Estimation of Crude Protein Content in Revegetated Alpine Grassland Using Hyperspectral Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Statistics and Analysis
3. Results
3.1. Spectral Reflectance of Vegetation in Kobresia Meadows, Extremely Degraded Grassland and Actively Restored Grasslands of Different Years
3.2. Continuum Removal Spectra of Kobresia Meadows and Extremely Degraded Grassland and Actively Restored Grassland at Different Years
3.3. First Derivative Spectra of Kobresia Meadows, Extremely Degraded Grassland and Actively Restored Grassland at Different Years
3.4. Spectral Absorption and Red-Edge Shifts
3.5. Hyperspectral Estimation of Grass Crude Protein Content
3.5.1. Modeling for Hyperspectral Estimation of Crude Protein and Nutrient Productivity of Pasture Grasses
3.5.2. Evaluation of the Accuracy of the Crude Protein Nutrient Productivity Estimation Model and Validation of the Results of the Best Estimation Model
4. Discussion
4.1. Spectral Characterization of Plant Communities
4.2. Nutrient Index Inversion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ye, Q.H.; Zhu, L.P.; Zheng, H.X.; Naruse, R.; Zhang, X.; Kang, S. Glacier and lake variations in the Yamzhog Yumco basin, southern Tibetan Plateau, from 1980 to 2000 using remote-sensing and GIS technologies. J. Glaciol. 2007, 53, 673–676. [Google Scholar] [CrossRef]
- Liu, B.; Shen, W.S.; Lin, N.F.; Li, R.; Yue, Y. Deriving vegetation fraction information for the alpine grassland on the Tibetan Plateau using in situ spectral data. J. Appl. Remote Sens. 2014, 8, 083635. [Google Scholar] [CrossRef]
- Qi, H.M.; Chen, A.; Yang, X.C.; Xing, X. Estimation of crude protein content in natural pasture grass using unmanned aerial vehicle hyperspectral data. Comput. Electron. Agric. 2025, 229, 109714. [Google Scholar] [CrossRef]
- Zha, J.; Wu, Y. Estimation of Pennisetum alopecuroides crude protein content in the Jiangsu Dafeng David’s Deer Reserve using hyperspectral remote sensing technology. Pratacultural Sci. 2021, 38, 1910–1917. (In Chinese) [Google Scholar]
- Yin, L.J.; Shen, Q. Error analysis on determination of crude protein in herbage by the automatic Kjeldahl apparatus and related countermeasures. Grass-Feed. Livest. 2020, 26, 16–21. (In Chinese) [Google Scholar]
- Gao, J.L.; Hou, Y.C.; Bai, Y.F.; Meng, B.; Yang, S.-X.; Hu, Y.; Feng, Q.-S.; Cui, X.; Liang, T. Methods for estimating nitrogen, phosphorus, and potassium content based on hyperspectral data from alpine meadows in Guinan and Maqin Counties, Qinghai Province. J. Grass Ind. 2016, 25, 9–21. (In Chinese) [Google Scholar]
- Pickup, G.; Bastin, G.N.; Chewings, V.H. Remote-sensing-based condition assessment for non-equilibrium rangelands under large-scale commercial grazing. Ecol. Appl. 1994, 4, 497–517. [Google Scholar] [CrossRef]
- Gao, Q.Z.; Wan, Y.F.; Xu, H.M.; Li, Y.; Jiangcun, W.-Z.; Borjigidai, A. Alpine grassland degradation index and its response to recent climate variability in northern Tibet, China. Quat. Int. 2010, 226, 143–150. [Google Scholar] [CrossRef]
- Liu, B.; You, G.; Li, R.; Shen, W.; Yue, Y.; Lin, N. Spectral characteristics of alpine grassland and their changes responding to grassland degradation on the Tibetan Plateau. Environ. Earth Sci. 2015, 74, 2115–2123. [Google Scholar] [CrossRef]
- Liu, B.; Shen, W.S.; Li, R.; Yang, Z.; Lin, N.-F. Spectral characteristics of alpine grassland during degradation process in the source region of Yarlung Zangbo. Spectrosc. Spectr. Anal. 2013, 33, 1598–1602. [Google Scholar]
- Wang, G.X.; Li, Y.S.; Wang, Y.B. Land Surface Processes and Environmental Changes in River Headwater Regions of Qinghai-Tibet Plateau; Science Press: Beijing, China, 2010; pp. 80–110. [Google Scholar]
- Wang, H.J.; Fan, W.J.; Cui, Y.K.; Zhou, L.; Yan, B.Y.; Wu, D.H.; Xu, X.R. Hyperspectral remote sensing monitoring of grassland degradation. Spectrosc. Spectr. Anal. 2010, 30, 2734–2738. [Google Scholar]
- Lehnert, L.W.; Meyer, H.; Meyer, N.; Reudenbach, C.; Bendix, J. A hyperspectral indicator system for rangeland degradation on the Tibetan Plateau: A case study towards spaceborne monitoring. Ecol. Indic. 2014, 39, 54–64. [Google Scholar] [CrossRef]
- Gao, Q.; Li, Y.; Wan, Y.; Lin, E.; Xiong, W.; Jiangcun, W.; Wang, B.; Li, W. Grassland degradation in Northern Tibet based on remote sensing data. J. Geogr. Sci. 2006, 16, 165–173. [Google Scholar] [CrossRef]
- Foggin, J.M. Depopulating the Tibetan grasslands: National policies and perspectives for the future of Tibetan herders in Qinghai Province, China. Mt. Res. Dev. 2008, 28, 26–31. [Google Scholar] [CrossRef]
- Harris, R.B. Rangeland degradation on the Qinghai-Tibetan Plateau: A review of the evidence of its magnitude and causes. J. Arid. Environ. 2010, 74, 1–12. [Google Scholar] [CrossRef]
- Bai, Y.F.; Guo, C.C.; Degen, A.A.; Ahmad, A.A.; Wang, W.; Zhang, T.; Li, W.; Ma, L.; Huang, M.; Zeng, H.; et al. Climate warming benefits alpine vegetation growth in Three-River Headwater Region, China. Sci. Total Environ. 2020, 742, 140574. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, B.; Ma, Y.; Wang, M.; Feng, Q.; He, Z. Rapid Discrimination of Organic and Non-Organic Leafy Vegetables (Water Spinach, Amaranth, Lettuce, and Pakchoi) Using VIS-NIR Spectroscopy, Selective Wavelengths, and Linear Discriminant Analysis. Appl. Sci. 2023, 13, 11830. [Google Scholar] [CrossRef]
- Chu, X.L.; Yuan, H.F.; Lu, W.Z. Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique. Prog. Chem. 2004, 16, 528–542. [Google Scholar]
- Erasmi, S.; Dobers, E.S. Potential and limitations of spectral reflectance measurements for the estimation of the site-specific variability in crops. Proc. SPIE 2004, 5232, 42–51. [Google Scholar]
- Li, J.L. Remote Sensing Monitoring of Grassland Degradation; Science Press: Beijing, China, 2012; pp. 102–154. (In Chinese) [Google Scholar]
- Ma, L.Y.; Cui, X.; Feng, Q.S.; Lang, T.G. Dynamic changes of grassland vegetation coverage from 2001 to 2011 in Gannan Prefecture. Acta Prataculturae Sin. 2014, 23, 1–9. [Google Scholar]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Tong, Q.X.; Zhang, B.; Zheng, L.F. Hyperspectral Remote Sensing; Higher Education Press: Beijing, China, 2008; pp. 5–30. (In Chinese) [Google Scholar]
- Robert, D.A.; Smith, M.O.; Adams, J.B. Green vegetation, nonphotosynthetic vegetation, and soil in AVIRIS data. Remote Sens. Environ. 1993, 44, 255–269. [Google Scholar] [CrossRef]
- Zhang, A.W.; Yan, W.Y.; Guo, C.F. Inversion model of pasture crude protein content based on hyperspectral image. Trans. Chin. Soc. Agric. Eng. 2018, 34, 188–194. [Google Scholar]
- Wang, X.; Liu, S.J.; Zhang, X.W.; Hao, L.; Zhao, Y.; Wang, W. Alpine grassland nutrition dynamic monitoring using HJ-1A/1B data. Remote Sens. Land Resour. 2013, 25, 183–188. [Google Scholar]
- Qi, Q. Research on the inversion method of tussock nutrient composition based on hyperspectral data. Geospat. Inf. 2017, 15, 90–93. [Google Scholar]
- Ji, T. Spectral Characteristics Analysis and Nutrition Index Inversion of Alpine Grassland with Different Degradation Levels in Eastern Qilian Mountains; Gansu Agricultural University: Lanzhou, China, 2021. [Google Scholar]
- Zhang, F.L.; Wan, Y.Q. The research of method about plant biochemical concentration determination with hyperspectral data. J. Geo-Inf. Sci. 2010, 3, 71–75. [Google Scholar]
Sample Plot | Longitude (E°) | Latitude (N°) | Elevation (m) | Coverage (%) | Number of Species | Dominant Species | |
---|---|---|---|---|---|---|---|
NG | MD-NG | 98.218 | 34.649 | 4210 | 90 | 5 | Kobresia tibetica |
QML-NG | 95.763 | 34.144 | 4180 | 61 | 9 | Kobresia pygmaea | |
NQ-NG | 96.145 | 32.396 | 4084 | 98 | 12 | Kobresia pygmaea | |
JZ-NG | 100.607 | 33.792 | 3836 | 100 | 18 | Kobresia humilis | |
BM-NG | 100.699 | 32.946 | 3530 | 95 | 12 | Potentilla saundersiana | |
YS-NG | 97.081 | 32.818 | 3869 | 91 | 13 | Kobresia humilis | |
MQ-NG | 100.498 | 34.345 | 3970 | 90 | 7 | Aster yunnanensis, Bistorta vivipara | |
HN-NG | 101.781 | 34.686 | 3629 | 99 | 12 | Kobresia tibetica., Potentilla saundersiana. | |
ED | CD-ED | 97.418 | 33.323 | 4233 | 96 | 11 | Artemisia frigida Willd., Elsholtzia densa Benth. |
YS-ED | 97.091 | 32.828 | 3884 | 95 | 9 | Aster yunnanensis, Aconitum pendulum | |
QML-ED | 95.905 | 34.103 | 4400 | 58 | 7 | Ligularia virgaurea (Maxim.) Mattf, Morina kokonorica K. S. Hao | |
NQ-ED | 96.059 | 32.335 | 4400 | 72 | 12 | Artemisia frigida Willd, Potentilla discolor Bunge | |
JZ-ED | 100.693 | 33.242 | 3821 | 78 | 9 | Artemisia frigida Willd, Ligularia virgaurea (Maxim.) Mattf | |
MD-ED | 98.218 | 34.649 | 4210 | 51 | 5 | Ligularia virgaurea (Maxim.) Mattf, Potentilla discolor Bunge | |
MQ-ED | 99.959 | 34.495 | 3835 | 90 | 7 | Aster yunnanensis, Elsholtzia densa Benth | |
AG | HN-AG | 101.517 | 34.455 | 3658 | 92 | 13 | Elymus dahuricus |
DR-AG | 99.791 | 33.713 | 3982 | 84 | 3 | Elymus dahuricus | |
ZK-AG | 100.835 | 34.973 | 3760 | 99 | 14 | Elymus dahuricus | |
YS-AG | 96.160 | 33.034 | 4330 | 61 | 13 | Elymus dahuricus | |
CD-AG | 97.418 | 33.321 | 4248 | 70 | 9 | Poa annua L. | |
MQ-AG | 99.297 | 34.974 | 3980 | 80 | 7 | Ligularia virgaurea (Maxim.) Mattf., Pedicularis kansuensis Maxim | |
MD-AG | 98.325 | 34.556 | 4190 | 63 | 3 | Artemisia frigida Willd, Bistorta vivipara | |
QML-AG | 95.758 | 34.149 | 4190 | 77 | 3 | Poa annua L. | |
GN-AG | 100.763 | 35.471 | 3610 | 98 | 8 | Elymus dahuricus | |
GD-AG | 100.056 | 34.176 | 4190 | 95 | 9 | Elymus dahuricus | |
NQ-AG | 96.120 | 32.303 | 4320 | 52 | 11 | Poa annua L. |
Sample Plot ID | NG | ED | AG |
---|---|---|---|
MD | 5.63 | 8.44 | 6.38 |
MQ | 13.2 | 13.5 | 6.56 |
CD | 9.88 | 15.9 | 6.19 |
HN | 9.75 | 8.38 | 6.44 |
ZD | 19.0 | 8.19 | 8.63 |
YS | 10.1 | 8.31 | 7.94 |
QML | 8.44 | 5.81 | 3.56 |
NQ | 5.94 | 12.6 | 6.25 |
JZ | 13.9 | 14.8 | 12.2 |
BM | 16.3 | 14.0 | 6.94 |
Mean | 11.2 a | 11.0 a | 7.13 b |
Variation coefficient (%) | 36.8% | 30.4% | 29.5% |
Typical sample plot photographs |
Characteristic Parameter | Parameter Description | |
---|---|---|
Spectral position | R 1265 (NG) | Original spectral reflectance value at 1265 nm |
R’ 1682 (AG) | First differentiation of spectral reflectance at 1682 nm | |
R’ 2206 (AG) | First differentiation of spectral reflectance at 2206 nm |
Spectral Parameter | Regression Equations | R2 | F | p-Value |
---|---|---|---|---|
R’1682 (AG) | Y = 17,747X + 12.55 | 0.671 | 20.399 | 0.001 |
Y = 4.372 − 0.001/X | 0.504 | 10.162 | 0.010 | |
Y = e2.655+2414x | 0.684 | 21.693 | 0.001 | |
Y = 14.368e2413.850x | 0.684 | 21.693 | 0.001 | |
R1265 (NG) | Y = 13.716 − 30,772X | 0.772 | 33.877 | 0.000 |
Y = e2.602−3091x | 0.758 | 31.396 | 0.000 | |
Y = 13.487e−3091x | 0.758 | 31.396 | 0.000 |
Spectral Parameter | Regression Equations | R2 | RMSE (%) | Relative Error (%) | Estimate R2 |
---|---|---|---|---|---|
R’1682 (AG) | Y = 17,747x + 12.55 | 0.671 | 1.0277 | 13.8 | 0.608 |
Y = 4.372 − 0.001/x | 0.504 | 1.1527 | 16.9 | 0.630 | |
Y = e2.655 + 2414x | 0.684 | 2.5422 | 11.4 | 0.605 | |
Y = 14.368 × e2414x | 0.684 | 1.0219 | 7.50 | 0.608 | |
R1265 (NG) | Y = 13.716 − 30,772x | 0.772 | 4.4732 | 36.2 | 0.513 |
Y = e2.602 − 3091x | 0.758 | 4.0259 | 32.0 | 0.481 | |
Y = 13.487e − 3091x | 0.758 | 4.0270 | 32.0 | 0.481 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Zhou, S.; Wu, J.; Zeng, H.; Luo, B.; Huang, M.; Qi, L.; Li, W.; Shrestha, M.; Degen, A.A.; et al. Estimation of Crude Protein Content in Revegetated Alpine Grassland Using Hyperspectral Data. Remote Sens. 2025, 17, 2114. https://doi.org/10.3390/rs17132114
Bai Y, Zhou S, Wu J, Zeng H, Luo B, Huang M, Qi L, Li W, Shrestha M, Degen AA, et al. Estimation of Crude Protein Content in Revegetated Alpine Grassland Using Hyperspectral Data. Remote Sensing. 2025; 17(13):2114. https://doi.org/10.3390/rs17132114
Chicago/Turabian StyleBai, Yanfu, Shijie Zhou, Jingjing Wu, Haijun Zeng, Bingyu Luo, Mei Huang, Linyan Qi, Wenyan Li, Mani Shrestha, Abraham A. Degen, and et al. 2025. "Estimation of Crude Protein Content in Revegetated Alpine Grassland Using Hyperspectral Data" Remote Sensing 17, no. 13: 2114. https://doi.org/10.3390/rs17132114
APA StyleBai, Y., Zhou, S., Wu, J., Zeng, H., Luo, B., Huang, M., Qi, L., Li, W., Shrestha, M., Degen, A. A., & Shang, Z. (2025). Estimation of Crude Protein Content in Revegetated Alpine Grassland Using Hyperspectral Data. Remote Sensing, 17(13), 2114. https://doi.org/10.3390/rs17132114