Immobilization of Pleurotus eryngii Laccase via a Protein–Inorganic Hybrid for Efficient Degradation of Bisphenol A as a Potent Xenobiotic
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials, Chemicals, and Culture
2.2. Production and Partial Purification of PeLac
2.3. Immobilization of PeLac as Protein–Inorganic Hybrids
2.4. Assessment of Enzyme Activity
2.5. Characterization of PeLac-Based Protein–Inorganic Hybrids
2.6. Stability and Reusability
2.7. Measurement of Acute Toxicity
2.8. Degradation of Bisphenol A
2.9. Instrumental Analysis
3. Results and Discussion
3.1. PeLac Production and Partial Purification
3.2. PeLac Immobilization Using Cu-Based Protein–Inorganic Hybrids
3.3. Characterization of Immobilized PeLac
3.4. Toxicity Measurements of NFs
3.5. Stability and Reusability
3.6. Bisphenol A Degradation by Free and Immobilized PeLac
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suman, S.K.; Malhotra, M.; Kurmi, A.A.; Narani, A.; Bhaskar, T.; Ghosh, S.; Jain, S.L. Jute sticks biomass delignification through laccase-mediator system for enhanced saccharification and sustainable release of fermentable sugar. Chemosphere 2022, 286, 131687. [Google Scholar] [CrossRef] [PubMed]
- Himanshu; Behera, B.; Kumari, N.; Maruthi, M.; Singh, R.K.; Saini, J.K. Appraisal of malachite green biodegradation and detoxification potential of laccase from Trametes cubensis. Bioresour. Technol. 2025, 417, 131869. [Google Scholar] [CrossRef]
- Aghaee, M.; Salehipour, M.; Rezaei, S.; Mogharabi-Manzari, M. Bioremediation of organic pollutants by laccase-metal–organic framework composites: A review of current knowledge and future perspective. Bioresour. Technol. 2024, 406, 131072. [Google Scholar] [CrossRef] [PubMed]
- Thathola, P.; Melchor-Martinez, E.M.; Adhikari, P.; Hernandez-Martinez, S.A.; Pandey, A.; Parra-Saldivar, R. Laccase-mediated degradation of emerging contaminants: Unveiling a sustainable solution. Environ. Sci. Adv. 2024, 3, 1500–1512. [Google Scholar] [CrossRef]
- Braunschmid, V.; Binder, K.; Fuerst, S.; Subagia, R.; Danner, C.; Weber, H.; Schwaiger, N.; Nyanhongo, G.S.; Ribitsch, D.; Guebitz, G.M. Comparison of a fungal and a bacterial laccase for lignosulfonate polymerization. Process Biochem. 2021, 109, 207–213. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Choi, S.H.; Kang, Y.C.; Lee, J.-K. Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: A promising support for enzyme immobilization. Nanoscale 2015, 8, 6728–6738. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.S.; Kalia, V.C.; Lee, J.-K. Laccase immobilization on copper-magnetic nanoparticles for efficient bisphenol degradation. J. Microbiol. Biotechnol. 2023, 33, 127–134. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, T.; Zhang, Y. Application of laccase-inorganic nanoflowers based time-temperature integrator to real-time monitor the freshness of pasteurized milk. Food Chem. X 2024, 24, 101916. [Google Scholar] [CrossRef]
- Vallejo, J.L.; Vallejos, S.; Trigo-Lopez, M.; Garcia, J.M.; Busto, M.D. Optimization and stability of a reusable laccase-polymer hybrid film for the removal of bisphenol A in water. Environ. Technol. Innov. 2025, 38, 104093. [Google Scholar] [CrossRef]
- Latif, A.; Maqbool, A.; Sun, K.; Si, Y. Immobilization of Trametes versicolor laccase on Cu-alginate beads for biocatalytic degradation of bisphenol A in water: Optimized immobilization, degradation and toxicity assessment. J. Environ. Chem. Eng. 2022, 10, 107089. [Google Scholar] [CrossRef]
- Bîtcan, I.; Petrovici, A.; Pellis, A.; Klebert, S.; Karoly, Z.; Bereczki, L.; Peter, F.; Todea, A. Enzymatic route for selective glycerol oxidation using covalently immobilized laccases. Enzym. Microb. Technol. 2023, 163, 110168. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, F.; Yang, X. Enhanced stability of Thermus thermophiles SG0.5JP17-16 laccase immobilized by CuF-MOF and its application in the Congo red decolorization. Biochem. Eng. J. 2024, 209, 109397. [Google Scholar] [CrossRef]
- Moayedi, M.; Yousefi, N. Laccase immobilized on reduced graphene oxide sponges for simultaneous adsorption and enzymatic degradation of endocrine disrupting chemicals. Int. J. Biol. Macromol. 2025, 302, 139984. [Google Scholar] [CrossRef]
- Lee, H.R.; Chung, M.; Kim, M.I.; Ha, S.H. Preparation of glutaraldehyde-treated lipase inorganic hybrid nanoflowers and their catalytic performance as immobilized enzymes. Enzym. Microb. Technol. 2017, 105, 24–29. [Google Scholar] [CrossRef]
- Wang, H.; Jin, C.; Li, X.; Ma, J.-X.; Ye, Y.-F.; Tang, L.-X.; Si, J.; Cui, B.-K. A green biocatalyst fabricated by fungal laccase immobilized onto Fe3O4@polyaniline-chitosan nanofibrous composites for the removal of phenolic compounds. Chem. Eng. J. 2025, 507, 160486. [Google Scholar] [CrossRef]
- Gutiérrez-Antón, M.; Santiago-Hernández, A.; Rodríguez-Mendoza, J.; Cano-Ramírez, C.; Bustos-Jaimes, I.; Aguilar-Osorio, G.; Campos, J.E.; Hidalgo-Lara, M.E. Improvement of laccase production by Thielavia terrestris Co3Bag1. enhancing the bio-catalytic performance of the native thermophilic TtLacA via immobilization in copper alginate gel beads. J. Fungi 2023, 9, 308. [Google Scholar]
- Weng, Y.; Chen, R.; Hui, Y.; Chen, D.; Zhao, C.-X. Boosting enzyme activity in enzyme metal–organic framework composites. Chem Bio Eng. 2024, 1, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Rezayaraghi, F.; Jafari-Nodoushan, H.; Mojtabavi, S.; Golshani, S.; Jahandar, H.; Faramarzi, M.A. Hybridization of laccase with dendrimer-grafted silica-coated hercynite-copper phosphate magnetic hybrid nanoflowers and its application in bioremoval of Gemifloxacin. Environ. Sci. Pollut. Res. 2022, 29, 89255–89272. [Google Scholar] [CrossRef]
- Li, N.; Yu, F.; Li, H.; Meng, X.; Peng, C.; Sheng, X.; Zhang, J.; Liu, S.; Pimg, Q.; Xiao, H. Cellulose / waste Cu2+-activated carbon composite: A sustainable and green material for boosting laccase activity and degradation of bisphenol A in wastewater. Int. J. Biol. Macromol. 2024, 281, 136121. [Google Scholar] [CrossRef]
- Vojdanitalab, K.; Jafari-Nodoushan, H.; Mojtabavi, S.; Shokri, M.; Jahandar, H.; Faramarzi, M. Instantaneous synthesis and full characterization of organic–inorganic laccase-cobalt phosphate hybrid nanoflowers. Sci. Rep. 2022, 12, 9297. [Google Scholar] [CrossRef]
- Jafari-Nodoushan, H.; Fazeli, M.R.; Faramarzi, M.A.; Samadi, N. Hierarchically-structured laccase@Ni3(PO4)2 hybrid nanoflowers for antibiotic degradation: Application in real wastewater effluent and toxicity evaluation. Int. J. Biol. Macromol. 2023, 234, 123574. [Google Scholar] [CrossRef]
- Li, J.-X.; Chai, T.-Q.; Chen, G.-Y.; Luo, M.-L.; Wan, J.-B.; Yang, F.-Q. A novel dual-ligand copper-based nanoflower for the colorimetric and fluorescence detection of 2,4-dichlorophenol, epinephrine and hydrogen peroxide. Anal. Chim. Acta 2024, 1330, 343298. [Google Scholar] [CrossRef] [PubMed]
- Moshiri, F.; Mojtabavi, S.; Momeni, S.A.; Abdolghaffari, A.H.; Jahandar, H.; Faramarzi, M.A. Hierarchically-structured laccase@Ba3(PO4)2 hybrid nanoflowers coating on the urinary foley catheter with high durability, biocompatibility, anti-adhesion activity, and contrasting behavior. Mater. Chem. Phys. 2024, 313, 128777. [Google Scholar] [CrossRef]
- Ge, J.; Lei, J.; Zare, R.N. Protein-inorganic hybrid nanoflowers. Nat. Nanotechnol. 2012, 7, 428–432. [Google Scholar] [CrossRef]
- Kiani, M.; Mojtabavi, S.; Jafari-Nodoushan, H.; Tabib, S.R.; Hassannejad, N.; Faramarzi, M.A. Fast anisotropic growth of the biomineralized zinc phosphate nanocrystals for a facile and instant construction of laccase@Zn3(PO4)2 hybrid nanoflowers. Int. J. Biol. Macromol. 2022, 204, 520–531. [Google Scholar] [CrossRef]
- Latif, A.; Maqbool, A.; Zhou, R.; Arsalan, M.; Sun, K.; Si, Y. Optimized degradation of bisphenol A by immobilized laccase from Trametes versicolor using Box-Behnken design (BBD) and artificial neural network (ANN). J. Environ. Chem. Eng. 2022, 10, 107331. [Google Scholar] [CrossRef]
- Sun, H.; Yuan, F.; Jia, S.; Zhang, X.; Xing, W. Laccase encapsulation immobilized in mesoporous ZIF-8 for enhancement bisphenol A degradation. J. Hazard. Mater. 2023, 445, 130460. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, F.; Xia, C.; You, Q.; Chen, X.; Li, Y.; Lin, W.; Guo, L.; Fu, F. Copper nanoparticles incorporated nitrogen-rich carbon nitride as laccase-like nanozyme for colorimetric detection of bisphenol a released from microplastics. Microchem. J. 2023, 190, 108682. [Google Scholar] [CrossRef]
- Du, M.; Liu, J.; Huang, B.; Wang, Q.; Wang, F.; Bi, L.; Ma, C.; Song, M.; Jiang, G. Spatial nanopores promote laccase degradation of bisphenol A and its analogs. Sci. Total Environ. 2023, 901, 166429. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, D.; Cheng, Y.; Zhang, X.; Zhang, S.; Chen, W. Immobilization of laccase on chitosan functionalized halloysite nanotubes for degradation of Bisphenol A in aqueous solution: Degradation mechanism and mineralization pathway. Heliyon 2022, 8, e09919. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Z.; Shi, Q.; Sun, Y. Removal of bisphenol A by integrated adsorption and biodegradation using immobilized laccase onto defective PCN-224. J. Environ. Chem. Eng. 2023, 11, 110166. [Google Scholar] [CrossRef]
- Yang, Y.; Jian, Y.; He, L. High performance persistent organic pollutants removal using stabilized enzyme aggregates over amino functionalized magnetic biochar. J. Hazard. Mater. 2025, 491, 137868. [Google Scholar] [CrossRef]
- Singh, G.; Kaur, K.; Puri, S.; Sharma, P. Critical factors affecting laccase-mediated biobleaching of pulp in paper industry. Appl. Microbiol. Biotechnol. 2015, 99, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Munoz, C.; Guillen, F.; Martinez, A.T.; Martinez, M.J. Laccase isoenzymes of Pleurotus eryngii: Characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation. Appl. Environ. Microbiol. 1997, 63, 2166–2174. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zhao, L.; Wang, F.; Lu, J.; Ding, Z.; Shi, G. β-Carotene from yeasts enhances laccase production of Pleurotus eryngii var. ferulae in co-culture. Front. Microbiol. 2017, 8, 1101. [Google Scholar] [CrossRef]
- Sharghi, S.; Ahmadi, F.S.; Kakhki, A.M.; Farsi, M. Copper increases laccase gene transcription and extracellular laccase activity in Pleurotus eryngii KS004. Braz. J. Microbiol. 2024, 55, 111–116. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Gupta, R.K.; Kim, I.-W.; Lee, J.-K. Coriolus versicolor laccase-based inorganic protein hybrid synthesis for application in biomass saccharification to enhance biological production of hydrogen and ethanol. Enzym. Microb. Technol. 2023, 170, 110301. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Gupta, R.K.; Karuppanan, K.K.; Padhi, D.K.; Ranganathan, S.; Paramanantham, P.; Lee, J.-K. Trametes versicolor laccase-based magnetic inorganic-protein hybrid nanobiocatalyst for efficient decolorization of dyes in the presence of inhibitors. Materials 2024, 17, 1790. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Otari, S.V.; Li, J.; Kim, D.R.; Kim, S.C.; Cho, B.K.; Kalia, V.C.; Kang, Y.C.; Lee, J.-K. Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. J. Hazard. Mater. 2018, 347, 442–450. [Google Scholar] [CrossRef]
- Modaressi, K.; Taylor, K.E.; Bewtra, J.K.; Biswas, N. Laccase-catalyzed removal of bisphenol-A from water: Protective effect of PEG on enzyme activity. Water Res. 2005, 39, 4309–4316. [Google Scholar] [CrossRef]
- Han, Z.; Wang, H.; Zheng, J.; Wang, S.; Yu, S.; Lu, L. Ultrafast synthesis of laccase copper phosphate hybrid nanoflowers for efficient degradation of tetracycline antibiotics. Environ. Res. 2023, 216, 114690. [Google Scholar] [CrossRef] [PubMed]
- Al-Maqdi, K.A.; Elmerhi, N.; Alzamly, A.; Shah, I.; Ashraf, S.S. Laccase–copper phosphate hybrid nanoflower as potent thiazole remediation agent. J. Water Process Eng. 2023, 51, 103438. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Yang, C.; Ma, C.; Zhang, Y.; Tang, J. Facile synthesis of recyclable laccase-mineral hybrid complexes with enhanced activity and stability for biodegradation of Evans Blue dye. Int. J. Biol. Macromol. 2021, 188, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wu, L.; Xiao, X.; Rong, L.; Li, M.; Zou, X. Mixture toxicity of zinc oxide nanoparticle and chemicals with different mode of action upon Vibrio fischeri. Environ. Sci. Eur. 2020, 32, 41. [Google Scholar] [CrossRef]
- Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H.-C.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 2008, 71, 1308–1316. [Google Scholar] [CrossRef]
- Rossetto, A.L.O.F.; Melegari, S.P.; Ouriques, L.C.; Matias, W.G. Comparative evaluation of acute and chronic toxicities of CuO nanoparticles and bulk using Daphnia magna and Vibrio fischeri. Sci. Total Environ. 2014, 490, 807–814. [Google Scholar] [CrossRef]
- Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global assessment of bisphenol A in the environment. Dose Response 2015, 13, 1559325815598308. [Google Scholar] [CrossRef]
- Ge, M.; Deng, W.; Wang, Z.; Weng, C.; Yang, Y. Effective decolorization and detoxification of single and mixed dyes with crude laccase preparation from a white-rot fungus strain Pleurotus eryngii. Molecules 2024, 29, 669. [Google Scholar] [CrossRef]
- Guo, Z.; Huang, A.; Gu, Z.; Guo, Z.; Yuan, L.; Gao, R.; Xin, Y.; Zhang, L. Ultrasound-assisted biomimetic mineralization immobilization improves the stability and catalytic performance of laccases derived from Bacillus licheniformis. Mol. Catal. 2025, 574, 114869. [Google Scholar] [CrossRef]
- Zdarta, J.; Jankowska, K.; Strybel, U.; Marczak, L.; Nguyen, L.N.; Oleskowicz-Popiel, P.; Jesionowski, T. Bioremoval of estrogens by laccase immobilized onto polyacrylonitrile/polyethersulfone material: Effect of inhibitors and mediators, process characterization and catalytic pathways determination. J. Hazard. Mater. 2022, 432, 128688. [Google Scholar] [CrossRef]
- Chmelová, D.; Ondrejovic, M.; Miertuš, S. Laccases as effective tools in the removal of pharmaceutical products from aquatic systems. Life 2024, 14, 230. [Google Scholar] [CrossRef] [PubMed]
Protein (mg/mL) | Encapsulation Yield (%) | Loading (mg/g of Synthesized Hybrids) | Relative Activity (%) a |
---|---|---|---|
0.05 | 84.7 ± 2.5 | 75.6 ± 5.6 | 215 ± 16.6 |
0.10 | 80.2 ± 2.7 | 97.8 ± 6.3 | 278 ± 18.7 |
0.25 | 78.8 ± 2.9 | 163 ± 9.5 | 333 ± 21.9 |
0.50 | 54.5 ± 4.1 | 191 ± 11.6 | 205 ± 17.0 |
Enzyme | Vmax (µmol/min/mg Protein) | Km (µM) | Oxidation Current Peak (µA) a |
---|---|---|---|
Free PeLac | 93.1 ± 6.1 | 118 ± 8.9 | 0.47 ± 0.03 |
Cu–PeLac NFs | 311 ± 19.3 | 48.6 ± 3.3 | 1.42 ± 0.07 |
Particles | EC50 Concentration (µg/mL) |
---|---|
Cu-NPs | 95.4 ± 6 |
Cu-NFs | 876 ± 48 |
Temperature (°C) | Free PeLac | Cu–PeLac NFs | ||
---|---|---|---|---|
kd (h−1) | t1/2 (h) | kd (h−1) | t1/2 (h) | |
40 | 0.05 ± 0.003 | 13.2 ± 1.03 | 0.01 ± 0.001 | 62.6 ± 3.2 |
45 | 0.10 ± 0.007 | 6.93 ± 0.52 | 0.02 ± 0.001 | 36.8 ± 1.9 |
50 | 0.25 ± 0.015 | 2.78 ± 0.19 | 0.04 ± 0.002 | 19.2 ± 1.1 |
55 | 0.66 ± 0.028 | 1.05 ± 0.07 | 0.06 ± 0.004 | 12.3 ± 0.8 |
60 | 1.05 ± 0.049 | 0.66 ± 0.03 | 0.09 ± 0.005 | 7.81 ± 0.6 |
65 | 2.23 ± 0.088 | 0.31 ± 0.02 | 0.24 ± 0.013 | 2.86 ± 0.3 |
70 | 4.08 ± 0.123 | 0.17 ± 0.01 | 0.62 ± 0.033 | 1.12 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, S.K.S.; Gupta, R.K.; Lee, J.-K. Immobilization of Pleurotus eryngii Laccase via a Protein–Inorganic Hybrid for Efficient Degradation of Bisphenol A as a Potent Xenobiotic. J. Xenobiot. 2025, 15, 108. https://doi.org/10.3390/jox15040108
Patel SKS, Gupta RK, Lee J-K. Immobilization of Pleurotus eryngii Laccase via a Protein–Inorganic Hybrid for Efficient Degradation of Bisphenol A as a Potent Xenobiotic. Journal of Xenobiotics. 2025; 15(4):108. https://doi.org/10.3390/jox15040108
Chicago/Turabian StylePatel, Sanjay K. S., Rahul K. Gupta, and Jung-Kul Lee. 2025. "Immobilization of Pleurotus eryngii Laccase via a Protein–Inorganic Hybrid for Efficient Degradation of Bisphenol A as a Potent Xenobiotic" Journal of Xenobiotics 15, no. 4: 108. https://doi.org/10.3390/jox15040108
APA StylePatel, S. K. S., Gupta, R. K., & Lee, J.-K. (2025). Immobilization of Pleurotus eryngii Laccase via a Protein–Inorganic Hybrid for Efficient Degradation of Bisphenol A as a Potent Xenobiotic. Journal of Xenobiotics, 15(4), 108. https://doi.org/10.3390/jox15040108