Li, Lianjie Song, Yunfei Li, Baoshan Feng, Xingnan Bao, Jianguo Li, Yanxia Gao and Hongjian Xu
Animals 2025, 15(13), 1959; https://doi.org/10.3390/ani15131959 - 3 Jul 2025
Viewed by 355
Abstract
The objective of this study was to assess the effects of gallic acid (GA) on nutrient degradability, gas production, rumen fermentation, and the microbial community and its functions using in vitro fermentation methods. An in vitro experiment was conducted to test GA dose [...] Read more.
The objective of this study was to assess the effects of gallic acid (GA) on nutrient degradability, gas production, rumen fermentation, and the microbial community and its functions using in vitro fermentation methods. An in vitro experiment was conducted to test GA dose levels (0, 5, 10, 20, and 40 mg/g DM) in the cow’s diet. Based on the results of nutrient degradability, gas production, and rumen fermentation, the control group (0 mg/g DM, CON) and the GA group (10 mg/g DM, GA) were selected for metagenomic analysis to further explore the microbial community and its functions. The degradability of dry matter and crude protein, as well as total gas production, CH4 production, CH4/total gas, CO2 production, and CO2/total gas, decreased quadratically (p < 0.05) with increasing GA doses, reaching their lowest levels at the 10 mg/g DM dose. Total volatile fatty acid (VFA) (p = 0.004), acetate (p = 0.03), and valerate (p = 0.03) exhibited quadratic decreases, while butyrate (p = 0.0006) showed a quadratic increase with increasing GA doses. The 10 mg/g DM dose group had the lowest levels of total VFA, acetate, and valerate, and the highest butyrate level compared to the other groups. The propionate (p = 0.03) and acetate-to-propionate ratio (p = 0.03) linearly decreased with increasing gallic acid inclusion. At the bacterial species level, GA supplementation significantly affected (p < 0.05) a total of 38 bacterial species. Among these, 29 species, such as Prevotellasp.E15-22, bacteriumP3, and Alistipessp.CAG:435, were less abundant in the GA group, while 9 species, including Aristaeella_lactis and Aristaeella_hokkaidonensis, were significantly more abundant in the GA group. At the archaeal species level, the relative abundances of Methanobrevibacter_thaueri, Methanobrevibacter_boviskoreani, and Methanobrevibactersp.AbM4 were significantly reduced (p < 0.05) by GA supplementation. Amino sugar and nucleotide sugar metabolism, Starch and sucrose metabolism, Glycolysis/Gluconeogenesis, and Pyruvate metabolismwere significantly enriched in the GA group (p < 0.05). Additionally, Alanine, aspartate and glutamate metabolism was also significantly enriched in the GA group (p < 0.05). GA use could potentially be an effective strategy for methane mitigation; however, further research is needed to assess its in vivo effects in dairy cows over a longer period. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

12 pages, 502 KiB  
Article
Can Molybdenum Fertilization Enhance Protein Content and Digestibility of Sorghum Single Cropped and Intercropped with Cowpea?
by Nágila Sabrina Guedes da Silva, Alexandre Campelo de Oliveira, Baltazar Cirino Júnior, Rhaiana Oliveira de Aviz, Kedes Paulo Pereira, Domingos Sávio Marques de Menezes Vieira, Claudenilde de Jesus Pinheiro Costa, Jucelane Salvino de Lima, Jamiles Carvalho Gonçalves de Souza Henrique and Evaristo Jorge Oliveira de Souza
Grasses 2025, 4(3), 28; https://doi.org/10.3390/grasses4030028 - 2 Jul 2025
Viewed by 264
Abstract
Molybdenum fertilization represents a viable alternative for improving forage quality, potentially complementing or enhancing the effects of nitrogen fertilization. This study aimed to determine whether foliar or soil application of molybdenum would increase the crude protein content and digestibility of sorghum cultivated as [...] Read more.
Molybdenum fertilization represents a viable alternative for improving forage quality, potentially complementing or enhancing the effects of nitrogen fertilization. This study aimed to determine whether foliar or soil application of molybdenum would increase the crude protein content and digestibility of sorghum cultivated as a monoculture or intercropped with cowpea. The first experiment followed a 2 × 2 + 2 factorial design, including two application methods (foliar or soil), two cropping systems (monoculture or intercropping), and two additional control treatments (with and without molybdenum). In the second experiment, a split-plot design was used to assess the effects of molybdenum fertilization on the in situ digestibility of sorghum from monoculture and intercropping systems. Molybdenum fertilization increased the levels of crude protein, total carbohydrates, and soluble fractions. It also enhanced the disappearance rate, potential degradability, and effective degradability of sorghum, regardless of the application method or cropping system. Foliar or soil application of molybdenum is recommended to optimize the crude protein content and in situ digestibility of sorghum cultivated either as a monoculture or intercropped with cowpea. Full article
Show Figures

Graphical abstract

12 pages, 429 KiB  
Article
What Is the Maximum Nitrogen Dose for the Fertilization of BRS Tamani?
by Anna Beatriz Oliveira Moura, Lucas Gimenes Mota, Luis Carlos Oliveira Borges, Eduarda Caroline Kichel Cuff, Sidney dos Santos Silva, Camila Fernandes Domingues Duarte, Carla Heloisa Avelino Cabral and Carlos Eduardo Avelino Cabral
Nitrogen 2025, 6(3), 53; https://doi.org/10.3390/nitrogen6030053 - 1 Jul 2025
Viewed by 299
Abstract
This study aimed to determine the optimal nitrogen (N) fertilization rate per regrowth cycle for Megathyrsus maximus cv. BRS Tamani by evaluating its effects on forage production, nutrient uptake, bromatological composition, and in vitro degradation kinetics. A randomized complete block design with five [...] Read more.
This study aimed to determine the optimal nitrogen (N) fertilization rate per regrowth cycle for Megathyrsus maximus cv. BRS Tamani by evaluating its effects on forage production, nutrient uptake, bromatological composition, and in vitro degradation kinetics. A randomized complete block design with five N doses (0, 40, 80, 120, and 160 kg N ha−1) and seven replications was conducted over two rainy seasons. From December 2019 to April 2020, canopy height and light interception were measured weekly. When canopy height reached 95% of light interception the grass was harvest and productive and morphological structure were measured. Nitrogen fertilization increased forage mass and yield up to the dose of 40 kg N ha−1, resulting in 1959 and 9798 kg DM ha−1, respectively, while nitrogen use efficiency declined at higher doses. Weed mass was decreased at 0 kg ha−1, and chlorophyll index increased with the N dose. Nitrogen and potassium were the most extracted nutrients, with nitrogen uptake being highest at 80 kg ha−1. Fertilization elevated the levels of crude protein, NDIP, cell content, and cell wall-bound protein, while ash content decreased. In vitro fermentation showed a reduced gas volume at higher N doses and improved degradation and digestibility up to 40 kg ha−1. Nitrogen fertilization enhanced the forage yield and quality of BRS Tamani, with 40 kg ha−1 maximizing efficiency and digestibility. Full article
Show Figures

Figure 1

16 pages, 1023 KiB  
Article
The Modification of Dairy Cow Rations with Feed Additives Mitigates Methane Production and Reduces Nitrate Content During In Vitro Ruminal Fermentation
by Everaldo Attard, Jamie Buttigieg, Kalliroi Simeonidis and Grazia Pastorelli
Gases 2025, 5(3), 12; https://doi.org/10.3390/gases5030012 - 23 Jun 2025
Viewed by 618
Abstract
This study evaluated the effects of feedstuffs and additives in dairy cow rations on rumen methane production and nitrate content in groundwater. Two basal rations and their supplements were analyzed in regard to proximate parameters, and an in vitro rumen fermentation system assessed [...] Read more.
This study evaluated the effects of feedstuffs and additives in dairy cow rations on rumen methane production and nitrate content in groundwater. Two basal rations and their supplements were analyzed in regard to proximate parameters, and an in vitro rumen fermentation system assessed methane release and nitrate levels over 72 h. Supplementing dairy cow rations with Brassica rapa (BR) boosted the ether extract content, while silage produced the highest amount of methane. Rapidly degrading substrates like BR and ground maize produced methane faster, but in smaller amounts, than straw and silage. BR, Opuntia ficus-indica (OFI), and Posidonia oceanica (PO)-supplemented rations had mixed effects; PO reduced the methane yield, while OFI increased methane production rates. BR-supplemented rations had the lowest nitrate levels, making it suitable for anaerobic digestion. The multivariate analysis showed strong correlations between crude protein, dry matter, and ash, while high-nitrate substrates inhibited methane production, supporting the literature on the role of nitrates in reducing methanogenesis. These results emphasize the need to balance nutrient composition and methane mitigation strategies in dairy cow ration formulations. Full article
(This article belongs to the Section Gaseous Pollutants)
Show Figures

Figure 1

14 pages, 1444 KiB  
Article
The Effects of Lactococcus garvieae and Pediococcus pentosaceus on the Characteristics and Microbial Community of Urtica cannabina Silage
by Yongcheng Chen, Shuangming Li, Yingchao Sun, Yuxin Chai, Shuan Jia, Chunhui Ma and Fanfan Zhang
Microorganisms 2025, 13(7), 1453; https://doi.org/10.3390/microorganisms13071453 - 23 Jun 2025
Viewed by 325
Abstract
The utilization of nettle (Urtica cannabina) as feed is restricted by its material properties (antibacterial activity and high buffering capacity). This study hypothesized that the use of lactic acid bacteria (LAB) attached to nettles can improve these problems. Lactococcus garvieae (LG), [...] Read more.
The utilization of nettle (Urtica cannabina) as feed is restricted by its material properties (antibacterial activity and high buffering capacity). This study hypothesized that the use of lactic acid bacteria (LAB) attached to nettles can improve these problems. Lactococcus garvieae (LG), Pediococcus pentosaceus (PP), and LG + PP (LP) isolated from nettles were inoculated into nettle silage to explore nutrient retention and the microbial community structure. The results showed that inoculation significantly delayed dry matter and crude protein loss, inhibited neutral detergent fiber and acid detergent fiber degradation, and reduced ammonia nitrogen (NH3-N) accumulation. There was a significant increase in Firmicutes abundance after inoculation, and the dominant genus, Aerococcus, was negatively correlated with NH3-N accumulation. In the later stages of the PP treatment, Atopistipes synergistically inhibited Clostridia with acetic acid. However, the high buffering capacity and antibacterial components of raw nettle led to increased pH values during the later fermentation stages, limiting sustained acid production by LAB. These results confirm that nettle-derived LAB can effectively improve the quality of silage by regulating the microbial community and the acidification process; however, they must be combined with pretreatment strategies or optimized composite microbial agents to overcome raw material limitations. This study provides a theoretical basis and technical support for the utilization of nettle as feed. Full article
(This article belongs to the Special Issue Molecular Studies of Microorganisms in Plant Growth and Utilization)
Show Figures

Figure 1

17 pages, 6026 KiB  
Article
Estimation of Crude Protein Content in Revegetated Alpine Grassland Using Hyperspectral Data
by Yanfu Bai, Shijie Zhou, Jingjing Wu, Haijun Zeng, Bingyu Luo, Mei Huang, Linyan Qi, Wenyan Li, Mani Shrestha, Abraham A. Degen and Zhanhuan Shang
Remote Sens. 2025, 17(13), 2114; https://doi.org/10.3390/rs17132114 - 20 Jun 2025
Viewed by 325
Abstract
Remote sensing plays an important role in understanding the degradation and restoration processes of alpine grasslands. However, the extreme climatic conditions of the region pose difficulties in collecting field spectral data on which remote sensing is based. Thus, in-depth knowledge of the spectral [...] Read more.
Remote sensing plays an important role in understanding the degradation and restoration processes of alpine grasslands. However, the extreme climatic conditions of the region pose difficulties in collecting field spectral data on which remote sensing is based. Thus, in-depth knowledge of the spectral characteristics of alpine grasslands and an accurate assessment of their restoration status are still lacking. In this study, we collected the canopy hyperspectral data of plant communities in the growing season from severely degraded grasslands and actively restored grasslands of different ages in 13 counties of the “Three-River Headwaters Region” and determined the absorption characteristics in the red-light region as well as the trends of red-light parameters. We generated a model for estimating the crude protein content of plant communities in different grasslands based on the screened spectral characteristic covariates. Our results revealed that (1) the raw reflectance parameters of the near-infrared band spectra can distinguish alpine Kobresia meadow from extremely degraded and actively restored grasslands; (2) the wavelength value red-edge position (REP), corresponding to the highest point of the first derivative (FD) spectral reflectance (680–750 nm), can identify the extremely degraded grassland invaded by Artemisia frigida; and (3) the red valley reflectance (Rrw) parameter of the continuum removal (CR) spectral curve (550–750 nm) can discriminate among actively restored grasslands of different ages. In comparison with the Kobresia meadow, the predictive model for the actively restored grassland was more accurate, reaching an accuracy of over 60%. In conclusion, the predictive modeling of forage crude protein content for actively restored grasslands is beneficial for grassland management and sustainable development policies. Full article
Show Figures

Graphical abstract

18 pages, 2339 KiB  
Article
Effect of Adding Alkaline Metal Ions Complexes Rumen Microbiota and Metabolome of Hu Lambs
by Mingyue Li, Chi Ma, Yalin Li, Ziyi An, Yilin Yang, Feng Gao, Changqing Li and Yingchun Liu
Animals 2025, 15(12), 1816; https://doi.org/10.3390/ani15121816 - 19 Jun 2025
Viewed by 304
Abstract
This study aimed to evaluate the effects of studying the effects of the alkali metal ion complexes (AMIC) on the rumen of lambs. Eighteen 3-month-old male Hu lambs (30 ± 2.5 kg) were randomly assigned to three groups (n = 6). Dietary [...] Read more.
This study aimed to evaluate the effects of studying the effects of the alkali metal ion complexes (AMIC) on the rumen of lambs. Eighteen 3-month-old male Hu lambs (30 ± 2.5 kg) were randomly assigned to three groups (n = 6). Dietary treatments were: control group (CG, base diet), group C1 (base diet + 0.15% AMIC), and group C2 (base diet + 0.30% AMIC). After 60 days of feeding, samples were collected for analysis. Compared with CG, rumen weight significantly increased in both C1 and C2 (p < 0.05). In C2, average daily gain (ADG), bacterial crude protein (BCP), propionic acid concentration, and rumen papillary length were significantly higher than in CG (p < 0.05). Rumen microbiota analysis showed that AMIC supplementation changed the microbial community composition, increasing the relative abundance of fiber-degrading bacteria (e.g., Prevotellaceae_UCG-001) and decreasing pathogenic Proteobacteria. In particular, rumen papillary length positively correlated with Unclassified Oscillospiraceae, Candidatus Saccharimonas, and Unclassified Clostridia vadinBB60 group. Metabolomic analysis revealed that quercetin 3-O-glucuronide levels increased in a dose-dependent manner with higher AMIC. This metabolite positively correlated with Prevotellaceae_UCG-001 abundance and ADG. At 0.30% AMIC, phospholipids PC(18:0/18:4(6Z,9Z,12Z,15Z)) and PE(18:0/16:1(9Z)) were significantly upregulated, and both positively correlated with Candidatus Saccharimonas, Unclassified Clostridia vadinBB60 group, and papillary morphology. In summary, AMIC supplementation affected metabolism by modulating the rumen microbiota, thereby promoting energy absorption and growth. The 0.30% AMIC inclusion significantly enhanced rumen papilla growth, increased the absorption area, promoted propionic acid production, reduced the acetic acid to propionic acid ratio, and ultimately improved the growth rate of Hu lambs. Thus, adding 0.30% AMIC was associated with improved growth performance. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

16 pages, 7834 KiB  
Article
Integrated Microbiota and Metabolomics Analysis of Candida utilis CU-3 Solid-State Fermentation Effects on Cottonseed Hull-Based Feed
by Deli Dong, Yuanyuan Yan, Fan Yang, Huaibing Yao, Yang Li, Xin Huang, Maierhaba Aihemaiti, Faqiang Zhan, Min Hou and Weidong Cui
Microorganisms 2025, 13(6), 1380; https://doi.org/10.3390/microorganisms13061380 - 13 Jun 2025
Viewed by 904
Abstract
Solid-state microbial fermentation (SSMF) has been established as an effective bioprocessing strategy to augment the nutritional value of plant-derived feed substrates while reducing anti-nutritional factors (ANFs). However, there have been limited studies on the effects of microbial solid-state fermentation on the nutritional value [...] Read more.
Solid-state microbial fermentation (SSMF) has been established as an effective bioprocessing strategy to augment the nutritional value of plant-derived feed substrates while reducing anti-nutritional factors (ANFs). However, there have been limited studies on the effects of microbial solid-state fermentation on the nutritional value and potential functional components in cottonseed hulls. This study investigated the nutritional enhancement of cottonseed hulls through anaerobic solid-state fermentation mediated by Candida utilis CU-3, while exploring the functional potential of the fermented feed by analyzing fungal community dynamics and metabolite profiling. The laboratory-preserved free gossypol-degrading strain Candida utilis CU-3 was inoculated into unsterilized, crushed, and screened cottonseed hulls for solid-state fermentation at room temperature for 10 days. The results demonstrated that, compared to the control group, the experimental group achieved a 61.90% increase in free gossypol degradation rate, a 27.78% improvement in crude protein content, and a 5.07% reduction in crude fiber, while crude fat showed no significant difference. During the fermentation process, microbial diversity decreased, and Candida utilis CU-3 became the dominant species. Untargeted metabolomics data revealed that cottonseed hulls inoculated with Candida utilis CU-3 produced functional bioactive compounds during fermentation, including chrysin, myricetin (anti-inflammatory, antibacterial, and antioxidant activities), and ginsenoside Rh2 (anticancer, antibacterial, and neuroprotective properties). This study demonstrates that inoculating Candida utilis CU-3 into cottonseed hulls enhances their health-promoting potential through the biosynthesis of diverse functional metabolites, providing a theoretical foundation for improving the nutritional profile of cottonseed hull-fermented feed. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

15 pages, 727 KiB  
Article
Effects of Corn Silage and Alfalfa Hay on Production and Nitrogen Excretion in Lactating Dairy Cows
by Daniel Scoresby, Izabelle A. M. A. Teixeira and Mireille Chahine
Nitrogen 2025, 6(2), 43; https://doi.org/10.3390/nitrogen6020043 - 10 Jun 2025
Viewed by 433
Abstract
A meta-regression was conducted on studies published from 2018 to 2023 to explore the effects of nutrient intakes from alfalfa (ALF) and corn silage (CS) on milk yield (MY), energy-corrected milk yield (ECM), N efficiency (NEFF), milk urea nitrogen (MUN), and [...] Read more.
A meta-regression was conducted on studies published from 2018 to 2023 to explore the effects of nutrient intakes from alfalfa (ALF) and corn silage (CS) on milk yield (MY), energy-corrected milk yield (ECM), N efficiency (NEFF), milk urea nitrogen (MUN), and manure nitrogen excretion (NMANURE) in Holstein lactating cows. The analysis included 193 studies with 698 individual treatment means. Multiple models were developed for each response variable using a backward stepwise approach and cross-evaluated against the database. Nutrient intake from both CS and ALF influenced MY and ECM, with ALF generally having a positive effect. The NEFF was also affected by nutrient intakes from both forages. Generally, greater protein intake reduced NEFF, whereas greater MY was associated with improved NEFF. An increase in the rumen-degradable protein intake (RDPI), especially from ALF, increased MUN. However, no significant effect of protein intake from CS on MUN was observed. Additionally, an increase in crude protein intake and RDPI, regardless of source (CS or ALF), led to an increase in g/d of NMANURE. Our results indicate that nutrient intakes from ALF and CS have different effects on production, excretion, and nitrogen efficiency, supporting their use in targeted nutrient and waste management strategies. Full article
Show Figures

Figure 1

Back to TopTop