Exploratory Meta-Analysis of the Effect of Malic Acid or Malate Addition on Ruminal Parameters, Nutrient Digestibility, and Blood Characteristics of Cattle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Database
2.2. Statistical Analysis
3. Results
3.1. Rumen Parameters
3.2. Digestibility
3.3. Blood Parameters
4. Discussion
4.1. Rumen Parameters
4.2. Digestibility
4.3. Blood Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hodge, I.; Quille, P.; O’Connell, S. A review of potential feed additives intended for carbon footprint reduction through methane abatement in dairy cattle. Animals 2024, 14, 568. [Google Scholar] [CrossRef] [PubMed]
- European Union. Regulation (EC) No 124/2009. 2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32009R0124&from=EL (accessed on 13 February 2025).
- Martin, S.A.; Streeter, M.N. Effect of malate on in vitro mixed ruminal microorganism fermentation. J. Anim. Sci. 1995, 73, 2141–2145. [Google Scholar] [CrossRef] [PubMed]
- Carro, M.D.; Ranilla, M.J. Effect of the addition of malate on in vitro rumen fermentation of cereal grains. Br. J. Nutr. 2003, 89, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Castillo, C.; Benedito, J.L.; Pereira, V.; Méndez, J.; Vazquez, P.; López-Alonso, M.; Hernández, J. Effects of malate supplementation on acid-base balance and productive performance in growing/finishing bull calves fed a high-grain diet. Arch. Anim. Nutr. 2007, 62, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Kung, L.; Huber, J.T.; Krummrey, J.D.; Allison, L.; Cook, R.M. Influence of adding malic acid to dairy cattle rations on milk production, rumen volatile acids, digestibility, and nitrogen utilization. J. Dairy Sci. 1982, 65, 1170–1174. [Google Scholar] [CrossRef]
- Khampa, S.; Wanapat, M.; Wachirapakorn, C.; Nontaso, N.; Wattiaux, M.; Rowlison, P. Effect of levels of sodium DL-malate supplementation on ruminal fermentation efficiency of concentrates containing high levels of cassava chip in dairy steers. Anim. Biosci. 2006, 19, 368–375. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Yang, W.; Dong, Q.; Dong, K.; Huang, Y.; He, D. Effects of malic acid on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Animal 2009, 3, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.A.; Streeter, M.N.; Nisbet, D.J.; Hill, G.M.; Williams, S.E. Effects of DL-malate on ruminal metabolism and performance of cattle fed a high-concentrate diet. J. Anim. Sci. 1999, 77, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- El-Zaiat, H.M.; Kholif, A.E.; Mohamed, D.A.; Matloup, O.H.; Anele, U.Y.; Sallam, S.M.A. Enhancing lactational performance of Holstein dairy cows under commercial production: Malic acid as an option. J. Sci. Food Agric. 2019, 99, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Castillo, C.; Benedito, J.L.; Pereira, V.; Vázquez, P.; López Alonso, M.; Méndez, J.; Hernández, J. Malic acid supplementation in growing/finishing feedlot bull calves: Influence of chemical form on blood acid–base balance and productive performance. Anim. Feed Sci. Technol. 2007, 135, 222–235. [Google Scholar] [CrossRef]
- Carrasco, C.; Medel, P.; Fuentetaja, A.; Carro, M.D. Effect of malate form (acid or disodium/calcium salt) supplementation on performance, ruminal parameters and blood metabolites of feedlot cattle. Anim. Feed Sci. Technol. 2012, 176, 140–149. [Google Scholar] [CrossRef]
- McGowan, J.; Sampson, M.; Salzwedel, D.M.; Cogo, E.; Foerster, V.; Lefebvre, C. PRESS peer review of electronic search strategies: 2015 guideline statement. J. Clin. Epidemiol. 2016, 75, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Sniffen, C.; Ballard, C.; Carter, M.; Cotanch, K.; Dann, H.; Grant, R.; Mandebvu, P.; Suekawa, M.; Martin, S. Effects of malic acid on microbial efficiency and metabolism in continuous culture of rumen contents and on performance of mid-lactation dairy cows. Anim. Feed Sci. Technol. 2006, 127, 13–31. [Google Scholar] [CrossRef]
- Devant, M.; Bach, A.; García, J.A. Effect of malate supplementation to dairy cows on rumen fermentation and milk production in early lactation. J. Appl. Anim. Res. 2007, 31, 169–172. [Google Scholar] [CrossRef]
- Foley, P.; Kenny, D.; Lovett, D.; Callan, J.; Boland, T.; O’mAra, F. Effect of dl-malic acid supplementation on feed intake, methane emissions, and performance of lactating dairy cows at pasture. J. Dairy Sci. 2009, 92, 3258–3264. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, Q.; Yang, W.; Dong, Q.; Yang, X.; He, D.; Dong, K.; Huang, Y. Effects of malic acid on feed intake, milk yield, milk components and metabolites in early lactation Holstein dairy cows. Livest. Sci. 2009, 124, 182–188. [Google Scholar] [CrossRef]
- Hernández, J.; Castillo, C.; Méndez, J.; Pereira, V.; Vázquez, P.; Alonso, M.L.; Vilariño, O.; Benedito, J. The influence of chemical form on the effects of supplementary malate on serum metabolites and enzymes in finishing bull calves. Livest. Sci. 2011, 137, 260–263. [Google Scholar] [CrossRef]
- Vyas, D.; Beauchemin, K.A.; Koenig, K.M. Using organic acids to control subacute ruminal acidosis and fermentation in feedlot cattle fed a high-grain diet. J. Anim. Sci. 2015, 93, 3950–3958. [Google Scholar] [CrossRef] [PubMed]
- Malekkhahi, M.; Tahmasbi, A.; Naserian, A.; Danesh-Mesgaran, M.; Kleen, J.; AlZahal, O.; Ghaffari, M. Effects of supplementation of active dried yeast and malate during sub-acute ruminal acidosis on rumen fermentation, microbial population, selected blood metabolites, and milk production in dairy cows. Anim. Feed Sci. Technol. 2016, 213, 29–43. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials revisited. Contemp. Clin. Trials 2015, 45, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Beauchemin, K.A. Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci. 2018, 101, 4762–4784. [Google Scholar] [CrossRef] [PubMed]
- Callaway, T.R.; Martin, S.A.; Wampler, J.L.; Hill, N.S.; Hill, G.M. Malate content of forage varieties commonly fed to cattle. J. Dairy Sci. 1997, 80, 1651–1655. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.D.; Martin, S.A. Factors affecting lactate and malate utilization by Selenomonas ruminantium. Appl. Environ. Microbiol. 1997, 63, 4853–4858. [Google Scholar] [CrossRef] [PubMed]
- Callaway, T.R.; Martin, S.A. Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. J. Anim. Sci. 1996, 74, 1982–1989. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Shao, P.; Wen, C.; Bu, Z.; Qin, G.; Huang, Y.; Pan, Y.; Li, Z.; Wei, K.; Li, S.; et al. Effects of dietary rumen-degradable protein on the growth performance, energy, and nitrogen metabolism of dairy buffalo heifers. Trop. Anim. Health Prod. 2025, 57, 245. [Google Scholar] [CrossRef] [PubMed]
- Wanapat, M.; Gunun, P.; Anantasook, N.; Kang, S. Changes of rumen pH, fermentation and microbial population as influenced by different ratios of roughage (rice straw) to concentrate in dairy steers. J. Agric. Sci. 2014, 152, 675–685. [Google Scholar] [CrossRef]
- Kozloski, G.; Trevisan, L.; Bonnecarrère, L.; Härter, C.; Fiorentini, G.; Galvani, D.; Pires, C. Níveis de fibra em detergente neutro na dieta de cordeiros: Consumo, digestibilidade e fermentação ruminal. Arq. Bras. Med. Vet. Zootec. 2006, 58, 893–900. [Google Scholar] [CrossRef]
- Dijkstra, J.; Ellis, J.; Kebreab, E.; Strathe, A.; López, S.; France, J.; Bannink, A. Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed Sci. Technol. 2012, 172, 22–33. [Google Scholar] [CrossRef]
- Morvan, B.; Rieu-Lesme, F.; Fonty, G.; Gouet, P. In vitro interactions between rumen H2-producing cellulolytic microorganisms and H2-utilizing acetogenic and sulfate-reducing bacteria. Anaerobe 1996, 2, 175–180. [Google Scholar] [CrossRef]
- Papatsiros, V.G.; Katsoulos, P.D.; Koutoulis, K.C.; Karatzia, M.; Dedousi, A.; Christodoulopoulos, G. Alternatives to Antibiotics for Farm Animals. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2014, 8, 1–15. [Google Scholar] [CrossRef]
- Øverland, M.; Granli, T.; Kjos, N.P.; Fjetland, O.; Steien, S.H.; Stokstad, M. Effect of dietary formates on growth performance, carcass traits, sensory quality, intestinal microflora, and stomach alterations in growing-finishing pigs. J. Anim. Sci. 2000, 78, 1875–1884. [Google Scholar] [CrossRef] [PubMed]
- Hua, D.; Hendriks, W.H.; Xiong, B.; Pellikaan, W.F. Starch and cellulose degradation in the rumen and applications of metagenomics on ruminal microorganisms. Animals 2022, 12, 3020. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shi, H.T.; Li, S.L.; Cao, Z.J.; Yang, H.J.; Wang, Y.J. Carbohydrate and amino acid metabolism and oxidative status in Holstein heifers precision-fed diets with different forage to concentrate ratios. Animal 2020, 14, 2315–2325. [Google Scholar] [CrossRef] [PubMed]
- Hailemariam, S.; Zhao, S.; He, Y.; Wang, J. Urea transport and hydrolysis in the rumen: A review. Anim. Nutr. 2021, 7, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Churakov, M.; Karlsson, J.; Rasmussen, A.E.; Holtenius, K. Milk fatty acids as indicators of negative energy balance of dairy cows in early lactation. Animal 2021, 15, 100253. [Google Scholar] [CrossRef] [PubMed]
Author | Form | Main Cereal | Main forage | Dose (g/day) | CP (%) | NDF (%) | ADF (%) | Starch (%) | EE (%) |
---|---|---|---|---|---|---|---|---|---|
Kung Jr. et al. [6] a | Acid | Corn | Corn silage | 70.00 | 11.18 | 24.71 | 13.95 | 35.77 | 1.99 |
Kung Jr. et al. [6] b | Acid | Corn | Corn silage | 105.00 | 11.18 | 24.71 | 13.95 | 35.77 | 1.99 |
Kung Jr. et al. [6] c | Acid | Corn | Corn silage | 140.00 | 11.18 | 24.71 | 13.95 | 35.77 | 1.99 |
Kung Jr. et al. [6] d | Acid | Corn | Corn silage | 42.00 | 8.76 | 25.54 | 13.76 | 46.78 | 2.77 |
Kung Jr. et al. [6] e | Acid | Corn | Corn silage | 84.00 | 8.76 | 25.54 | 13.76 | 46.78 | 2.77 |
Khampa et al. [7] a | Salt | Cassava | Rice straw | 9.00 | 8.61 | 41.14 | 23.86 | 34.90 | 3.51 |
Khampa et al. [7] b | Salt | Cassava | Rice straw | 18.00 | 8.61 | 41.14 | 23.86 | 34.90 | 3.51 |
Khampa et al. [7] c | Salt | Cassava | Rice straw | 27.00 | 8.61 | 41.14 | 23.86 | 34.90 | 3.51 |
Liu et al. [8] a | Acid | Corn | Corn straw | 70.20 | 8.29 | 55.82 | 21.85 | 14.78 | 1.72 |
Liu et al. [8] b | Acid | Corn | Corn straw | 140.40 | 8.29 | 55.82 | 21.85 | 14.78 | 1.72 |
Liu et al. [8] c | Acid | Corn | Corn straw | 210.60 | 8.29 | 55.82 | 21.85 | 14.78 | 1.72 |
Martin et al. [9] a | Salt | Corn | Cottonseed hulls | 27.00 | 11.39 | 19.10 | 9.93 | 49.60 | 2.95 |
Martin et al. [9] b | Salt | Corn | Cottonseed hulls | 54.00 | 11.39 | 19.10 | 9.93 | 49.60 | 2.95 |
Martin et al. [9] c | Salt | Corn | Cottonseed hulls | 80.00 | 11.39 | 19.10 | 9.93 | 49.60 | 2.95 |
El-Zaiat et al. [10] | Acid | Corn | Corn silage | 30.00 | 17.16 | 32.29 | 19.06 | 36.70 | 5.60 |
Carrasco et al. [12] a | Acid | Barley | Barley straw | 9.38 | 16.61 | 21.59 | 8.35 | 37.04 | 9.76 |
Carrasco et al. [12] b | Salt | Barley | Barley straw | 9.12 | 16.61 | 21.59 | 8.35 | 37.04 | 9.76 |
Sniffen et al. [14] | Salt | Corn | Corn silage | 50.00 | 18.20 | 31.80 | 21.40 | 29.40 | 2.70 |
Devant et al. [15] | Salt | - | - | 84.00 | 14.31 | 32.84 | 16.93 | 30.16 | 3.16 |
Foley et al. [16] a | Acid | Barley | Silage | 34.00 | 15.60 | 23.10 | 13.80 | 28.10 | 2.50 |
Foley et al. [16] b | Acid | Barley | Silage | 65.40 | 15.60 | 23.10 | 13.80 | 28.10 | 2.50 |
Foley et al. [16] c | Acid | Barley | Silage | 32.38 | 15.57 | 23.09 | 13.82 | 28.12 | 2.47 |
Foley et al. [16] d | Acid | Barley | Silage | 64.85 | 15.57 | 23.09 | 13.82 | 28.12 | 2.47 |
Foley et al. [16] e | Acid | Barley | Silage | 98.25 | 15.57 | 23.09 | 13.82 | 28.12 | 2.47 |
Wang et al. [17] a | Acid | Corn | Corn silage | 70.00 | 16.50 | 42.40 | 27.10 | 31.70 | 1.50 |
Wang et al. [17] b | Acid | Corn | Corn silage | 140.00 | 16.50 | 42.40 | 27.10 | 31.70 | 1.50 |
Wang et al. [17] c | Acid | Corn | Corn silage | 210.00 | 16.50 | 42.40 | 27.10 | 31.70 | 1.50 |
Hernández et al. [18] a | Salt | Barley | Barley straw | 30.80 | 13.83 | 37.30 | 16.62 | 28.51 | 3.87 |
Hernández et al. [18] b | Acid | Barley | Barley straw | 26.80 | 13.83 | 37.30 | 16.62 | 28.51 | 3.87 |
Hernández et al. [18] c | Salt | Barley | Barley straw | 28.40 | 13.83 | 37.30 | 16.62 | 28.51 | 3.87 |
Vyas et al. [19] a | Acid | Barley | Barley silage | 89.00 | 9.74 | 16.86 | 6.57 | 45.32 | 1.57 |
Vyas et al. [19] b | Acid | Barley | Barley silage | 177.00 | 9.74 | 16.86 | 6.57 | 45.32 | 1.57 |
Malekkhahi et al. [20] a | Salt | Corn | Corn silage | 80.00 | 17.69 | 27.64 | 16.66 | 29.90 | 2.23 |
Malekkhahi et al. [20] b | Salt | Corn | Corn silage | 80.00 | 20.93 | 32.50 | 18.25 | 45.53 | 2.74 |
Variable | NP | Form | NC | ES (CI) | ES p-Value | I2 | Het p-Value |
---|---|---|---|---|---|---|---|
pH | Salt | 11 | 1.420 (0.558; 2.282) | 0.00 | 80.40 | <0.01 | |
9 | Acid | 12 | −0.310 (−0.698; 0.079) | 0.12 | 38.18 | 0.09 | |
Overall | 23 | 0.310 (−0.137; 0.774) | 0.17 | 72.95 | <0.01 | ||
Acetate | Salt | 11 | −0.592 (−1.381; 0.196) | 0.14 | 72.26 | <0.01 | |
9 | Acid | 14 | 0.167 (−0.386; 0.720) | 0.55 | 78.08 | <0.01 | |
Overall | 25 | −0.120 (−0.584; 0.345) | 0.61 | 76.34 | <0.01 | ||
Butyrate | Salt | 11 | −0.356 (−1.040; 0.328) | 0.31 | 72.84 | <0.01 | |
9 | Acid | 14 | −0.058 (−0.717; 0.601) | 0.86 | 78.39 | <0.01 | |
Overall | 25 | −0.178 (−0.653; 0.297) | 0.46 | 76.69 | <0.01 | ||
Propionate | Salt | 11 | 0.756 (−0.075; 1.588) | 0.08 | 80.10 | <0.01 | |
9 | Acid | 14 | 0.472 (0.066; 0.879) | 0.02 | 48.17 | 0.02 | |
Overall | 25 | 0.560 (0.160; 0.959) | 0.01 | 67.31 | <0.01 | ||
Lactate | Salt | 6 | 0.337 (−0.517; 1.191) | 0.44 | 67.60 | 0.01 | |
5 | Acid | 6 | −0.621 (−1.512; 0.270) | 0.17 | 74.94 | <0.01 | |
Overall | 12 | −0.113 (−0.711; 0.485) | 0.71 | 70.76 | <0.01 | ||
ACT:PRP | Salt | 9 | −1.327 (−2.683; 0.030) | 0.06 | 82.04 | <0.01 | |
6 | Acid | 6 | −1.109 (−2.470; 0.252) | 0.11 | 83.70 | <0.01 | |
Overall | 15 | −1.130 (−2.028; −0.232) | 0.01 | 81.68 | <0.01 | ||
NH3N | Salt | 8 | 0.161 (−0.170; 0.492) | 0.34 | 0.99 | 0.42 | |
7 | Acid | 12 | −0.089 (−0.560; 0.381) | 0.71 | 47.12 | 0.04 | |
Overall | 20 | 0.079 (−0.227; 0.385) | 0.61 | 36.62 | 0.05 | ||
Total VFA | Salt | 11 | 0.547 (−0.249; 1.343) | 0.18 | 78.21 | <0.01 | |
9 | Acid | 14 | 0.518 (−0.034; 1.071) | 0.07 | 69.90 | <0.01 | |
Overall | 25 | 0.508 (0.055; 0.961) | 0.03 | 73.78 | <0.01 |
Trait | NP | Form | NC | ES (CI) | p-Value | I2 | Het p-Value |
---|---|---|---|---|---|---|---|
Blood parameters | |||||||
Glucose | Salt | 7 | 0.163 (−0.132; 0.457) | 0.28 | 0.00 | 0.88 | |
8 | Acid | 9 | 0.173 (−0.034; 0.379) | 0.10 | 0.49 | 0.43 | |
Overall | 16 | 0.170 (0.002; 0.338) | 0.05 | 0.00 | 0.78 | ||
Urea | Salt | 7 | 0.028 (−0.385; 0.441) | 0.89 | 45.12 | 0.11 | |
6 | Acid | 8 | −0.109 (−0.413; 0.194) | 0.48 | 53.35 | 0.04 | |
Overall | 15 | −0.033 (−0.279; 0.212) | 0.79 | 47.24 | 0.03 | ||
Lactate | Salt | 7 | −0.060 (−0.956; 0.836) | 0.90 | 82.63 | <0.01 | |
4 | Acid | 2 | −1.661 (−2.690; −0.361) | 0.01 | 57.23 | 0.13 | |
Overall | 9 | −0.490 (−1.316; 0.337) | 0.25 | 83.31 | <0.01 | ||
NEFA | Salt | 2 | −0.024 (−0.597; 0.550) | 0.94 | 0.00 | 0.94 | |
3 | Acid | 7 | −0.626 (−1.065; −0.187) | 0.01 | 0.00 | 0.47 | |
Overall | 9 | −0.404 (−0.759; −0.049) | 0.03 | 3.56 | 0.40 | ||
β-hidroxibutirate | Salt | 2 | 0.532 (−0.769; 1.832) | 0.42 | 78.81 | 0.03 | |
3 | Acid | 7 | −0.260 (−1.172; 0.652) | 0.58 | 75.68 | 0.01 | |
Overall | 9 | −0.018 (−0.742; 0.706) | 0.96 | 75.20 | <0.01 | ||
Digestibility | |||||||
Dry matter | Salt | 5 | −0.084 (−0.575; 0.407) | 0.74 | 0.00 | 0.95 | |
6 | Acid | 8 | 0.940 (0.229; 1.651) | 0.01 | 73.01 | 0.01 | |
Overall | 13 | 0.547 (0.027; 1.067) | 0.04 | 78.74 | <0.01 | ||
Organic matter | Salt | 4 | 0.056 (−0.435; 0.546) | 0.82 | 0.00 | 0.99 | |
6 | Acid | 5 | 0.694 (−0.217; 1.604) | 0.14 | 53.15 | 0.07 | |
Overall | 9 | 0.308 (−0.148; 0.764) | 0.19 | 21.24 | 0.25 | ||
Protein | Salt | 5 | 1.168 (0.217; 2.118) | 0.02 | 52.70 | 0.10 | |
6 | Acid | 8 | 0.215 (−0.197; 0.627) | 0.31 | 0.00 | 0.97 | |
Overall | 13 | 0.422 (0.099; 0.745) | 0.01 | 0.00 | 0.47 | ||
NDF | Salt | 5 | 1.537 (0.277; 2.797) | 0.02 | 77.39 | 0.00 | |
6 | Acid | 6 | −0.085 (−0.576; 0.406) | 0.73 | 0.00 | 0.94 | |
Overall | 11 | 0.699 (−0.007; 1.406) | 0.05 | 67.29 | 0.01 | ||
ADF | Salt | 4 | 0.547 (0.042; 1.051) | 0.03 | 0.00 | 0.45 | |
6 | Acid | 8 | 0.654 (−0.078; 1.387) | 0.08 | 60.62 | 0.01 | |
Overall | 12 | 0.635 (0.148; 1.121) | 0.01 | 46.49 | 0.03 |
Variables | Covariates, g/kg BW | |||||
---|---|---|---|---|---|---|
NP | NC | NDF | ADF | Starch | Organic Acid | |
Rumen parameters | ||||||
pH | 9 | 23 | 2.063 − 0.051x * | 0.908 − 0.142 | 0.584 − 0.004x | 0.343 + 0.548x |
Acetate | 9 | 25 | 0.126 − 0.008x | 0.464 −0.173x | −1.726 + 0.039x ** | −0.455 + 2.690x |
Butyrate | 9 | 25 | −1.475 + 0.038x | −1.155 + 0.252x | −0.649 + 0.009x | −1.121 + 7.116x |
Propionate | 9 | 25 | 0.239 + 0.009x | 0.357 + 0.055x | −0.518 + 0.028x ** | 0.871 − 2.894x |
Lactate | 5 | 12 | 1.250 − 0.041x * | 0.684 − 0.242x | −1.462 + 0.031x T | −0.547 + 3.758x |
Acetate:propionate | 6 | 15 | 1.887 − 0.118x * | 3.057 − 1.463x ** | −7.483 + 0.156x ** | −3.000 + 10.725x |
NH3N | 7 | 20 | 1.337 − 0.033x ** | 0.854 − 0.176x | −0.032 + 0.002x | 0.262 − 1.384x |
Total VFA | 9 | 25 | −0.034 + 0.019x | 0.632 − 0.013x | −1.033 + 0.042x * | 1.258 − 5.318x |
Blood parameters | ||||||
Urea | 6 | 15 | −0.074 + 0.001x | −0.053 + 0.005x | 0.370 − 0.007x | 0.007 − 0.190x |
Digestibility | ||||||
Dry matter | 6 | 13 | −0.374 + 0.023x T | 0.418 + 0.021x | 0.673 − 0.004x | 1.067 − 6.511x |
Protein | 6 | 13 | 0.613 − 0.004x | 0.336 + 0.016x | 0.483 − 0.002x | 0.560 − 1.665x |
NDF | 6 | 11 | 0.135 + 0.013x | 1.309 − 0.171x T | 1.375 − 0.025x * | 1.530 − 13.733x T |
ADF | 6 | 12 | 0.550 − 0.002x | 0.695 − 0.039x | 1.167 − 0.016x | 0.795 − 3.606x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, L.T.d.; Del Valle, T.A.; Skonieski, F.R.; Pereira, S.N.; Oliveira, P.S.d.; Facco, F.B.; Viégas, J. Exploratory Meta-Analysis of the Effect of Malic Acid or Malate Addition on Ruminal Parameters, Nutrient Digestibility, and Blood Characteristics of Cattle. Animals 2025, 15, 2177. https://doi.org/10.3390/ani15152177
Rocha LTd, Del Valle TA, Skonieski FR, Pereira SN, Oliveira PSd, Facco FB, Viégas J. Exploratory Meta-Analysis of the Effect of Malic Acid or Malate Addition on Ruminal Parameters, Nutrient Digestibility, and Blood Characteristics of Cattle. Animals. 2025; 15(15):2177. https://doi.org/10.3390/ani15152177
Chicago/Turabian StyleRocha, Leonardo Tombesi da, Tiago Antonio Del Valle, Fernando Reimann Skonieski, Stela Naetzold Pereira, Paola Selau de Oliveira, Francine Basso Facco, and Julio Viégas. 2025. "Exploratory Meta-Analysis of the Effect of Malic Acid or Malate Addition on Ruminal Parameters, Nutrient Digestibility, and Blood Characteristics of Cattle" Animals 15, no. 15: 2177. https://doi.org/10.3390/ani15152177
APA StyleRocha, L. T. d., Del Valle, T. A., Skonieski, F. R., Pereira, S. N., Oliveira, P. S. d., Facco, F. B., & Viégas, J. (2025). Exploratory Meta-Analysis of the Effect of Malic Acid or Malate Addition on Ruminal Parameters, Nutrient Digestibility, and Blood Characteristics of Cattle. Animals, 15(15), 2177. https://doi.org/10.3390/ani15152177